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Abstract: In recent years, artificial intelligence has had a tremendous impact on every field, and
several definitions of its different types have been provided. In the literature, most articles focus on
the extraordinary capabilities of artificial intelligence. Recently, some challenges such as security,
safety, fairness, robustness, and energy consumption have been reported during the development
of intelligent systems. As the usage of intelligent systems increases, the number of new challenges
increases. Obviously, during the evolution of artificial narrow intelligence to artificial super intel-
ligence, the viewpoint on the challenges such as security will be changed. In addition, the recent
development of human-level intelligence cannot appropriately happen without considering whole
challenges in designing intelligent systems. Considering the mentioned situation, no study in the
literature summarizes the challenges in designing artificial intelligence. In this paper, a review of
the challenges is presented. Then, some important research questions about the future dynamism of
challenges and their relationships are answered.

Keywords: artificial intelligence; artificial superintelligence; artificial general intelligence; artificial
narrow intelligence; human-level intelligence; challenges

1. Introduction

Artificial intelligence (AI) has been widely used in recent years. In the literature,
numerous articles, such as [1,2], only focus on AI’s extraordinary capabilities. Few papers,
such as those reported in [3–7], focused on the challenges of AI. During analyses of the
challenges of AI, numerous problems have been reported in the literature, some of which
are security [8], safety [9], fairness [10], energy consumption [11], and ethics [12], to mention
a few. The widespread usage of AI leads to arising new challenges. This issue becomes more
complicated when the definitions of challenges are modified based on new dimensions
explained in the next paragraph.

From a historical point of view, the evolution of AI-based systems starts with artificial
narrow intelligence (ANI), then continues with artificial general intelligence (AGI), and
finally meets artificial super intelligence (ASI), which will surpass human capabilities in all
dimensions [13,14]. All of the mentioned terms will be explained in the rest of this paper.
Defining the boundaries between different definitions of AI and new concepts is not an
easy task. In addition, we are faced with other definitions in this area, such as human-level
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intelligence (HLI), which defines an agent that is equivalent to a human agent in terms of
thinking and acting capabilities. The main problem is that there is no comprehensive study
in the literature for discussing AI challenges that address some research questions about
the evolution of challenges, and also their relationships considering different classes of AI.

In this paper, the challenges of AI are discussed with a particular focus on HLI.
We gathered 28 challenges from the literature, which makes this paper unique because
of the high coverage of challenges. For each challenge, the definition and its changes
considering some dimensions in ANI, AGI, ASI, and HLI are discussed. After summarizing
the challenges, some research questions about AI development considering challenges are
answered to give a better understanding of the future development of AI. To the best of
our knowledge, there is no comprehensive study on challenges that focus on the relation
among challenges and their evolution considering different classes of AI such as HLI in
the literature.

The rest of the paper is organized as follows. Section 2 is dedicated to preliminaries.
In Section 2, different classes of AI and related terms are explained. Section 3 focuses on
challenges. Section 4 is dedicated to a detailed discussion on challenges based on some
research questions. The last section is dedicated to conclusions.

2. Preliminaries

Since this paper focuses on the challenges of AI considering different terms such as
ANI, AGI, ASI, and HLI, this section is dedicated to the definition of mentioned terms and
their relationships. This section starts with a classification of AI to state the position of
existing studies on AI, and then focuses on HLI because of its priority. According to [15],
intelligent systems are classified into three classes, as explained below (Figure 1):

• ANI: This type of intelligence refers to intelligent systems that do specific tasks. For
example, an agent with capabilities such as face recognition and games playing. These
agents are programmed to do tasks and cannot detect and formulate unknown tasks
in a self-organized manner. We do not expect to see self-awareness in these agents.

• AGI: The concept of this type of intelligence does not refer to a unique thing in the
mind of all leading scientists of AI. Most researchers use AGI for those agents whose
intelligence is equivalent to human agents. AGI can be equivalent to HLI [14].

• ASI: In [16], Bostrom introduced three types of super intelligence: Speed ASI, collective
ASI, and quality ASI. Speed ASI refers to an agent faster than a human, collective ASI
refers to decision-making capabilities similar to a group of humans, and quality ASI
refers to an agent that can do work that humans cannot.
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Recently, some changes have been made in the above classification. In [17,18], the
authors argue that HLI is different from AGI because humans may put some assumptions
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and limitations in the machine’s computations. These assumptions and limitations come
from the nature of humans which inherited by the machines. Therefore, AGI may not solve
a wide range of problems that humans cannot solve. In other words, humans determine
some implicit upper bounds in the machines and downgrade the generalization capabilities.

On the other hand, authors of some papers, such as [18], argue that there is no
difference between AGI and ASI when the definitions of AGI are not limited to HLI.
According to [16,18], if AGI-based agents’ capabilities are further than human intelligence
and there is no exact definition for ASI capabilities, there is no need to differentiate AGI
from ASI. Accordingly, in [19], Searle divided AI into two classes: weak AI and strong AI.
Since the challenges related to HLI will be vital in the near future, the rest of this part is
dedicated to HLI.

HLI is developed based on knowledge about humans, as illustrated in Figure 2. This
figure is divided into: (1) human intelligence, (2) sciences related to HLI development,
and (3) challenges. The human intelligence part divides the domain of our knowledge
into Known (for example, accounting is a known capability of humans), Semi-Known (for
example, mind computation is a semi-known capability of humans), and finally Unknown
(for example, goals of human creation is an unknown concept for humans) sections. Many
sciences were organized based on observing human intelligence, including mathematics
and philosophy. According to [20], several challenges have been raised during the develop-
ment of these sciences at the heart of AI-based systems. Thus, the third part of Figure 2
summarizes the challenges of AI during the development of HLI. It should be noted that
providing connections between challenges and their related sciences is based on articles
reported in the literature. The number of related sciences may increase as the knowledge of
humans about AI increases.
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Figure 2. Challenges and their origins.

3. Analyzing Challenges

In this part, we focus on the challenges of AI, as given in Table 1. For each challenge, the
required definitions are summarized. In each challenge, we mainly focused on the research
and development related to HLI. Since there are few papers on the relationship between
challenges and the classes of AI, we tried to find possible connections to ANI, AGI, and ASI
for some challenges. In the rest of this section, each challenge is explained independently.
The connections between challenges and also their evolution will be discussed in Section 4.
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Table 1. List of challenges.

No. Challenges No. Challenges

1 Problem Identification and Formulation 2 Energy Consumption
3 Data Issues 4 Robustness and Reliability
5 Cheating and Deception 6 Security
7 Privacy 8 Fairness
9 Explainable AI 10 Responsibility

11 Controllability 12 Predictability
13 Continual Learning 14 Storage (limited memory)
15 Semantic and Communication 16 Morality and Ethics
17 Rationality 18 Mind
19 Accountability 20 Transparency
21 Reproducibility 22 Evolution

23 Beneficial 24 Exploration and Exploitation
Balance

25 Verifiability 26 Safety
27 Complexity 28 Trustworthy

3.1. Problem Identification and Formulation

Problem identification and formulation are essential processes that should be imple-
mented in AI-based agents. This issue plays an essential role in organizing HLI-based
agents designated in a self-organized manner. Implementing the mentioned processes is
very difficult in practice because of some issues explained as follows. As was previously
mentioned, we know that human knowledge about its environment can be found in dif-
ferent domains, including known parts, semi-known parts, and unknown parts. There
is a set of problems that cannot be formulated in a well-defined format for humans, and
therefore there is uncertainty as to how we can organize HLI-based agents to face these
problems. For example, in [21], it was proved that there are some types of problems with
no algorithm for solving. In addition, some problems for humans, such as the goals of
human creation, are not clear, and therefore HLI-based agents will not be able to solve
these types of problems because they follow the thinking process of humans. This problem
becomes more complicated when the environment of an HLI-based agent is dynamic and
unknown. Implementing a problem detection and formulation system at the heart of an
HLI-based agent will be required. The role of problem identification is discussed in the
following paragraph.

According to [20], a method for solving a problem is to map the problem space
into a search space. In this method, detecting the problem, which can be single-state,
multiple-state, or contingency, and then formulating it in a well-defined manner are the
first steps of AI-based problem-solving. In other words, gathering knowledge and insides
from the nature of the problem and converting it to a systematic solving procedure has
high priority in this regard. In existing intelligent agents, the process of formulating
problems considering security, safety, performance, etc., is considered as the responsibility
of designers of AI-based agents. To solve this problem, knowledge-based agents and
inference engines such as the Cyc project [22] can be utilized to present some solutions.

3.2. Energy Consumption

Some learning algorithms, including deep learning, utilize iterative learning pro-
cesses [23]. This approach results in high energy consumption. Nowadays, the deep
learning method is used to design HLI-based agents because of its high accuracy and
its similarity to the human brain in the decision-making process. Deep learning models
require a high computational power of GPUs. In [11], it was shown that these models are
costly to train and develop from financial and energy consumption perspectives. During
the operation of an HLI-based agent, the agent may use a predefined plan for learning
multiple models concurrently to support self-awareness. Therefore, high computational
power is required to support more abilities of cognition. This means that enough energy
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should be supplied for executing the HLI-based agent. In order to mitigate this problem,
four solutions were given in the literature, as given below:

• Investing in new paradigms with low energy consumption for HLI, such as quantum
computing [24].

• Finding modern mathematical frameworks to find learning models with lower calcu-
lations, which leads to lower energy consumption [25].

• Sharing models to prevent energy consumption. A researcher can share a model with
other researchers around the world.

• In an AI-based system, if there is no way to decrease the load of computations of
learning processes, energy harvesting techniques can be used to return the wasted
energy [26,27].

3.3. Data Issues

A type of AI-based agent invests in data-driven methods to construct learning models.
In these algorithms, data issues cause various problems. Some of these problems are
explained below [28–32]:

• Cost is one of the main issues of data. Major sources of cost are gathering, preparing,
and cleaning the data [28].

• The size of collected data in a wide range of systems such as IoT (Internet of Things) is
another data-related challenge. This huge amount of data leads to a new concept, called
big data. Analyzing big data in an online fashion via machine learning algorithms is a
very challenging task [28–30].

• Data incompleteness (or incomplete data) is another challenging problem in machine
learning algorithms which leads to inappropriate learning of algorithms and uncer-
tainties during data analysis. This issue should be handled during the pre-processing
phase. Various approaches can be used for mitigating this problem. Filling missed (in-
complete) data via most frequently observed values or developing learning algorithms
to predict missed values are some examples of these approaches [32].

• Data heterogeneity, data insufficiency, imbalanced data, untrusted data, biased data,
and data uncertainty are other data issues that may cause various difficulties in data-
driven machine learning algorithms [28,29].

• Bias is a human feature that may affect data gathering and labeling. Sometimes, bias
is present in historical, cultural, or geographical data. Consequently, bias may lead to
biased models which can provide inappropriate analysis. Despite being aware of the
existence of bias, avoiding biased models is a challenging task. For more information,
please refer to [28].

Not only the mentioned problem, but also other problems such as imbalanced data,
synthetic (fake) data, and noisy data can be classified in this part. Data issues become more
critical challenges in designing HLI-based agents. Nowadays, finding datasets that reflect
the correct human behaviors might not be possible in many of the domains that HLI-based
agents can be utilized.

3.4. Robustness and Reliability

The robustness of an AI-based model refers to the stability of the model performance
after abnormal changes in the input data. The cause of this change may be a malicious at-
tacker, environmental noise, or a crash of other components of an AI-based system [8,31,32].
For example, in telesurgery, an HLI-based agent may detect a patient’s kidney as a bean
because of an unknown crash in the machine vision component. Among the several models
with similar performance, the robust model has a higher priority in deployment. The tradi-
tional mechanisms such as replication and multi-version programming might not work
in intelligent systems, and hence this field is in its early stage. Some works, such as [33],
discuss the difference between the accuracy of a learning model and the robustness of that
model. It seems that theory and concepts of robustness and reliability are in infancy, and
new things would appear in this regard. This problem may be challenging in HLI-based
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agents because weak robustness may have appeared in unreliable machine learning models,
and hence an HLI with this drawback is error-prone in practice.

3.5. Cheating and Deception

The mentioned behaviors refer to two well-known behaviors of humans, but they may
appear from intelligent agents such as HLI-based agents. Although many papers such as
those papers reported in [34–36] are for detecting this behavior in humans using AI-based
systems, few articles, such as [37,38], are conducted on analyzing cheating and deception
in AI-based systems. In [37,38], the role of deception in multi-agent systems and its effects
are studied. Since HLI-based agents are going to mimic the behavior of humans, they may
learn these behaviors accidentally from human-generated data. It should be noted that
deception and cheating maybe appear in the behavior of every computer agent because the
agent only focuses on optimizing some predefined objective functions, and the mentioned
behavior may lead to optimizing the objective functions without any intention. In order
to design a HLI-based agent, the mentioned problems must be considered. For the sake
of more clarification, some explanations are given as follows. After the invention of some
modes, such as generative adversarial networks (GANs) [39], machines can generate data
samples. This capability may be used to create fake news, pictures, and videos [40]. This
capability may be used to design many cognitive abilities for HLI. Some of these abilities
may not be controlled by humans when the HLI is used to construct a self-organized agent.
For example, an HLI-based agent may be able to tell lie and generate real evidence for it. In
other words, the inference engine of an intelligent agent might be able to generate any type
of facts about data (real/synthetic), and humans would not be able to differentiate between
real and synthetic data. This problem might be very challenging when machines try to
replace real data with synthetic ones, leading to vital decision-making in human societies.

3.6. Security

AI-based systems are widely used to design secure methods, such as those reported
in [41–43], but from another point of view, it is obvious that every piece of software,
including learning systems, may be hacked by malicious users [44–46]. In designing
intelligent systems, the security challenge is a critical issue that has received much attention.
For example, consider an ant-based path planning in which the pheromone update function
is hacked to manipulate the pathfinding process. Security challenges in AI may bring
several new challenges that cannot be covered in this paper, and for more information,
please refer to [46]. A security dimension is covered in the next paragraph, focusing on
securing data-driven machine learning.

In data-driven machine learning, AI system developers might want to reverse-engineer
the training data or learn how to develop a model that creates the desired output [49]. For
instance, a neural network that utilizes untrusted (synthetic) data can be considered as an
untrusted learning model in data-driven machine learning methods. Most AI researchers
and developers neglect this issue. Adversarial machine learning can be considered as
the first attempt to solve some security problems in machine learning [47]. It is worth
mentioning that at the same time, with the evolution of attacks, security mechanisms
should also be evolved. Recently, AI algorithms have been utilized by attackers to organize
attacks. Hence, AI-based defense mechanisms must be applied to enhance the security
of AI-based systems [48]. This problem becomes more challenging with the creation of
HLI-based agents as malicious agents, because humans will not be able to organize defense
mechanisms faster than those agents.

3.7. Privacy

Users’ data, including location, personal information, and navigation trajectory, are
considered as input for most data-driven machine learning methods. Data will be the
most important thing in different types of AI in the next century. As explained in the
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next paragraph, this challenge can be viewed from two perspectives: data factors and
human factors.

Each fragment of data carries a different form of information which should be pro-
tected considering specific factors. In [49], three factors, persistence, repurposing, and
spillovers related to data, are explained to highlight the characteristics of appropriate
protection mechanisms in the AI era. On the other hand, data owner, data manipulator,
and data visualizer are three typical roles that should be determined during the execution
of machine learning methods. Preserving privacy considering different roles requires more
effort and consideration by researchers [50]. Federated learning is one of these efforts [50].
This type of learning algorithm trains an algorithm across multiple decentralized computa-
tional resources, thus addressing critical issues such as data privacy, data security, and data
access rights. During the design of an HLI-based agent, the definition of privacy issues
may be somehow complex and complicated, whether humans accept privacy for other
intelligent entities or not. How an HLI-based agent can be trained without the private data
of humans is an important question.

3.8. Fairness

This challenge appears when the learning model leads to a decision that is biased
to some sensitive attributes such as race, skin color, gender, religion, national origin,
citizenship, age, pregnancy, familial status, disability status, veteran status, and genetic
information [51]. The literature review on fairness in AI can be divided into three different
approaches, as explained below [52]:

• In the first approach, data itself could be biased, which results in unfair decisions.
Therefore, this problem should be solved on the data level and as a preprocessing
step [53–55]. In [56], the problems of datasets and their issues that lead to unfair results
are discussed. Some clues for preparing appropriate versions of existing datasets that
were created during the last decade are given.

• In the second approach, the fairness criteria can be satisfied by some manipulation of
the model after learning to attain a fair model [57–60].

• In the third approach, a process along with a straining procedure is conducted to
satisfy fairness constraints by imposing them as a constraint to the main learning
objective [61–64].

There are no exact solutions for implementing fair behavior in human societies, and
we know the history of humans is full of unfair activities. Therefore, a massive amount
of data for training machines may lead to the design of learning systems that are not fair;
when there is no appropriate dataset and theory, how can an HLI-based agent be trained?
This capability may be vital in some situations during the operation of an HLI-based agent
when the agent has a responsibility to consider sensitive attributes.

3.9. Explainable AI

Explainable AI is an emerging field with many applications in different domains,
including healthcare, transportation, and military services [65,66]. In this field, a set of
tools and processes may be used to bring explainability to a learning model. With such
capability, humans may trust the decisions made by the models from different points
of view, including bias and fairness challenges to mention a few [67]. This means that
explainability may determine some solutions for other challenges, such as fairness and
trustworthiness, which will be discussed in Section 4.

Many learning methods, such as neural networks and deep learning, have extraordi-
nary capabilities, but they invest in non-explainable symbols to do tasks. In many situations,
including mission-critical tasks, we need to know the rationale behind decision-making
in the intelligent system, and hence explainable AI can be useful [67]. In [68,69], recent
developments and applications in explainable learning algorithms in practice have been
summarized. This challenge becomes more critical when a human agent is replaced with
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an HLI-based agent to do a critical task in healthcare, military, or other mission-critical
situations. In these situations, any sort of decision must be explainable.

3.10. Responsibility

In the last century, humans have acted as operators of machines. In this situation,
morality and legality issues associated with the responsibility of human agents are clear
to all of us. However, this situation is going to be changed considering fully autonomous
machines. Autonomous machines based on neural networks, genetic algorithms, and
learning automata bring new problems where humans can no longer predict future ma-
chine activities [70]. As the next paragraph explains, this issue becomes more critical in
designing HLI.

HLI-based systems such as self-driving drones and vehicles will act autonomously
in our world. In these systems, a challenging question is “who is liable when a self-
driving system is involved in a crash or failure?”. Various aspects and domains should be
considered in the answer to this question. Dual use is another challenge that comes from
the abuse of the HLI-based system. Like other software, these intelligent systems can be
used for good or evil purposes. For instance, publicly released sound imitation software
can be used by malicious agents to mimic the voice of bank clients and execute a phone call
on their behalf. Further discussions on responsibility issues can be found in [71].

3.11. Controllability

In computability theory, the halting problem is the problem of determining, from a
description of an arbitrary computer program and an input, whether the program will finish
running or continue to run forever. In 1936, Alan Turing proved that a general algorithm to
solve the halting problem for all possible program-input pairs cannot exist [72,73]. For more
clarification, consider an AI-based agent, called x, that controls the input, computation, and
output of another agent called y. Therefore, there is no general algorithm to program agent x.
Informally, some parts of AI control problems that can be reduced to halting problems are
not considered as solvable problems [73]. If we accept this problem is solvable, we must
accept that a wide range of problems, such as halting problems, are solvable.

In the era of superintelligence, the agents will be difficult to control for humans [74,75].
Note that controllability according to its context has many dimensions, and few papers,
such as [76], focus on this problem in a specific domain such as safety. In [76], it is shown
that controllability has four types: explicit, implicit, delegated, and aligned. It is shown
that this problem is not solvable considering safety issues, and will be more severe by
increasing the autonomy of AI-based agents. Therefore, because of the assumed properties
of HLI-based agents, we might be prepared for machines that are definitely possible to be
uncontrollable in some situations.

3.12. Predictability

One important challenge which may not be solved is whether the decision of an
AI-based agent can be predicted in every situation or not [77–79]. A direct consequence of
this challenge is that we can find out that whether intelligent agents can be controllable
and future smart bots can be safe (or trusted) or not. Resolving this challenge is not an easy
task because of the nature of the predictability challenge. In what follows, we highlight
some parts of it. It should be noted that unpredictability can be seen in the behavior of an
agent with reinforcement learning algorithms because of the nature of these types. In [80],
some issues that affect the predictability of AI-based agents are summarized. It seems
that chaotic behavior in mathematical and physical systems plays a critical role in this
issue. In other words, there are some analogies between chaos in mathematics, physics, and
AI, and hence AI decisions cannot be predictable in some cases. Other issues, including
ambiguity and paradox, may lead to an unpredictable AI-based system. In an HLI-based
agent, unpredictability may lead to many subproblems such as safety, trust, accountability,
and fairness, to mention a few.



Appl. Sci. 2022, 12, 4054 9 of 21

3.13. Continual Learning

During the lifecycle of AI-based systems, the accuracy of the learning model goes
down because of changes in the data and environment of the model. Therefore, the learning
process should be changed using new methods to support continual and lifelong learning.
On the other hand, in real-world applications, a massive amount of data is produced
via the Internet of Things (IoT) and embedded sensors in a real-time manner. Hence,
new systems’ algorithms should be considered a stream of data and continuous learning.
In [81], a comprehensive survey on continual learning is given. According to this reference,
continual learning methods can be classified into three classes, as explained below:

• Reply methods: These algorithms store samples in raw format or generate pseudo-
samples using a generative model.

• Regularization-based methods: These algorithms provide an additional regularization
term in the loss function while learning new data.

• Parameter isolation methods: This type of algorithm provides different model param-
eters for each task to prevent any possible forgetting.

In all types of AI-based agents, such as HLI-based agents, continual learning methods
enable agents to adapt to a continually changing and uncertain environment [82]. No study
in the literature solves problems related to continual learning considering HLI.

3.14. Storage (Memory)

Memory is an important part of all AI-based systems. A limited memory AI-based
system is one of the most widely and commonly used types of intelligent systems [83]. In
this type, historical observations are used to predict some parameters about the trend of
changes in data. In this approach, some data-driven and also statistical analyses are used
to extract knowledge from data. This approach is not new to the AI field and fed by data,
storage capabilities, computational power, and learning capabilities, as explained in the
following. In many situations, learning abilities can be improved via more data. Since
the size of data collected by AI-based systems increases, efficient algorithms are essential
for data analysis and decision-making. With the drastic increase in data, technologies
behind storage and computation might be revolutionized in the near future. Information
may be stored in short-term or long-term memory units, leading to several problems in
different domains, including reading, computing, and writing. In [84], a method based on
cognitive computation has been proposed to tackle this problem. It is worth noting that
executing cognitive engines considering big data in the memory through online learning
algorithms may cause challenging tasks [30]. For more information about data management
in machine learning, please refer to [85].

During designing HLI-based agents, storage (memory) issues arise other sub-challenges
such as real-time decision-making capabilities, emulating functions of different forms of
memories (short term and long term) similar to humans, and supporting human thinking
styles for computation, such as those identified in cognitive architectures [86].

3.15. Semantic and Communication

Semantic refers to a well-known issue in AI-based systems. From semantic web
techniques to linguistic analysis and natural language processing may be related to semantic
computations in AI-based systems [87–89]. On the other hand, communication among
intelligent agents leads to flowing information in a population of agents resulting in
increasing knowledge and intelligence in that population. For more than one century,
humans have tried to communicate with other intelligent entities in the universe. Therefore,
semantics and communication may refer to two different concepts, although there is an
intersection between them which we focus on in the next paragraph. We know that
defining or determining a shared ontology among intelligent entities in an AI-based system
is possible because of maturing some parts of knowledge in ontology manipulations and
defining some tools in semantic web techniques [88]. In other words, determining some
standards for semantics and communication among intelligent agents is possible, leading to
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organization of an intelligent population. In the next paragraph, we focus on the importance
of the mentioned issue in HLI-based agents.

HLI-based agents are utilized in a wide range of areas such as computer networks,
Internet of Things (IoT), and robotics. Communication is the cornerstone of these areas,
which is performed using a standard language [90], and also ontology [91]. Therefore,
learning algorithms embedded in all devices can use a massive amount of data to evolve
their cognitive abilities. Peer-to-peer file sharing and blockchain can be considered as
potential solutions to provide infrastructure for communication and knowledge (ontology)
sharing [92].

3.16. Morality and Ethical

Informally, both ethics and morals terms relate to “right” and “wrong”. Sometimes,
these terms are used interchangeably, but they may refer to different things. Ethics refers to
rules provided by external entities, such as rules of workplaces or principles in religions.
Morals refer to personal principles regarding right and wrong. Because of the wide inter-
section between the mentioned concepts, we talk about the shared attributes in the rest of
this section, focusing on AI and HLI.

Morality is a complicated concept of AI due to its various dimensions and different
actors. Ethics are considered as the set of moral principles that guide a person’s behavior.
From a perspective of morality issue, it is preserving the privacy of data within learning
processes [93]. In this perspective, the engineers and social interactions of humans are
the subjects of morality. From another perspective, implementing the concepts related
to morality in a cognitive engine can be seen as a goal of AI designers. This is because
we expect to see morality in an agent designated based on AGI and also HLI. Since
governments try to determine some ethics of AI-based systems, relevant concepts such as
accountability, explainability, and trustworthiness have appeared in this area.

3.17. Rationality

An important goal of AI research is understanding intelligence. The concept of rational
agency has long been considered as a critical role in defining intelligent agents. Rationality
computation plays a key role in distributed machine learning, multi-agent systems, game
theory, and also AGI [94–96]. In [97], the definition of rationality is categorized into four
categories, as explained below:

• Perfect rationality: An agent with this type of rationality can generate maximal
successful behavior based on its available information.

• Calculative rationality: An agent with this type of rationality can compute a perfectly
rational decision given the initially available information.

• Metalevel rationality: An agent with this type of rationality can select the optimal
combination of computation-sequence-plus-action. During this process, the constraint
is that the action must be selected under which is computed.

• Bounded rationality: An agent with this type of rationality can behave successfully
based on available information and computational resources.

Because of the direct relationship between the natural definition of rationality and
HLI-based intelligence, the mentioned definitions all belong to the basic principles of HLI.
Each definition leads to the design of a specific type of intelligence. Unfortunately, a lack of
required information prevents the creation of an agent with perfect rationality. Other types
required heavy design and computation.

In cognitive science, which plays an essential role in HLI, rationality means how a
human agent behaves based on a particular normative theory. Considering the abilities of
humans, human deficiencies, and unknown parts of humans, intelligent systems modeling
considering rationality leads to challenging problems [94]. A surprising fact in this area
is the rare research in this field. It seems that considerable effort should be made into
this field.
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3.18. Mind

Theory of mind is one of the active research fields in artificial intelligence, robotics,
and cognitive science. According to [98], a wide range of scientists, including psychiatrists,
psychologists, and neuroscientists, are involved in constructing some algorithms and
machines that can implement mind computations and also mental states. In [98], the theory
of mind and machine were studied, and an interesting proposal based on deep learning
and reinforcement learning is also suggested. This is because the behavior of a person and
interaction of a person with others in a society can be learnt by the mentioned technologies.
In [99], another example based on reinforcement learning and neural networks and Markov
theory are suggested in this regard. All in all, after a long time of effort in this field, many
unknown questions are left, and supervising few scientists works in this era. According
to [98–100], the theory for mind computation will substantially affect HLI-based agents.

3.19. Accountability

An essential feature of decision-making in humans, AI, and also HLI-based agents
is accountability. Implementing this feature in machines is a difficult task because many
challenges should be considered to organize an AI-based model that is accountable. It
should be noted that this issue in human decision-making is not ideal, and many factors
such as bias, diversity, fairness, paradox, and ambiguity may affect it. In addition, the hu-
man decision-making process is based on personal flexibility, context-sensitive paradigms,
empathy, and complex moral judgments. Therefore, all of these challenges are inherent to
designing algorithms for AI and also HLI models that consider accountability. In the next
paragraph, some related works are studied.

In [101], it was highlighted that accountability has a very close relationship with
regulating AI-based systems. Without this feature, thinking about the law and regulation
may not lead to concrete rules. In [102], the problem of bias and its origin in human decision-
making is studied. This work also discusses the diversity issue, which may be used to
define some algorithms to mitigate the negative effects of bias in decision-making. Since
the decision-making of humans suffers from bias, this problem may affect understanding of
the accountability capabilities of humans, which may appear in AI-based systems. In [103],
a recent case in the USA known as “State v Loomis” was used to show how the ultimate
and unrestrained dedication of public power to machines may ruin human rights and the
rule of law. This paper focuses on further problems that may appear in this regard, and
studies the balance between the benefits and costs of algorithmizing.

All in all, accountability has a close relationship with explainability, trust, security,
responsibility, and fairness. In addition, in [104], the relationship between accountability
and safety is reported.

3.20. Transparency

According to [105], transparency may involve input data and the underlying com-
putation of the learning model. From a computational perspective, this issue implicitly
arises with accountability and explainability in the decision-making process of the learning
model. From a data consumption perspective, an external entity of an AI-based ecosys-
tem may want to know which parts of data affect the final decision in a learning model.
In [106], a novel form of transparency, such as translational transparency, and also different
perspectives on this issue from different roles, such as engineers, users, and legal experts,
are explained. In what follows, some highlights of this issue are explained.

• Similar to accountability, humans like to see transparent behavior from AI-based
models. By increasing the use of AI for making decisions in public affairs, this chal-
lenge becomes more complicated. In addition, with the creation of self-organized
learning systems that may be hurtful to people, this issue grabs more attention. In
some applications, such as military and healthcare systems, a learning system as
a black box may not be appropriate, and some features such as explainability and
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accountability may not be able to bring transparency abilities. This feature will be vital
in HLI-based agents.

• Recently, we are faced with many papers that report the results of accuracy of data-
driven machine learning models. It is obvious that the reported accuracies are obtained
from best practices; thus, with increasing parameter space, finding the exact accuracy
that is equal to the reported results may not be possible. This issue may lead to a
confusing process in reproducing models when the model generator codes are not
reported [107].

A summary of related works is given as follows. In [106], a study is given that identifies
what transparency means for technical, legislative, and public realities and stakeholders.
The study reported in [108] provides lawyers with a practical approach to the functions
of potential AI transparency legislation in addition to a set of legal instruments which
can be employed to this end. In [109], the issues of transparency from socio-legal and
computer science aspects are studied. In [110], transparency is addressed by integrating
legal, social, and ethical aspects considering contextual and performative factors which
affect transparency computation. Such studies which consider general data protection
regulation and its ethical groundwork will be essential for policymakers.

3.21. Reproduceability

This issue can be interpreted as two concepts, as explained below:

• How a learning model can be reproduced when it is obtained based on various sets
of data and a large space of parameters. This problem becomes more challenging in
data-driven learning procedures without transparent instructions [107]. Many papers
on the scope of applied machine learning are not well documented according to the
report given in [111]. This problem becomes more serious when privacy-preserving
concerns about data should be considered.

• How a learning model can reproduce itself when self-reproducibility is considered as
a final destination of AI-based models [112].

3.22. Evolution

To define AI-based models, Darwinian evolution theory including “survival of the
fittest” was reported in the literature. In this approach, AI models can be improved during
the evolution of generations without human aid. This approach is not perfect, and many
problems must be solved to provide an AI-based model that can improve itself.

• From a programming perspective, existing structures for genes and chromosomes, and
the evolution process are not naturally similar to evolutionary processes that happen in
nature. It seems that computer worms and viruses that utilize some programming such
as quine codes and polymorphic structure are more pioneers than existing evolutionary
programs that may be found in repositories such as GitHub. In [113], a self-replicating
neural network is presented that may be used in an evolutionary strategy.

• From the theory of evolutionary computation, the concept behind genetic and memetic
computation is changing over time to better model the phenomena that happen in
nature. These algorithms have many variations such as variable chromosomes, diverse
crossover, and complex mutations. It should be noted that many of the existing
evolutionary algorithms are based on a very simplified search process that happens in
nature [114].

It seems that existing evolutionary computation may not reflect the power of evolu-
tionary strategies that can evolve simple AI models to an ASI-based agent. In HLI, this
challenge should be solved because AI models must be able to adapt to their environment
through evolution strategies.
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3.23. Beneficial

A beneficial AI system is designated to behave in such a way that humans are satisfied
with the results. Designing these systems will be required, but extending their theory
is still an ongoing process. In these systems, the agent is initially uncertain about the
preferences of humans, and human behavior will be used to extract information about
human preferences [115]. This problem becomes a challenging issue in the development of
HLI-based agent because information about the reactions of humans in many situations is
required to organize a beneficial learning model for HLI.

3.24. Exploration and Exploitation Balance

The problem of balancing exploration and exploitation refers to a challenging problem
that arises in different domains of machine learning, such as evolutionary computations,
active learning, and reinforcement learning to mention a few. Exploration and exploitation
decisions refer to trading off the benefits of exploring unknown opportunities to learn
more about them, by exploiting known opportunities. Such decisions are usually in
practice, but from a computational perspective, they are hard. In [116], a new active
learning algorithm that balances exploration with the refinement of the decision boundary
by dynamically adjusting the probability is reported. In [117], several methods reported
in the literature are summarized. In [118], an auto-tuning strategy by using fuzzy logic
control was reported. In this method, for taking the balance among the stochastic search
and local search probabilities, an adaptively regulation algorithm based on the change
of the average fitness of parents and offspring at each generation is designated. In [119],
an information-theoretic approach for solving the exploration-exploitation dilemma in
reinforcement learning was reported. In this method, a criterion that highlights the optimal
trade-off between the expected returns and a policy’s degrees of freedom was deployed,
which considers the value of information. In different domains and algorithms, keeping the
balance between exploration and exploitation lead to very challenging and hard problems.
This problem in HLI-based agents becomes harder because of the self-organized capabilities
of HLI in general domains.

3.25. Verifiability

Verification is one method used by software developers to gain trust. In [120], this
problem was addressed in AI. In many applications of AI-based systems such as medical
healthcare and military services, the lack of verification of code may not be tolerable.
Therefore, verifying and validating AI-based models have received considerable attention
recently [121,122]. It should be noted that, due to some characteristics such as the non-
linear and complex structure of AI-based solutions, existing solutions have been generally
considered “black boxes”, not providing any information about what exactly makes them
appear in their predictions and decision-making processes. In this regard, the development
of algorithms for visualizing, explaining, and interpreting learning models has recently
attracted increasing attention. For example, the aim of [123] was to evaluate the use
of learning algorithms for the detection of breath sounds in a real clinical environment
among children with pulmonary diseases. Because of rare attention regarding verification
challenges, it seems that many things, including theories and applications, should be
presented in this field in the near future. Since the HLI-based agents can exhibit self-
organized capability, verifying them will not be easy task.

3.26. Safety

The actions of a learning model may easily hurt humans in both explicit and implicit
manners. This challenge is not new to the AI community, but its dimensions have evolved
along with the drastic usage of intelligent systems. In [124–126], several algorithms based
on Asimov’s laws have been proposed that try to judge the output actions of an agent
considering the safety of humans. Asimov’s laws belong to reactive solutions, but some
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may prefer to organize proactive solutions, such as [9]. In this solution, a computational
model that considers the cost and weight of harmful actions is proposed.

As a pioneer in the scope of AI and HLI, we can refer to safety engineering principles
given in [127]. This challenge becomes more critical in mission-critical and real-world
environments where an AI-based agent should be used, because there is no tolerance for
failure that can damage humans and devices.

3.27. Complexity

The primary algorithms of AI-based systems were designated to solve specific and
simple problems. Therefore, their complexity was low. This assumption is not correct
any longer. Nowadays, we are faced with systems that utilize numerous learning models
in their modules for their perception and decision-making processes. This means that
the complexity of intelligent systems is increasing day by day. One aspect of an AI-based
system that leads to increasing the complexity of the system is the parameter space that may
result from multiplications of parameters of the internal parts of the system. To address
the mentioned issue, some efforts such as AutoML [128] and parameter optimization
procedures [129] are reported in the literature. Complexity issues in HLI-based agents
may be harder issues compared to other types of intelligent systems because of the many
unknown parts of human intelligence that should be considered during mitigation of the
complexity of the system.

3.28. Trustworthiness

According to [130], trustworthiness in AI will feed societies, economies, and sustain-
able development to bring the ultimate benefits of AI to individuals, organizations, and
societies. In [130], five foundational principles; beneficence, non-maleficence, autonomy,
justice, and explicability are explained in this regard. This field is highly interdisciplinary
and also dynamic, and covers many issues including psychology, sociology, economics,
management, and computer science. From a social perspective, trustworthiness has a close
relationship with ethics and morality as explained in [12]. In [131], fairness, explainability,
accountability, and reliability are reported as related concepts to trustworthiness. Designing
an HLI-based agent that considers trustworthiness is the ultimate goal of AI research.

4. Discussion

The following questions will be answered in the rest of this section to analyze all
aspects of the challenges.

• Q1: What are fundamental problems, theoretical and machines limitations during the
development of AI? Section 4.1 is dedicated to answering this question.

• Q2: What are the potential consequences of the evolution of challenges during the
development of AI? Section 4.2 is dedicated to answering this question.

• Q3: What are combinations of challenges? Section 4.3 is dedicated to answering
this question.

• Q4: What is the importance of the context of challenges during the development of
AI? Section 4.4 is dedicated to answering this question.

• Q5: What is the role of analyzing only human intelligence during the development of
AI? Section 4.5 is dedicated to answering this question.

4.1. Fundamental Problems, Theoretical and Machines Limitations

As mentioned earlier, some problems related to the halting problem [73] and control-
lability [76] might not be solved in the future. Therefore, many AI-based systems that
inherit these problems might not be manageable. On the other hand, some phenomena,
such as strange loops explained in [79], cannot be managed by machines with existing
frameworks for mathematics. In addition, most parts of mathematics required by learning
algorithms are still in progress [132]. It seems that mathematics behind cognitive sciences
should be mature enough to be used in the theory of mind [133–135]. All the mentioned
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problems become more challenging when we discover new things about humans and our
surrounding environment. It is obvious that our knowledge about humans is not complete.
Therefore, some challenges such as controllability, predictability, security, and safety, which
might have a close relationship with the mentioned problems, will become more severe
during the development of AI, especially for AGI, HLI, and also ASI.

4.2. The Evolution and Transformation of Challenges

A supervising fact about development of AI-based systems is the evolution of chal-
lenges over time. This issue becomes more critical when challenges and their associated
problems are detected after displaying harmful consequences at the industrial level. The
evolutions of some challenges are explained below:

• Evolution of data challenges: With the creation of data-driven machine learning
algorithms, we had rare data. Now, because of the use of cloud computing, we
have big data. In the near future, because of the use of AI-based generative data,
such as generative adversarial networks (GANs), we would need some technology
to differentiate real-world and appropriate data from other types of data in a vast
amount of data [136,137].

• Evolution of robustness and security challenges: If the noise of input data is syn-
thetic and designated for changing the model’s behavior abnormally, we will face
another challenge, known as security against adversarial attacks, studied in security
challenges. Since the number of adversarial attacks is increasing, robustness will be
connected to security in most cases soon [31].

• Evolution of energy consumption challenge: It was previously mentioned that en-
ergy consumption is a substantial challenge in the lifecycle of AI-based systems. This
challenge may lead to other challenges, such as carbon emissions, environmental
pollution, and global warming [138].

• Evolution of complexity challenges: A system with high complexity might lead to
non-verifiable, unreliable, unaccountable, and nonreproducible AI-based systems.
For example, a model with a large set of parameters and also a complex process for
tunning them may lead to reproducibility problems, as explained in [107].

All of the challenges mentioned in Section 3 might evolve in the future because of
evolving human needs and changes that may occur in human environment.

4.3. Combinations of Challenges

Some of the challenges, such as security and trustworthiness, are the result of combi-
nations among others. We briefly describe some of them as below.

• According to [8], the security challenge implicitly arises from other challenges such as
trust, confidentiality, and privacy.

• According to [109], the transparency challenge implicitly leads to other challenges
such as accountability and explainability in the decision-making process of the learn-
ing model.

• According to [131], the trustworthiness challenge implicitly leads to other challenges
such as fairness, explainability, accountability, and reliability.

• According to [122], the verification challenge implicitly results in other challenges
such as safety and robustness.

• According to [46,139], the safety challenge has a solid relationship with security and
ethical challenges.

In combined challenges, we may face paradox and contradiction. For example, im-
proving the security of a system might not be possible without using users’ private infor-
mation [140].
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4.4. Importance of Context of Challenge: Deep Dive into Dark Sides

Many AI researchers only focus on solving a specific problem with a fixed set of
assumptions as context, and usually in a stationary environment. These assumptions may
lead to terrible situations in practice because intelligent systems will be used in many
products and industries with variable situations. For example, the primary concepts about
the fairness challenge were considered for static data. Nowadays, this assumption is totally
changed, and we need to adapt the learning model to some dynamic environments. Hence,
a fixed algorithm for fair decision-making may not be applicable [51]. In [51], an approach
for fairness-aware stream classification has been supported, which can manage predictive
performance with low discrimination scores for the stream. The mentioned problem
for fairness can appear in all challenges studied in Section 3. From another perspective,
according to the scope of intelligence, such as ASI, AGI, HLI, and ANI, the interpretation
of challenges might be changed.

4.5. Human Intelligence Is Partially Known to Design HLI

The definitions of intelligence utilized in this paper and also a wide range of papers
in the literature focus on humans as partially known intelligent entities [20,141]. Mind
and intelligence are not homogenous among humans [142]. Sometimes, an action in one
society is good (or rational) and in another is terrible [97]. With such diversity, how we can
define beneficial computations for the machines is an important question [115]. Utilizing
all concepts arising in human intelligence in developing a machine with HLI may not lead
to an appropriate situation. In this regard, some of the problems are explained below:

• Some psychological concepts such as classification over self-awareness might be
applicable to machines, such as the one reported in [143], but there is no literature on
the evolution of this concept in machines. In other words, the context that leads to
self-awareness in humans is based on limited information and limited sensors, but
these assumptions might not be correct for machines. This means that there is little
information about the type of self-awareness in machines that meet HLI, AGI, or ASI
criteria. To the best of our knowledge, the connections among mind, cognitive science,
learning capabilities, and self-awareness in humans and also animals are not totally
understood in the literature [144–146].

• Pain and death are two key factors in analyzing cognitive concepts such as the theory
of meaning management [147], psychology of souls [148], and religious understand-
ing [149]. Since, machines might not face with death and pain, how can we expect to
use computation behind the human mind to control machines?

5. Conclusions

In this paper, the challenges of AI were analyzed with a particular focus on HLI. It
should be noted that the popularities of challenges were not similar to each other. In other
words, some of the challenges, such as security and fairness, are more popular than other
challenges, such as energy and complexity. Therefore, a brief description was given for
each challenge to understand the nature of the challenge. In addition, the connections and
combinations among challenges, and also their evolutions, were studied. We left some
well-known challenges such as the curse of dimensionality because of its popularity in the
AI domain. It is obvious that during the evolution from ANI to ASI, all of the challenges
may get new dimensions as we discover more information about our environment during
interaction with intelligent systems. We tried to address this issue in the discussion section.
Some challenges such as the monopoly of corporations during the AI era, as well as
widespread job loss, were not in the scope of this paper because the focus of this paper is
mainly on computer science. These challenges can be considered in future works.
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