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Abstract: Machine learning techniques are commonly used in the vibration-based condition moni-
toring of rotating machines. However, few research studies have focused on model training from
a practical viewpoint, namely, how to select representative training samples and operating areas
for monitoring applications. We focus on these aspects by studying training sets with varying sizes
and distributions, including their effects on the models to be identified. The analysis is based on
acceleration and shaft speed data available from an azimuth thruster of a catamaran crane vessel.
The considered machine learning algorithm was previously introduced in another study suggesting
it could detect defects on the thruster driveline components. In this work, practical guidance is
provided to facilitate its implementation, and furthermore, an adaptive method for training subset
selection is proposed. Results show that the proposed method enabled the identification of usable
training subsets in general, while the success of the previous approach was case-dependent. In
addition, the use of Kolmogorov–Smirnov or Anderson–Darling tests for normal distribution, as
a part of the method, enabled selections that covered the operating area broadly, while other tests
were unfavorable in this regard. Overall, the study demonstrates that reconfigurable and automated
model implementations could be achievable with minor effort.

Keywords: acceleration; anomaly detection; automation; azimuth thruster; system identification;
training data

1. Introduction

Nowadays, companies collect large amounts of data as the result of the recent progress
in industrial digitalization [1]. Regardless, systematic data exploitation can still be seen as
incomplete [2] while the approaches to data management and processing are unestablished.
In industrial maintenance and condition monitoring (CM), machine learning (ML) methods
have become an intriguing option for data analysis because they could recognize the
health states of machines automatically [3]. However, the research on this field is widely
realized with simulation data and data from precisely controlled laboratory tests, which
are commonly free from the characteristics of industrial data, such as noise, inconsistency,
outliers, incomplete records, irrelevant samples, unfavorable and varying operating areas
and the lack of labeled samples [4–6]. In addition, the data for model training are commonly
selected manually and the introduction of their characteristics may not be explicit [7]. The
usability of trained models remains largely uncertain when their connections with data
characteristics are poorly understood. On the other hand, the automated methods for
sample selection [8–10] could pave the way towards reproducible solutions that are needed
in the practical applications of ML. There, a single application is potentially transferred into
various instances requiring robustness, automated properties and easy reconfigurability.

The most common approach to machine learning is supervised learning [11] where
the model training is based on known (or labeled) samples. The sample selection for
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training data is usually conducted as a pre-processing step [4,5] and it often requires many
trials to achieve a usable model. In common practice, the sample selection equals the
elimination of samples that are noisy, redundant, or irrelevant in available datasets, and it is
often realized through a manual procedure. Additionally, automated feature selection and
dimensionality reduction techniques are applied to reduce the data dimensions, namely,
the number of predictor variables to ease the learning process [12]. The importance of
automated data selection is increasingly noted because firstly, the volume of data is expected
to grow in modern computational applications [1,13] and secondly, large datasets tend to
increase information redundancy and complexity, leading to low prediction precision and
to decreased computational efficiency in data-driven modeling [9,14].

The recent literature on monitoring of rotating machines based on ML methods is
commonly focused on the prediction performance of classifiers [3,15], but the reasoning for
training data selection remains unclear. However, it is often mentioned that the training
samples should enable the most accurate generalization [16]. In addition, they should be
sampled from a broad distribution across the input space to contain the natural variability
of the quantities in use [9]. On the other hand, all the data from such a distribution are not
equally useful in model training [17] and random selection is then impractical. In industrial
applications, training data are typically hand-picked based on the status codes given by
the monitoring system [4,12] and based on expert knowledge [6]. The fault data of rotating
machines, collected into data repositories, typically have drawbacks such as the narrow
coverage of the complete operating area or poor quality. Moreover, each unique fault may
show new, previously unseen symptoms in indirect measurements, such as acceleration
signals. Therefore, the data of fault-free operating conditions solely are commonly applied
for model training [4–6,12,18]. The one-class classifier is then used for anomaly detection.

However, the problem of training data selection is mainly approached from the per-
spective of maximizing the generalization performance in classification [19] by finding the
smallest set of samples [8] with the assumption that representative data are available in
more than one class. The selection strategies include the pruning of redundant samples [9],
evolutionary computation methods [10], methods combining feature selection and data
sampling [16] and experimental design techniques [20,21]. In addition, various studies
focus on sample selection for specific algorithms, such as support vector machines [9,22,23],
decision tree classifiers [16], nearest neighbor classifiers [19] and neural networks [20]. Such
methods are beneficial for specific training sets containing representative data of classes.
By contrast, this study focuses on selecting the training subsets that define representative
operating areas for condition monitoring based on one class instead of trying to maximize
the classification performance. The operating areas are defined by a single variable, namely,
the shaft rotational speed, because it is commonly available in rotating machines including
azimuth thrusters. This approach enables the rejection of unfavorable operating areas for
monitoring, and furthermore, the selection process is unaffected by the case-specific fault
conditions, which improves its general applicability.

Furthermore, industrial systems typically change during operation, which causes a
dataset shift [24]. The detection of shifted datasets [25,26] and adaptation to them [27,28]
are general goals in ML development that aim at practical implementation. Therefore,
the data selection procedure is analyzed in this study with multiple datasets collected in
chronological order during operation.

The study was made by applying the probabilistic condition monitoring algorithm
introduced in [6] on the datasets collected from a single azimuth thruster. While the
previous work [6] was focused on describing the algorithm for anomaly detection, this
work clarifies the effect of training data on the system identification procedure of the
algorithm. The performance is studied based on relatively large datasets which were not
available in the previous work. More specifically, the main contributions of the study
can be summarized as follows. The effects of training data on the automatically selected
training subsets are illustrated, and the model adaptation to different datasets is analyzed.
The ‘training subset selection’ process of the algorithm is analyzed by using the original
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approach for dataset segmentation, and a new, more flexible approach suitable for large
datasets with varying distributions is presented. The automated selection of training
subsets is based on identifying the shaft speed ranges that exhibit normal distribution in
the regression residuals of predicted features. Therefore, various hypothesis tests, such as
Kolmogorov—Smirnov (KS) [29], Anderson–Darling (AD) [30], Lilliefors’ test [31], Jarque–
Bera (JB) [32] and Shapiro–Wilk (SW) [33], are also compared as a part of the selection
process. The case study provides guidance for the implementation of the considered
condition monitoring algorithm. In addition, the approach to training data selection with
the purpose of identifying the operating areas in place of maximizing the classification
performance gives a practical viewpoint to the use of automated supervised learning in
industrial condition monitoring.

The remainder of the paper is organized as follows. Section 2 presents the procedures
applied in the training data selection and introduces the data. Section 3 presents the results
and Section 4 discusses their relevance to practical applications. Finally, Section 5 concludes
the findings.

2. Materials and Methods

This section presents the process for training subset selection from available data.
The competing approaches to dataset segmentation and normal distribution testing are
discussed. In addition, the data for algorithm training in the case of azimuth thruster
condition monitoring are described.

2.1. Training Subset Selection

The algorithm for identifying CM models was originally presented in [6] and a
flowchart of its stages is shown in Figure 1. The training subset selection process is
highlighted there. It controls simultaneously the sample selection within the full training
set and the selection of operating areas for monitoring. The process uses features extracted
from the acceleration signal, the values of shaft rotational speed and user-defined parame-
ters to guide the selection. The process checks the available samples in various operating
areas, defined by the ranges of rotational speed values within the training subsets, and
finally selects the subsets suitable for model training. To clarify, the process was named
‘speed range selection’ in the original version [6], but the name is modified here to refer to
the more general concept of training data selection.

The main function of training data selection is to identify the subsets in which the
predictions of linear regression models result in residuals that are normally distributed.
The regression models utilize shaft speed values to predict the values of vibration features.
Therefore, a residual (ri) can be defined as

ri = yi − β0 − β1xi, (1)

where yi is a calculated feature value, xi is a shaft speed value and i is the sample number.
Parameters β0 and β1 are the intercept and the regression coefficient, respectively.

The selected features are described in Table 1 and their residuals were monitored
together in suitable combinations. Features 1–3 were selected for the time-domain model,
features 4–8 for the bearing model and features 9–11 for the gear model. The reasoning
for the selected features, the system parameters for their calculation and the use of their
residuals for condition monitoring were presented in [6]. The applied system parameters
included Ball Pass Frequency Inner Race (BPFI), Ball Pass Frequency Outer Race (BPFO),
Ball Spin Frequency (BSF), Fundamental Train Frequency (FTF) and Gear Mesh Frequency
(GMF).



Appl. Sci. 2022, 12, 4024 4 of 20

Figure 1. Flowchart for system identification with the position of ‘training subset selection’ high-
lighted (adapted from [6]).

Table 1. Description of features generated for condition monitoring.

No. Feature Details

1 Generalized norm (l10) Order of norm, p = 10
2 Ratio of norms (l20/l2) Ratio of high-order norm (p = 20) to low-order norm (p = 2)
3 Kurtosis Indicator for the tails of probability distribution
4 BPFI feature Median amplitude of 1–10 BPFI harmonics
5 BPFO feature Median amplitude of 1–10 BPFO harmonics
6 BSF feature Median amplitude of {1, 2, 4, 6} BSF harmonics

7 BPFI sideband feature Median amplitude of the nearest sidebands on both sides of BPFI harmonics
(20 sidebands altogether, spaced at shaft rotational frequency)

8 BSF sideband feature Median amplitude of the nearest sidebands on both sides of BSF harmonics
(8 sidebands altogether, spaced at FTF)

9 GMF feature 1 Median amplitude of 1–4 GMF harmonics and two nearest sidebands on both
sides (20 frequency components altogether)

10 GMF feature 2 Median amplitude of 1 × GMF and two nearest sidebands on both sides
(5 frequency components altogether)

11 GMF feature 3 Median amplitude of 2 × GMF and two nearest sidebands on both sides
(5 frequency components altogether)

As shown in Figure 1, the algorithm uses preset parameters that control its perfor-
mance, and it gives model parameters that are identified during training. The preset
parameters that guide the speed range selection are defined in Section 2.1.1. The studied
model parameters given by the algorithm include the rotational speed ranges and the
confidence intervals of regression coefficients.

The applied quality control (QC) parameters are the same as in the previous study [6],
namely, the moving window size is 100 acceleration values, the limit for the range of moving
mean range is 0.5 g and the limit for the absolute mean of the signal is 2 g. However, the
absolute mean check was unnecessary in the case study where the signal offset was removed
by the system onboard. The algorithm uses variance inflation factor (VIF) values to assess
the multicollinearity of residual sets. For the sake of brevity, the analysis of such values is
omitted here, but to clarify, they were strictly <10 based on random sampling.
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2.1.1. Dataset Segmentation

The training subset selection process identifies the widest acceptable operating ranges,
based on shaft rotational speed, without any overlap between each other. To have an
acceptable range, the residual sets must be normally distributed in the data, as shown
in [6]. A single residual set refers to the differences between the values of a feature and its
predicted values by linear regression fitted on the training subset, see Equation (1).

In our previous work [6], the distribution of shaft speed values was divided into 55
ranges based on the deciles so that all the values between the minimum and maximum of
the dataset were used. In this work, this approach is termed ’basic training subsets’. The
minimum number of samples that are accepted within a range (or subset) was set to 10% of
the sample size (N) of the dataset in the tests presented here.

Additionally, a new approach was proposed, where the distribution of shaft speed
values was segmented into 4851 separate ranges, based on percentiles. The values from the
1st to 99th percentile were processed so that the candidate ranges were one percentage point
wide at minimum and 98 percentage points at maximum (namely, the interval between the
1st and 99th percentiles). The first range covered values between 1st and 2nd percentiles, the
second covered values between 1st and 3rd percentiles, the third covered values between
1st and 4th percentiles and so forth. The lower end of ranges consisted of 1–98th percentiles
and the upper end consisted of 2–99th percentiles.

However, the proposed approach may result in impractically narrow ranges, and
therefore, the minimum width (in rpm) was introduced as another user-defined parameter
to guide the speed range selection. The minimum width was set to 5 rpm and the narrower
ranges were then removed from the full set of ranges (4851 ranges). Furthermore, the
ranges were required to include at least 40 samples to be accepted. Consequently, the
number of subsets considered was different for each complete training set. This approach
is termed ‘adaptive training subsets’ to describe its dense segmentation of distribution and
high flexibility compared with the previous approach. The main differences between the
approaches to dataset segmentation are summarized in Table 2.

Table 2. Applied parameter values in dataset segmentation approaches. Parameter N is the number
of samples in complete training set.

Parameter Basic Training Subsets Adaptive Training Subsets

Number of subsets 55 ≤4851
Distribution range in use (in

percentiles) 0–100 1–99

Minimum range width (pp) 10 1
Minimum range width (rpm) - 5
Minimum number of samples 0.1 × N (rounded to integer) 40

Figure 2 illustrates the candidates for shaft speed ranges with one training set (N =
3000) that is later introduced in Section 2.2. ‘Basic training subsets’ approach is shown on
top in Figure 2, whereas ‘adaptive training subsets’ is shown below. The plot on top shows
that in the case of a skewed distribution with many samples, the adjacent candidate ranges
may have large differences in the boundary values with ‘basic training subsets’ approach.
For example, the lower value of the candidate ranges jumps from 239 rpm to 343 rpm when
the lower end shifts from the 20th to 30th percentile (see ranges 11–27). The plot below
illustrates that ‘adaptive training subsets’ approach with thousands of candidate subsets
introduces more flexibility to the range selection due to the higher resolution.
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Figure 2. Candidates for monitored speed ranges based on two approaches to dataset segmentation,
demonstrated with one training set (N = 3000): ‘Basic training subsets’ approach with 55 ranges is
illustrated on top; ‘Adaptive training subsets’ approach with 4851 ranges is shown below.

2.1.2. Applied Hypothesis Tests

Five well-known hypothesis tests were applied for testing the normal distribution of
the residual sets. Most of these tests belong to the group of empirical distribution function
tests, where the difference between the empirical and hypothesized cumulative distribu-
tions is evaluated. From that group, Kolmogorov–Smirnov [29], Anderson–Darling [30]
and Lilliefors’ tests [31] were selected. KS and Lilliefors’ tests belong to the supremum class
of methods where the greatest vertical difference between the hypothesized and empirical
distribution is evaluated. In KS test, the hypothesized distribution is completely specified,
whereas in Lilliefors’ test, the parameters are estimated based on the sample. Furthermore,
AD test comes from the class of quadratic methods, where the squared difference between
the empirical and hypothesized distributions is evaluated.

As categorized in [34], one test from the class of moment tests and one from the
class of correlation tests were selected as well. Jarque–Bera belongs to the class of mo-
ment tests, where the deviation from normality is detected based on the third and fourth
moments of the distribution, namely, skewness and kurtosis [32]. Finally, Shapiro–Wilk
test is a correlation test based on the ratio of two estimates for scale obtained from order
statistics [33].

The applied MATLAB® functions for KS, AD, Lilliefors’ and JB tests were kstest, adtest,
lillietest and jbtest, respectively. SW was tested with the MATLAB® code provided by [35].
The standard 5% significance level was applied in all the hypothesis tests. The KS tests were
conducted on the standardized residuals (µ = 0, σ = 1) and in the other tests the residuals
were not standardized. In the AD test, the hypothesized normal distribution was generated
based on the mean and standard deviation of the residual set by using the makedist function.

2.2. Description of Data

The following subsection introduces the source of data, namely, the thruster and the
measurements. Then, the shaft speed data are described by focusing on the distribution
of the tested datasets. The features extracted from acceleration samples are illustrated
thereafter and their relation to the shaft speed shown.
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2.2.1. Thruster and Measurements

The data for this study come from a UUC 455 thruster manufactured by Kongsberg
Maritime Finland Oy. The data were collected during a campaign during April–May 2021
on ‘Pioneering Spirit’, the largest construction vessel in the world. Figure 3 presents a
drawing of the thruster model with the main components of interest highlighted. The
data from the piezoelectric accelerometer located next to the pinion shaft support bearing
and gear were selected for analysis. The sampling rate varied based on the shaft speed.
During one shaft revolution, 512 acceleration values were measured and the length of the
complete time series in a sample was 16,384 values. Samples were collected roughly at
5-min intervals.

Figure 3. Drawing of UUC 455 thruster.

2.2.2. Shaft Speed Values

Figure 4 presents the shaft speed values during the monitored period in chronological
order. In addition, the median, interquartile range and the 95% coverage are shown
cumulatively so that each value is calculated based on all the values from the first one to the
value of that time. To analyze the effect of sample size and distribution on the performance
in training subset selection, the full dataset was chopped into different training sets with
sizes from N = 200 to N = 3000 with the steps of 200 samples. Figure 5 illustrates the 1–99th
percentiles of the different datasets generated.

Figure 5 shows that the first 200 samples resulted in the most uniform distribution
with some outlying values in the higher end (see also Figure 4). Thereafter, the thruster
was commonly operated at shaft speeds around 500 rpm, with some periods of higher and
lower speed. As shown in Figure 5, the median of datasets with sample sizes N = 600–1400
was around 419 rpm and increased to 500 rpm with the sample sizes N = 2000–3000. The
interquartile range in Figure 4 shows that half of the samples were on a relatively narrow
range (roughly 400–520 rpm) after the 800 first samples. The flat areas in Figure 5 indicate
that large proportions of the samples in the distributions were collected from narrow
operating areas. More details are shown in Appendix A.
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Figure 4. Shaft speed values of samples in chronological order and the progression of distribution
based on median, interquartile range and 95% coverage.

Figure 5. Illustration of 1st to 99th percentiles of shaft speed values. The deciles from first to ninth
are marked by using black lines with squares placed on chosen sample sizes.

2.2.3. Generated Feature Values

Figure 6 shows the feature values and shaft speed values in chronological order. The
feature values followed the changes in the rotational speed values in a regular manner
during the period which suggests that the monitored operation was relatively unchanged.
Most feature values typically increased when the rotational speed increased considerably,
but l20/l2 and kurtosis had a weak correlation with the shaft speed.
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Figure 6. Feature values and rotational speed in chronological order. The number of a sample is
shown on horizontal axis, whereas vertical axis shows the value of each sample.

Figure 7 illustrates the correlation between the features and the shaft speed with scatter
plots. Certain speed areas clearly resulted in high variation in the feature values. The high
variation in kurtosis and l20/l2 roughly at 200-rpm speed could be explained by the steering
angle changes during maneuvering, whereas the variation in many other features at the
speed over 400 rpm is possibly a result of the ship movement during cruise. However, the
effects of maneuvering and ship movements are left for future work.

Figure 7. Scatter plots between feature values and rotational speed using the largest training set with
3000 samples.
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3. Results

The following analysis focuses on the model training results from various viewpoints.
In the first subsection, the proportion of acceptable training subsets is analyzed relative
to the size of dataset. The number of selected subsets and the sizes of speed ranges
for monitoring are illustrated thereafter. The third subsection shows the modeling error
and parameter uncertainties for the linear regression of a single feature. Another aspect
of significance, especially in the applications with limited computing capacity, is the
computation time required for the system identification, and therefore, the time used in
tests is analyzed in the fourth subsection. Finally, the results of different hypothesis tests for
identifying normally distributed residuals are illustrated in the last subsection. The applied
hypothesis test for normal distribution in Sections 3.1–3.4 was Kolmogorov–Smirnov test.

3.1. Proportion of Acceptable Training Subsets

Figure 8 shows the percentage value of acceptable training subsets relative to the
sample size of different datasets considered. The acceptable training subset means that
the residual sets of all the considered features within the considered speed range were
normally distributed within the subset. The quantity of the final selected training subsets
was, however, lower than shown in Figure 8 when only the widest rotational speed ranges
without overlap became selected for monitoring, as shown in Section 3.2.

Figure 8. Percentage of acceptable training subsets using different combinations of features. Dataset
segmentation approach based on ‘basic training subsets’ on the left and ‘adaptive training subsets’
on the right.

Tests were conducted by using all eleven features together (all models) and separately
in groups by using the time-domain model (features 1–3), the bearing model (features 4–8)
and the gear model (features 9–11). With ‘basic training subsets’, the total number of subset
candidates was 55 (see Figure 2), while the number varied with the ‘adaptive training
subsets’ approach based on the dataset. The number of candidate subsets was then {3160,
3495, 3890, 4036, 4198, 4310, 4432, 4407, 4355, 4378, 4277, 4298, 4326, 4396, 4459} for the
datasets with sizes from 200 to 3000 samples with the steps of 200 samples, respectively.
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In general, the increasing size of the dataset resulted in the decreased percentage
value of acceptable subsets. A large feature set, such as the case with ‘all models’, resulted
in a lower number of acceptable subsets than the smaller feature sets. Both approaches
to dataset segmentation resulted in a relatively similar proportion of acceptable subsets.
However, the absolute number of acceptable subsets was much higher in the ‘adaptive
training subsets’ approach. Moreover, the case of ‘all models’ and N = 3000 on the left had
0% acceptable subsets, whereas on the right, the corresponding result was 3.2%, which
implies that the approach with thousands of training subset candidates is more useful with
large datasets. Please refer to Appendix B for a similar analysis focusing on each feature
separately.

3.2. Identified Operating Areas for Monitoring

Figure 9 illustrates the shaft speed ranges that became selected for monitoring from
the candidate subsets when all models (time-domain, bearing and gear) were identified
together. Both plots show that the selected ranges were relatively wide when datasets were
small, such as N = 200. When the datasets were larger, the selected ranges were typically
narrower.

Figure 9. Selected rotational speed ranges when all models were identified together. ‘Basic training
subsets’ approach was used on the left, whereas ‘adaptive training subsets’ was used on the right.
Values on horizontal axis represent the sample size (N) and the vertical lines with different colors
represent selected non-overlapping ranges.

With the ‘basic training subsets’ approach (on the left), the highest number of selected
subsets was five, in the case of N = 200. Then, the minimum number of samples in the
subset could be as low as twenty (10% of N). Therefore, some of the subsets could be only
faintly representative of the operation. When N was increased, areas around 410 and 500
rpm became selected, which could be explained by the frequent operation within such
ranges (see Figure 4).
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The plot on the right illustrates that generally a large proportion of the operating
area was identified for monitoring irrespective of the sample size (N) when the ‘adaptive
training subsets’ approach was used. The monitoring of a broad area is useful when the
thruster is probably operated within a broad rotational speed range during typical use.
The highest number of selected operating ranges for monitoring was nine in the case of
N = 2000. When N = 200 or 400, only two ranges became selected. If many ranges are
selected for use, multiple models and parameters must be identified, which may increase
complexity. However, the use of simple models, as shown in Equation (1), helps to keep
the complexity of the monitoring approach tolerable. Appendix C illustrates the ranges
selected for the time-domain, bearing and gear models, when the models were identified
separately from each other.

3.3. Effect of Training Data on Model Performance

The upper plots in Figure 10 show the root-mean-square error (RMSE) for the linear
regression in which GMF feature no. 1 was predicted by using the shaft speed values within
different selected operating ranges. Models were identified by using the datasets with the
sizes of 400, 1200, 2200 and 3000 samples. The selection of training subsets was conducted
by using the ‘adaptive training subsets’ approach, where all the models were identified at
the same time. Therefore, the presented models used the same operating ranges, as shown
on the right in Figure 9.

Figure 10. Errors in prediction of GMF feature no. 1 using selected training subsets (above) and 95%
confidence intervals of regression coefficient β1 (below). Number of samples in datasets increases on
the plots from left to right. Selected shaft speed ranges from each dataset and number of samples
within ranges are written below.

The plots show that the modeling error was typically high when the speed range was
selected from the higher end of distribution. This can be explained by the higher variation
of values there, as shown by the plot on the lower left corner in Figure 7. However, such a
correlation between RMSE and shaft speed cannot be generalized to every feature.
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Moreover, the plots reveal that the number of samples within the selected speed ranges
had only a minor effect on the modeling error. This is illustrated on the plots with different
sample sizes (N) but similar speed ranges, such as range no. 2 on the plot with N = 400
and range no. 6 on the plot with N = 2200 with 212 and 660 samples within the ranges,
respectively.

The lower plots in Figure 10 show the 95% confidence intervals for the regression
coefficient (β1), see Equation (1). They were estimated based on the Wald test implemented
in the coefCI function in MATLAB®. The plots reveal that the narrowest speed ranges (6–7
rpm wide) resulted in a high uncertainty of the regression coefficient values. However, this
may be insignificant for monitoring purposes because the main idea in residual monitoring
is to detect the increasing modeling error. At a narrow range, the predictor values vary
only slightly. The plots also indicate that the number of samples within a range had no
observable influence on the width of confidence intervals. A similar analysis was conducted
for the intercept (β0), but due to the lack of additional value, it was omitted from here.

3.4. Computation Time in System Identification

Figure 11 shows the computation time used in algorithm training as the average
of two tests. The computations were performed with a standard office computer (2.20
GHz, Intel® Core™ i7-8750H CPU, 16.0 GB RAM) and MATLAB® R2020b. On the plot
on top, the algorithm was trained with all its steps (see Figure 1) using the ‘basic training
subsets’ approach. The plots below show the computation time without the quality control
of samples, which means that each signal passed through the QC process without any
processing.

Figure 11. Time used in algorithm training. Plot on top shows entire computation time when ‘basic
training subsets’ approach was used. Plots below show corresponding computation time without
quality control using ‘basic training subsets’ (left) and ‘adaptive training subsets’ (right). Note that
vertical axes have different scales.
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The results show that the size of the sample set and computation time are strongly
correlated. The larger the sample set was, the more time was needed. The same goes
for the dimensionality of inputs. The algorithm with the bearing model required more
computation than the algorithm with the gear model because the number of features was
higher then. Comparing the plot on top with the plot below on the left, it becomes clear
that QC consumed the most time in algorithm training. In QC, the most time was used by
the check of moving mean range. The process was affected especially by the signal length,
the window size and the motion of the window, which were 16,384; 100; and 1 value(s)
here, respectively. To clarify further, the time used in quality control was independent of
the approach to training subset selection (see Figure 1).

The computation time with the ‘adaptive training subsets’ approach appears low
enough to be used in practice (with limited computing resources), which can be concluded
from the results in the lower right plot in Figure 11. In addition, the plot reveals that the
computation time was at a fixed level when N was 2200–3000 but the reason for that is
unclear. However, the shape of the distribution is relatively stabilized with those datasets,
as shown in Figure 5.

3.5. Comparison of Tests to Identify Normally Distributed Residuals

Figure 12 illustrates the percentage of normally distributed residual sets in training
subset candidates based on five different hypothesis tests applied. The percentage values
give an indication firstly on the adaptability of each hypothesis test to varying datasets
and secondly on their usability in system identification. The ‘Adaptive training subsets’
approach was used in the tests, and therefore, the number of subset candidates varied in
different datasets, as shown in Section 3.1. The residuals of all eleven features (see Table 1)
were tested in each subset. Therefore, a 100% result requires a varying number of normally
distributed residual sets in different datasets. In the case of N = 1000, for example, the
number would be 11 × 4198 (the number of features × the number of training subset
candidates).

Figure 12. Percentage of normally distributed residual sets based on five hypothesis tests. Results
highlight the adaptation performance of the tests on different datasets as a part of the system
identification procedure. Low percentage indicates poor applicability in practice.
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In general, the results indicate that the number of normally distributed residual sets
reduced when the sample size N grew. KS and AD results exhibit the highest percentages
of normally distributed sets, which suggests they could be useful tests for practical
implementation. Moreover, these methods had the largest change in percentage points
when N changed, which indicates they have high adaptability to different datasets. The
other tests, namely, Lilliefors’, JB and SW tests, resulted in lower percentages, indicating
that the identification of suitable training subsets could be challenging if such tests were
applied.

Figure 13 illustrates the operating ranges in the selected training subsets with different
hypothesis tests. Relatively similar ranges with wide coverage were selected based on KS
and AD. The other tests resulted in the selection of a low number of ranges. The ranges
were narrow and mostly located at roughly 500 and 530 rpm speed. The selection of a few
narrow ranges is unfavorable for practical monitoring.

Figure 13. Speed ranges in selected training subsets based on system identification with five different
hypothesis tests applied. Values on horizontal axis represent the sample size (N) and the vertical
lines with different colors represent selected non-overlapping ranges.

The presented results are somewhat conflicting with the literature. Previously reported
simulations reveal that powerful normality tests include methods such as SW or JB, whereas
KS is less powerful [36,37]. By contrast, the results presented here suggest that the KS and
AD tests could have high usability in the automated procedures presented, whereas SW
and JB appear unfavorable. The selection of an appropriate test requires understanding of
the considered application and its data.

4. Discussion

The results provide guidance to automated training subset selection in condition mon-
itoring applications. Firstly, the results in Section 3.5 indicate that the broadest operating
areas for monitoring could be identified by using the KS and AD tests for the check of
residuals’ normal distribution. Secondly, the results in Sections 3.2 and 3.5 show that the
novel approach to dataset segmentation, namely, the ‘adaptive training subsets’ approach,
adapts well to different training datasets. With this approach, usable training subsets were
identified irrespective of dataset size and distribution. The results further indicate that
the previously introduced approach, named here as ‘basic training subsets’, has limited
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usability on large datasets, but it could be used with small datasets or distributions which
have a shape close to a uniform distribution.

The results show that the minimum width of a selected speed range should be con-
strained. The use of a narrow range is impractical for monitoring, unless the system is
operated within the range regularly. The narrow range of the predictor variable, shaft
rotational speed, results in wide confidence intervals for regression coefficients as shown
in Figure 10. In such a case, a regression model may be useless unless it improves the
normality of the samples used to define the multivariate normal distribution, which is the
reference during monitoring, see [6]. In addition, the outlying samples from the edges of
distribution should be omitted from the automated training subset selection, which was
illustrated in Appendix C. A practical approach is to automatically select the operating
areas for monitoring from a narrower interval, such as 1–99th percentiles, instead of the
full distribution.

As shown in Figures 5 and A1, every dataset collected from the monitored system was
slightly different. The operation of azimuth thrusters, like many other industrial machines,
is dynamic and the precise identification of the system based on a fixed training set is
challenging. Therefore, it could be useful to update the models periodically based on the
latest samples or by considering the samples from the earliest history to the current date,
as was presented here, in Section 3. Such model maintenance, however, requires that the
undamaged health state is ensured during the period covered by the training data, perhaps
with additional methods. The versioning and control of files, databases, metadata and their
relations require meticulous planning if the models are updated regularly. However, this
should be feasible if the models are kept simple, as in Equation (1), and the number of
features is low and their calculation is fast, as demonstrated in Section 3.4.

To further improve the training subset selection, it could be useful to study the shaft
speed ranges where the deviation from the normal operation can be found the most
effectively in the case of different faults. For example, the varying RMSE values in different
speed ranges in Figure 10 illustrated that the level of change required for anomaly detection
is varying. As illustrated in Figure 7, the typical variation of a vibration feature is sometimes
larger on the high shaft speed (>400 rpm), and then, the absolute change in the feature
value must be large to detect the anomaly. In some cases, it could be easier to detect
the change in low-speed regions due to the lower typical variation in feature values, but
the fault symptoms in low rotational speed may be faint [38]. Therefore, the research on
signal processing to increase the sensitivity to varying faults could further benefit practical
application and progress towards automated CM algorithms. Moreover, the ‘adaptive
training subsets’ selection approach requires further testing on different applications to
reveal its potential for the condition monitoring of rotating machines.

5. Conclusions

This study demonstrated the effects of training data size and distribution on automated
training subset selection with a case study focusing on condition monitoring of azimuth
thrusters based on a previously introduced algorithm and real measurement data. Two
approaches to the segmentation of training data distribution were compared and five
hypothesis tests for normal distribution were studied as a part of training subset selection.
The selection of subsets was successful when the dataset was segmented flexibly into
numerous subsets with varying sample sizes and ranges instead of using only a few subset
candidates. The proposed ‘adaptive training subsets’ approach to dataset segmentation
proved to be adaptable to all tested datasets exhibiting varying distributions and sizes.
As a part of training subset selection, the normal distribution tests based on the empirical
distribution functions, such as Kolmogorov–Smirnov or Anderson–Darling tests, were
practical because a broad proportion of the entire operating area became covered in the
training subsets. With the other hypothesis tests, the selected ranges were narrow and few.
For the future development of automated condition monitoring, model training would
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benefit from research on sensitivity enhancement in fault detection and research on the
reliability of data under the effects of varying operating situations.
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Appendix A

The distributions of the studied shaft speed values in the range 100–600 rpm are shown
here as histograms with 20-rpm bar width.

Figure A1. Distributions of rotational speed values in datasets of different sizes (N) shown as
histograms with 20-rpm bin size. The vertical axes show the relative number of observations, i.e., the
sum of all bar heights is equal to one.
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Appendix B

Figure A2 shows the percentage of acceptable training subsets for each feature indi-
vidually. The results with the ‘basic training subsets’ approach are shown on top and the
results with ‘adaptive training subsets’ are shown below. In general, the features with a low
number of acceptable subsets limit the identification of appropriate models the most. In the
time-domain model, l10 and kurtosis had the lowest percentages. Similarly, the BSF feature
and BSF sideband feature had the lowest percentage with various sample sizes (N) in the
case of bearing features. The most limiting feature for identifying the training subsets for
the gear model was GMF feature no. 2.

Figure A2. Percentage of acceptable training subsets for individual features. Dataset segmentation
with ‘basic training subsets’ approach was used on top, whereas ‘adaptive training subsets’ approach
was used below.

Appendix C

Figure A3 presents the shaft speed ranges selected for the time-domain model, the
bearing model and the gear model when they were identified separately and with datasets
of different sizes. The plots on top show the ranges selected with the ‘basic training
subsets’ approach, whereas the ‘adaptive training subsets’ approach was used for the
results illustrated on the plots below. In general, the operating ranges identified by ‘basic
training subsets’ had low coverage of the total speed range in the datasets (see Figure 5).
Moreover, ranges with relatively high shaft speed (up to 667 rpm) became selected with
bearing and gear models from various datasets of size N ≥ 1000 samples. However, such
ranges may not be representative because some high values in those datasets could be
interpreted as outliers (see sample no. 115 with value 667 rpm in Figure 4). The extreme
values of a dataset may require exclusion, as was conducted in the ‘adaptive training
subsets’ approach. This approach also resulted in the identification of broad coverages for
each model type and each dataset, as shown in Figure A3, which highlights its adaptive
and reconfigurable properties in training data selection.
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Figure A3. Selected shaft speed ranges for different models. ‘Basic training subsets’ approach was
used on top, whereas ‘adaptive training subsets’ was used below. Values on horizontal axis represent
the sample size (N) and the vertical lines with different colors represent selected non-overlapping
ranges.
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