
����������
�������

Citation: Shahid, J.; Hameed, M.K.;

Javed, I.T.; Qureshi, K.N.; Ali, M.;

Crespi, N. A Comparative Study of

Web Application Security Parameters:

Current Trends and Future

Directions. Appl. Sci. 2022, 12, 4077.

https://doi.org/10.3390/app12084077

Academic Editors: Manuel Armada

and Gianluca Lax

Received: 28 January 2022

Accepted: 7 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Comparative Study of Web Application Security Parameters:
Current Trends and Future Directions
Jahanzeb Shahid 1 , Muhammad Khurram Hameed 2, Ibrahim Tariq Javed 3,* , Kashif Naseer Qureshi 3 ,
Moazam Ali 3 and Noel Crespi 4

1 School of Electrical Engineering and Computer Science, National University of Sciences and Technology
(NUST), Islamabad 44000, Pakistan; 13msccsjshahid@seecs.edu.pk

2 Paperlessly Pakistan, Islamabad 44000, Pakistan; khurram@paperlessly.com
3 Center of Excellence in Artificial Intelligence (CoE-AI), Department of Computer Science, Bahria University,

Islamabad 44000, Pakistan; knaseer.buic@bahria.edu.pk (K.N.Q.); muazzam.buic@bahria.edu.pk (M.A.)
4 Institut Mines-Télécom, Télécom SudParis, CEDEX, 91011 Evry, France; noel.crespi@mines-telecom.fr
* Correspondence: itariq.buic@bahria.edu.pk

Abstract: The growing use of the internet has resulted in an exponential rise in the use of web
applications. Businesses, industries, financial and educational institutions, and the general populace
depend on web applications. This mammoth rise in their usage has also resulted in many security
issues that make these web applications vulnerable, thereby affecting the confidentiality, integrity,
and availability of associated information systems. It has, therefore, become necessary to find
vulnerabilities in these information system resources to guarantee information security. A publicly
available web application vulnerability scanner is a computer program that assesses web application
security by employing automated penetration testing techniques that reduce the time, cost, and
resources required for web application penetration testing and eliminates test engineers’ dependency
on human knowledge. However, these security scanners possess various weaknesses of not scanning
complete web applications and generating wrong test results. Moreover, intensive research has
been carried out to quantitatively enumerate web application security scanners’ results to inspect
their effectiveness and limitations. However, the findings show no well-defined method or criteria
available for assessing their results. In this research, we have evaluated the performance of web
application vulnerability scanners by testing intentionally defined vulnerable applications and the
level of their respective precision and accuracy. This was achieved by classifying the analyzed tools
using the most common parameters. The evaluation is based on an extracted list of vulnerabilities
from OWASP (Open Web Application Security Project).

Keywords: security vulnerabilities; NIST; OWASP; OWASP top 10; evaluation; comparison; analysis;
web application scanners; SQL injection; cross-site scripting; broken authentication; sensitive data
exposure; XML injection; security misconfiguration; insecure deserialization; insufficient logging and
monitoring; automated vulnerability detection

1. Introduction

The internet plays a significant role in our lives. In their daily lives, people interact
with each other with the help of customized and user-friendly web applications developed
by using different languages, platforms, and scripting environments. This heterogeneous
nature of web applications makes it difficult for a developer to update and secure those
against emerging threats and attacks properly.

Initially, these web applications were developed in either stand-alone or client-server
models with meagre security issues. Therefore, it was easy to secure and analyze a web
application. However, the abundant reliance of information systems on web applications
has given rise to many security problems; internet banking systems, e-commerce systems

Appl. Sci. 2022, 12, 4077. https://doi.org/10.3390/app12084077 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12084077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9891-1317
https://orcid.org/0000-0002-7030-5200
https://orcid.org/0000-0003-3045-8402
https://doi.org/10.3390/app12084077
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12084077?type=check_update&version=1

Appl. Sci. 2022, 12, 4077 2 of 23

and governmental transaction platforms are severely affected whenever their respective
web applications are compromised.

Statistically, 19% of scanned web applications’ vulnerabilities give the attacker control
the application and operating system. In 2019, a report on vulnerabilities in corporate
information systems [1] found that nearly 75% of Local Area Network (LAN) penetration
vectors have vulnerabilities in web application protection. Similarly, loopholes during
the development process cause serious threats to web applications. Moreover, changes
in configuration settings are adequate to affix only 17% of vulnerabilities. Most of these
have low severity levels. Fifty percent of leaks cause the disclosure of account credentials
and personal data leakage, and around 91% of scanned web applications store and process
personal data [2].

On average, 33 vulnerabilities are found in each web application, six of which are
of high severity. Severe vulnerabilities per web application have increased three-fold
compared to 2017.

The selection of the right penetration testing methodology for a specific type of
vulnerability [3] plays an instrumental part in scanning the web application for vulnerability
detection. Moreover, the automation of web application testing is helpful to pen-testers,
which has not only reduced labour work, time, resources, and cost, but has also alleviated
pen-tester dependency on human knowledge [4]. Furthermore, the scanner saved the
human knowledge of pen-testing by creating executable computer programs. Therefore,
the development of automated web application security scanners has made pen-testing a
popular research trend. In this field, developers convert the web application pen-testing
methods into executable programs to detect web application vulnerabilities better.

Web application assessments are becoming more pervasive with the development of
automated software and tools that simulate the actions of an experienced web application
penetration tester [4]. Different programs and tools are available to help a penetration tester
gather information. Similarly, tools such as Metasploit [5], and Commix [6] are developed
to attack the target system’s confidentiality, integrity, and availability.

Web assessment tools are classified into two categories: open-source tools and propri-
etary tools. There are some limitations and capabilities associated with these categories.
Open-source tools are free to download, but the developers also have access to their source
codes. Therefore, developers can customize their functions and features according to their
requirements. There is a big community linked with these open-source technologies, where
a developer can find help to customize open-source tools. On the other hand, proprietary
or paid tools are not freely available. However, their beta versions or trial versions are
freely available online. By downloading a trial version, one can experience very limited
features of these tools. In addition, their source codes are not freely available, so these tools
cannot be customized.

Research led by WhiteHat Security [7] found that 86% of scanned web applications
had, on average, 56% of vulnerabilities per web application, at least one of which was
classified as serious. In another study [8], Symantec executed 1400 scans and identified that
76% of websites have at least one serious vulnerability [9], and 20% of servers consist of
critical vulnerabilities.

However, the statistics and classification of detected vulnerabilities differ from one
scanner to another. For example, some web assessment tools will successfully identify all
“true” vulnerabilities with a low false-positive rate. In contrast, others will fail to detect true
positive vulnerabilities with a considerably high false-positive rate.

This research is also motivated by the need for using suitable web assessment tools
for scanning and vulnerability assessments of web applications. As we know, every
execution performed by a computer is based on an algorithm. Therefore, to achieve the
aim of automated web application assessment, it is very important to write a sophisticated
algorithm. However, these algorithms are not always seamless, and false positives and
false negatives are common for automated web application penetration testing. The false
positives require extra effort to be made by the pen-tester and time to eliminate the false

Appl. Sci. 2022, 12, 4077 3 of 23

vulnerability. In contrast, the false negatives impair the pen-tester’s judgement in deciding
an under-test web application security. However, some research works claims web security
scanners as untrustworthy and inaccurate. This raises the importance of experimentation
for the assessment of web application security scanners’ performances [10]. Moreover,
there is no standard document issued by authorized parties that defines a good approach
for assessing a web application security scanner’s performance.

Black box and White box testing [11] are the primary techniques for the security
assessment of web applications. White box testing examines the internal structures of
web applications. However, web applications usually consist of multiple technologies
and programming languages, including client and server-side languages. Therefore, such
testing may fail to capture all security flaws and vulnerabilities due to the code complexity.
On the other side, the black box testing technique, also known as behavioural testing, is in
which the internal design or structure of the testing item is unknown to the tester. These
tests can be functional or non-functional; however, most of the time, they are functional.

For comparison, there is a well-defined standard implemented for assessment pur-
poses: OWASP (Open Web Application Security Project) [12]. This standard provides
software developers and purchasers with a means to decide whether the tools in considera-
tion for use should meet the software assurance requirements or not. OWASP addresses
only the top 10 security risks every three years. It publishes the ranking of the ten most
dangerous security vulnerabilities in the document “OWASP Top 10” [13] and enables the
security team to protect the web application against the most important threats [7].

In this survey paper, a comprehensive comparative analysis is presented with different
open-source and proprietary tools for vulnerabilities detection in web applications [14].
Moreover, these tools have also been assessed for their precision value to detect vulner-
abilities in web applications. Twelve tools are compared according to their capabilities.
Five tools (Acunetix [15], Nessus [16], HP WebInspect [17], IBM APPSCAN [18], and
NetSparker [19]) are proprietary; their vulnerability detection statistics were collected from
the literature. Other open-source tools were installed and configured in the laboratory.
These open-source tools were run against DVWA (Damn Vulnerable Web Application) [20],
a vulnerable application that is used to check the scanner’s detection capabilities. The de-
tection results of these scanners were compared to OWASP defined vulnerabilities.

OWASP Framework was chosen to compare different tools concerning OWASP TOP
10 Vulnerabilities. OWASP is open source and easily accessible to anyone to improve web
application security-related problems. It is an important framework that can be used for
web application security as it provides documentation, videos, and forums. One of its
best-known projects is OWASP Top 10. Therefore, our survey work covers OWASP Top
10 Vulnerabilities

The literature review of web application assessment is presented in Section 2. A
brief description of security assessment tools for web application is presented in Section 3.
Section 4 consists of comparison results for selected web assessment tools. Our contribu-
tions are presented in Section 5. Open challenges and future directions are illustrated in
Section 6. Our conclusions are discussed in Section 7.

2. Literature Review

Several research studies have discussed the issue of evaluating the performance and
effectiveness of web application assessment tools. Several researchers researched only
commercial or open-source tools, while others combined open-source and commercial tools.
Ricardo Araújo et al. [14] present a recent and detailed comparison of security scanners that
are available for use by organizations with lower resources, such as small and medium-
sized enterprises. In addition, they compared open-source tools and highlighted their
performances according to the number of vulnerabilities detected and false positives.

Roy Shanto et al. [21] provide a survey that is based on taxonomy and a detailed
overview of adversarial reconnaissance techniques. The taxonomy categorizes reconnais-

Appl. Sci. 2022, 12, 4077 4 of 23

sance techniques based on the technical approach, including target footprinting, social
engineering, network scanning, and local discovery.

Doupé et al. [22] assessed ten tools which are Acunetix, AppScan [18], BurpSuite [23],
Arachni, Hailstorm, NTOSpider, Paros, N-Stalker, Webinspect, and W3af for web appli-
cation assessment. These tools were selected to consider a variety of open-source and
commercial scanners.

Lilan hu et al. [24] presented an in-depth study of the existing security vulnerability
detection technology, combined with the development process of machine learning security
vulnerability detection technology, the requirements of the security vulnerability detection
model are analyzed in detail, and a cross-site scripting security vulnerability detection
model for web application is designed and implemented. Based on the existing network
vulnerability detection technology and tools, the verification code identification function
is added, which solves the problem that the data can be submitted to the server only by
inputting the verification code.

Jinfeng Li [25] synced industry-standard OWASP top 10 vulnerabilities and CWE/SANS
top 25 dangerous software errors in a matrix with Checkmarx vulnerability queries, produc-
ing an application security framework that helps development teams review and address
code vulnerabilities to minimize false positives discovered in static scans and penetra-
tion tests, targeting an increased accuracy of the findings. Mapping the OWASP/SANS
with Checkmarx vulnerabilities queries, flaws and vulnerabilities are demonstrated to be
mitigated with improved efficiency.

Amir Manzor et al. [26] presented a literature survey recapitulating security solu-
tions and major vulnerabilities to promote further research by establishing a system of the
existing methods on a bigger horizon. They suggested that there is no way to alleviate
all the web vulnerabilities; therefore, further study is desirable in web information secu-
rity. They also addressed the complexity of the surveyed methods and suggested some
recommendations when using these methods.

Ouissem Ben Fredge et al. [27] identified the most critical web vulnerabilities according
to OWASP Top 10, including their related attacks with their countermeasures. They also
proposed an application that guarantees the protection of web applications against the
most severe attacks and prevents some zero-day exploits.

Richard Amankwah et al. [28] provide a comparison work to determine the vulnera-
bility detection capabilities of eight web vulnerability scanners (both open and commercial)
using two vulnerable web applications: WebGoat and Damn vulnerable web application.
The eight WVSs studied were: Acunetix; HP WebInspect; IBM AppScan; OWASP ZAP;
Skipfish; Arachni; Vega; and Iron WASP. The performance was evaluated using multiple
evaluation metrics: precision, recall, Youden index, OWASP web benchmark evaluation,
and the web application security scanner evaluation criteria. The experimental results
show that, while the commercial scanners effectively detect security vulnerabilities, some
open-source scanners (such as ZAP and Skipfish) can also be effective.

The evaluation focused mainly on the selected web application assessment capabilities
against XSS (Cross-Site Scripting), SQL injection, code injection, and broken access controls.
Exposed vulnerabilities were categorized to enable the assessment process for seventeen
different vulnerabilities. In addition, the authors developed their test application called
WackoPicko [29], which is geared toward the assessment and evaluation process to test the
scanner under realistic conditions. The results show that the running time of N-Stalker is
higher than Acunetix, Webinspect, and BurpSuite, which provides competitive results for
true positive vulnerabilities detection. The authors also noted that the crawling process
is challenging and needs further investigation to improve the automated identification
of vulnerabilities.

Bau et al. [30] evaluated eight commercial scanners, namely Acunetix WVS, Cenzic
HailStrom Pro, HP WebInspect, IBM AppScan, McAfee SECURE, N-Stalker QA Edition,
QualysGuard PCI, and Rapid7 NeXpose. In addition, they used black box scanning to
test the scanners against a custom web application with known vulnerabilities. The vul-

Appl. Sci. 2022, 12, 4077 5 of 23

nerability categories targeted in this study are XSS, SQL Injection, Secure Socket Layer
(SSL), Session Management, Cross-Site Request Forgery (CSRF), SSL/Server Configuration,
and Information Leakage. The results presented focused on the fact that all scanners suc-
cessfully detected straightforward XSS and SQL injection vulnerabilities but failed to detect
second-order (stored) SQL injection and XSS vulnerabilities.

Parvez et al. [31] evaluated two commercial scanners, Acunetix WVS and IBM App-
Scan, and one open-source scanner, OWASP ZAP. Their evaluation was performed against
a custom web application with intentional vulnerabilities. This work focused on only two
web application vulnerabilities, XSS and SQL Injection. The analysis revealed that the
scanners show some improvement over previous studies in detecting second-order XSS
and SQL Injection vulnerabilities.

Suteva et al. [32] evaluated six open-source scanners, namely NetSparker Community
Edition, N-Stalker Free 2012, OWASP ZAP, W3AF, Iron WASP and Vega. The evaluation
was performed against a vulnerable web application called WackoPicko [29]. The tested
vulnerabilities were XSS, SQL Injection, Command Injection, File Inclusion, File Exposure,
and several others. The total number of detected vulnerabilities and the number of false
positives were identified. The results showed that NetSparker performed better than the
other tested scanners.

A recent study by El Idrissi et al. [33] was conducted on eleven WAVSs (Web Applica-
tion Vulnerability Scanners). Five were commercial tools, BurpSuite, Acunetix, Netsparker,
AppSpider, and Arachni, and six were open-source tools: Wapiti, SkipFish, W3AF, Iron-
WASP, ZAP and Vega. The scanners were evaluated against the WAVSEV application.
The tested vulnerabilities were XSS, SQL Injection, Local and Remote File Inclusion,
and Path Traversal. The results showed that most scanners had a better detection rate for
XSS and SQL injection vulnerabilities than other vulnerabilities. The authors focused on
comparing the performance of commercial and open-source tools. The results showed that
some open-source tools such as ZAP and Vega have better results than other commercial
tools such as AppSpider and Arachni.

Elahen et al. [34] assessed and ranked methodologies for User-Generated Content
(UGC) on the web; their research provides supplementary content but varies in quality.
They highlighted existing approaches and techniques for assessing and ranking UGC. Their
survey consists of an efficient review for assessing and ranking UGC. The classification
of frameworks used for assessment and ranking processes gives a systematic review of
their functions. Conclusively, their research accomplishes the goal of assessing the health-
care information system domain by a comprehensive assessment of databases, networks,
applications, and infrastructure.

Mohit et al. [35] proposed a model for web vulnerability detection based on proba-
bilistic classification. Their research mainly focused on the top four OWASP vulnerabilities:
CSS, SQL injection, Remote code execution, and File inclusion. The results were based on
improving performance parameters such as false alarm and accuracy for the detection of
the four mentioned vulnerabilities. The scope of their work is very limited, which addresses
only four mentioned vulnerabilities on OWASP’s list.

Gaurav et al. [36] presented a survey for monitoring web services using the cloud.
It provides an assessment system for penetration testing for vulnerability and malware
detection. They claimed that their proposed architecture was a cost-effective framework for
web assessment using cloud services, which ensured better security for the web application,
where web services were used in back-end communication.

Mehreen et al. [37] present a state-of-the-art survey for evaluations. They performed
web application assessments based on a questionnaire with very positive results. The basic
Human–Computer Interaction (HCI) design principle was used in questionnaire formation.
However, survey evaluations might not be 100% accurate for usability testing; this method
effectively collects user responses about the usability of the web application.

Ashikali and Divyakant [38] surveyed the literature to determine the major techniques
for the Vulnerability Assessment and Penetration Testing (VAPT) process and suggested

Appl. Sci. 2022, 12, 4077 6 of 23

software and tools which can be helpful for the VAPT process. This approach audited
web application security and analyzed the penetration testing process with its limitations.
They discussed different tools with their features such as W3af, Havij, Fimap, Metasploit,
Acunetix, and Nexpose. However, they did not perform a comparative analysis of these
discussed tools.

Rawaa [39] performed an assessment of web scanner tools and evaluated the ef-
fectiveness and differences to find flaws and limitations in different web scanner tools.
The evaluation of black box web application vulnerability scanners was focused on SQLI
and XSS attacks due to their severity level. The author used open-source tools such as
Paros, Wapiti, Skipfish, Nikto [40], Wfuzz, NetSparker, and HP webinspect.

Mark Rudolph [41] categorized web application security assessment tools in the con-
text of their usage. According to their research, tool selection for web application security
assessment depends on the process, web application’s complexity, and environment in
which they are being used. They provided an extensive review for web application pene-
tration testing and assessment tool selection.

Fang et al. [42] presented a framework, “DarkHunter”, that could categorize the
fingerprints of automated tools and analyzed the payload features of different web assess-
ment tools by using a deep learning algorithm. The five commercial and community web
scanners chosen in this research are AppScan, AWVS, NetSparker, Vega, and W3af. Their
proposed framework accuracy rate is 94.6% and recall rate is 95%. The limitation of this
research is that the model cannot be dynamically enhanced. However, once the training is
complete, the model is fixed.

Alsaleh et al. [43] published an article based on a comparative assessment of the
performance of an open-source web vulnerability scanner. He evaluated four different
open-source scanners with detection of FPR (False Positive Rate), TPR (True Positive Rates),
FNR (False Negatives Rate), and TNR (True Negative Rates). The primary task of this work
is to analyze the performance of open-source web application scanners in the context of
correlation and detection capabilities. However, their comparative assessment did not
present vital performance differences in assessed scanners.

Terry et al. [44] performed a HIS (Healthcare Information System) domain assessment
within the domain and then automated the assessment process to ensure time and resource
efficiency. Furthermore, automating the comprehensive assessment ensured that no steps
could be skipped and that the assessment of the HIS is HIPAA (Health Insurance Portability
and Accountability) compliant. This research is valuable as it highlights the problems
faced in the healthcare industry that are not publicized and make healthcare systems
entirely vulnerable within the domain. For this purpose, mostly open-source tools such as
OpenVAS, Kismet, Aircrack, UCSniff, SQLMAP, and Wapiti are used.

There are a variety of tools discussed in this literature review. Although, a comparison
and analysis summary of the literature review is presented in Table 1, some of these research
works are limited to several detected vulnerabilities, and others just compared limited
scanners. However, in this survey, 11 proprietary and open-source web application scanners
have been compared with the detection capability of OWASP top 10 defined vulnerabilities.

Appl. Sci. 2022, 12, 4077 7 of 23

Table 1. Comparison and analysis of literature review.

Researcher Evaluated Scanner Evaluated Vulnerabilities Main Contributions Limitation

Doupé et al. (2010) [22]

Acunetix 174, AppScan Burp,
Grendel-Scan, Hailstorm, Milescan,

N-Stalker, NTOSpider, Paros,
W3af, Webinspect

Cross-Site Scripting, SQL Injection, Code,
Injection, Broken Access Controls

accuracy, execution times and
Threat scores

Vulnerabilities detection scope is
very limited

Bau et al. (2010) [30] Acunetix, Cenzic, McAfee SECURE,
WebInspect, N-Stalker, QualysGuard

Cross-Site Scripting, SQL Injection, Cross
Channel Scripting, Session Management,

Cross-Site Request Forgery

Scanner footprint, Vulnerability
detection, false positive

Scanners can detect straightforward XSS
and SQL injection attacks, but failed to
detect second order form of XSS and

SQL injection attack

Parvez et al. (2015) [31] Acunetix, Rational AppScan, ZAP SQL Injection, Stored XSS Detection rate for SQLI and XSS Compare only two commercial scanners

Suteva et al. (2012) [32] NetSparker, N-Stalker, OWASP-ZAP,
W3af, Iron WASP, Vega

XSS, SQL Injection, Command Injection,
File Inclusion

NetSparker has better detection
rate then others Linux, MAC, Windows

El Idrissi et al. (2017) [33]
BurpSuite, Acunetix, Netsparker,

AppSpider, Arachni, Wapiti, SkipFish,
W3AF, IronWASP, ZAP and Vega

XSS, SQL Injection, Local and Remote
File Inclusion, Path Traversal

XSS, and SQL vulnerabilities have higher
detection rate, Arachni perform better in

open-source tools
Linux, MAC, Windows

Elahen, Claire et al. (2013) [34] User Generated Content
(UGC) evaluation

Assessing and Ranking UGC
Assessment of healthcare systems False Positive Rate

Mohit et al. (2017) [35]
BurpSuite, Acunetix, Wapiti, SkipFish,

Netsparker, W3AF, AppSpider, Arachni,
ZAP, Vega

Cross site scripting, SQL injection,
Remote code execution, File inclusion Precision, Recall, and F-measure Limited to false alarm and accuracy

Gaurav et al. (2018) [36]
Penetration system for malware

detection and web assessment using
cloud services

OWASP’s Vulnerabilities Cost-effective solution for web
assessment Limited to specific web applications

Mehreen et al. (2018) [37] assessment based on questionnaire with
positive results

No technical details are provided for
assessment purposes

Ashikali et al. (2018) [38] W3af, Havij, Fimap, Metasploit,
Acunetix, Nexpose OWASP’S Vulnerabilities Major techniques for vulnerability

assessment and penetration testing Didn’t perform any comparative analysis

Rawaa (2016) [39] Paros, Wapiti, Skipfish, Nikto, Wfuzz,
NetSparker, HP WebInspect SQL Injection, Cross Site Scripting Analytical comparison of six

open-source tools
Very limited number of vulnerabilities

are discussed

Mark, and Rudolph (2006) [41] Commercial and
Free/Open-source Tools

Benefits and Drawbacks of
Selected Tools Selected tools are not popular

Fang et al. (2018) [42] AppScan, AWVS, Netspark, Vega, W3af
Extracted feature by using

Convolutional Neural Network and
accurately identify scanners

model cannot be dynamically enhanced

Alsaleh, Mansour et al. (2017) [43] Arachni, Wapiti, Skipfish SQL, Cross Site Scripting Arachni scanner can test 100 percent of
the SQL test cases

Not present vital performance difference
between selected scanners

Terry et al. (2018) [44] OpenVAS, Kismet, Aircrack,
SQLMAP, Wapiti Buffer overflow, Cross Site Scripting Limited to Healthcare Information

system only

Appl. Sci. 2022, 12, 4077 8 of 23

3. Security Assessment for Web Application Tools

Web application assessment tools can be found as open-source and proprietary. Propri-
etary tools usually offer free trial packages for users and pen-testers; however, their features
and functions are limited. There are several aspects involved in selecting one scanner over
another. A scanner should:

• Support the protocols and authentication algorithms used by web applications.
• Support the main types of input delivery methods and be able to detect vulnerabilities

in the web application with a low false-positive rate.
• Be within the technical abilities of the person who will use it.
• Be stable and regularly updated with the latest security updates to cover the ongoing

vulnerabilities being discovered.
• Be selected whilst keeping its cost and licensing within the budget limit.

This research aims to evaluate and compare the scanner’s capabilities to detect the true
vulnerabilities in web applications based on multiple vulnerable web applications. In this
research work, the scanners were evaluated against different vulnerable web applications
to increase the granularity and variation of the detected vulnerabilities.

3.1. Analyzed Tools

The following is a brief representation of selected web application assessment tools.
Acunetix WVS: This is a leading web vulnerability scanner used to check web applica-

tions for vulnerabilities automatically. Acunetix WVS is used to discover web application
security levels by crawling and analyzing the web application to exploit SQL injections, XSS,
Host Header Injection and over 3000 other web vulnerabilities. Acunetix is a commercial
tool that only works on Windows Operating Systems (OS). Older versions of Acunetix were
evaluated.

Nessus: This is a vulnerability scanner with one of the largest knowledge bases of secu-
rity vulnerabilities and hundreds of plugins that can be activated for detailed, customized
scans. Nessus can detect security vulnerabilities in the OS of targeted hosts, patches,
and services. It also demonstrates the ability to propose solutions that can mitigate these
security vulnerabilities [45]. Nessus is a commercial tool that works on Linux, MAC OS,
and Windows OS. For this work, a cloud-based version of the Nessus vulnerability scanner
was evaluated. The Nessus vulnerability scanner was not evaluated in any of the previous
works mentioned.

NetSparker: A web application security scanner is designed to discover and audit
web application vulnerabilities such as SQL Injection and XSS possibilities. NetSparker
is used by cybersecurity space professionals and is considered by many researchers [19].
However, NetSparker is a commercial tool that works on Windows OS only. Older versions
of NetSparker were evaluated in [35].

APPSCAN: This tool provides centralized control with new advanced application scan-
ning, remediation capabilities, enterprise application security status metrics, key regulatory
compliance reporting, and seamless integration with AppScan Standard. It provides user
administration capabilities for AppScan Source. AppScan Enterprise provides security
teams with the security intelligence of the application needed to make informative risk-
based decisions, including the capability to build a consolidated inventory of all application
assets [46]. Assets can be described in terms of a list of attributes meaningful to the orga-
nization. Security specialists can query the portfolio to identify types of applications that
match certain characteristics.

Appl. Sci. 2022, 12, 4077 9 of 23

HP WebInspect: This is a powerful continuous diagnostics and mitigation tool. It can
launch more than 3000 attacks on web systems and report back each time a vulnerability
is exploited. WebInspect supports Java and .NET applications. WebInspect can create
a virtual environment of an online bank system, so one can initiate scans and generate
reports. The software itself does not require any special installation; a standard PC will be
fine, though a dedicated workstation or server would likely yield results more quickly.

OWASP-ZAP: The OWASP Zed Attack Proxy (ZAP) is one of the most popular web ap-
plication security testing tools. It is made available for free as an open-source project and is
contributed to and maintained by OWASP [47]. The OWASP is a vendor-neutral, non-profit
group of volunteers dedicated to making web applications more secure. The OWASP ZAP
tool can be used during web application development by web developers or experienced
security experts during penetration testing to assess web applications for vulnerabilities.

Wapiti: This is a generic command-line tool to automate the audit process of a web
application [48]. It is an open-source tool and has some current updates. It can detect vul-
nerabilities such as Injection, CSS, Command Execution Attacks, CRLF Injection, and File
Disclosure [49]. In addition to detecting mentioned vulnerabilities, Wapiti can execute some
additional penetration functions such as finding potentially dangerous files on servers,
finding configuration errors in .httaccess files that can lead to the security breach, and find-
ing backup copies of the applications on the server that could compromise the security
of said web applications if an attacker manages to get a hand on those files. It generates
results in an HTML file.

It also carries out a black box testing technique (but does not read the source code) by
crawling the web pages of the targeted web application. Moreover, it identifies scripts and
forms to inject data. After obtaining the list of URLs, forms, and inputs, it conducts fuzzing
to identify vulnerable scripts.

Arachni: This is an open-source, full-featured, modular, Ruby framework designed to
assist penetration testers in scanning and evaluating web applications [50]. Arachni trains
itself by learning from HTTP (HyperText Transfer Protocol) responses it receives during the
scanning and testing process. Unlike other scanners, it detects the dynamic nature of web
applications while crawling through paths of a web application’s cyclomatic complexity.
This approach detects attack vectors more seamlessly. Arachni is a high-performance tool
due to its asynchronous HTTP model. Therefore, its performance utterly depends on the
hardware specification of the server and the available bandwidth of the network. There
are also some limitations due to the server’s responsiveness underscan. It can support
complicated web applications due to its integrated browser environment developed on
technologies such as JavaScript, HTML5, and AJAX [51].

Nikto: This is an open-source web application scanner that can execute a scan for mul-
tiple items, including malicious files and programs, outdated versions of server machines,
and version specific software in web servers. In addition, it performs scans on configuration
files of web servers such as multiple index files, server fingerprinting, and HTTP calls
settings. Its plugins are regularly updated for newly detected vulnerabilities. It is not a
stealthy tool and performs scans swiftly; any IDS/IPS can detect nikto scans easily [52].

It has SSL and proxy support, and it generates reports in HTML, XML, and CSV
format. It updates itself via the command line and detects server software with the help of
headers, files, and favicons.

Appl. Sci. 2022, 12, 4077 10 of 23

BurpSuite: This is a Java-based popular penetration testing toolkit created by PortSwig-
ger web security for security experts. It helps to verify attack vectors and detects vulnera-
bilities directly affecting web applications. While browsing the target web application, it
intercepts HTTP calls. It acts like an MITM (Man In The Middle) and captures and analyzes
requests from the target web application server for malicious parameters and injection
points [53].

It is freely available with limited features but highly capable functions. However, its
fully-featured commercial and licensed versions are also available at an affordable price
for professionals.

W3af: W3af (Web Application Attack and Audit Framework) detects and exploits web
application vulnerabilities. It is a command-line open-source toolkit but is also available in
the GUI (Graphical User Interface) package. This toolkit is also called the “Metasploit of
the Web”. It detects vulnerabilities using black box scanning techniques [54]. W3af core
engine and plugins are written in Python, and it scans with more than 140 plugins that
specifically exploit CSS, SQL injection, and remote file inclusion vulnerabilities. Its plugins
share information while performing scans by using a knowledge base technique.

3.2. Reviewed Tools

Several other tools were not chosen but have been reviewed for different reasons,
and these reasons are listed in Table 2. The category “Proxy” means that tools also act
as a proxy. The term “Not Available” means that these tools are not available any more
for download. The term “Did not Work” means that we could not obtain or install these
programs. Finally, the term “Other” category covers various reasons for not choosing a
particular tool.

Table 2. List of tools not chosen.

Tool Name Not Available Did Not Work Proxy Other

Prox Mon X

Suru Web Proxy X

Paros X

WebScarab X

SPIKE X

XSSScan X

HTMangLe X

WebFuzz X

ASP Auditor X

WhiteAcid’s XSS Assistant X

screamingCobra X

Overlong UTF X

Web Hack Control Center X

Web Text Converter X

Grabber X

Wfuzz X

WSTool X

Uber Web Security Scanner X

Grendel-Scan X

DirBuster X

J-Baah X

JBroFuzz X

XSSFuzz Only for CSS

Appl. Sci. 2022, 12, 4077 11 of 23

Table 2. Cont.

Tool Name Not Available Did Not Work Proxy Other

WSFuzzer Only for SOAF Services

RegFuzzer Only for Regular Expressions

RFuzz Only for HTTP requests

XSSFuzz Only for CSS

Watcher Depends on another
application (Fiddler)

Falcove Could not be Installed

NeXpose community edition Not for Web Applications

SQLMap Only for SQL Injection

X5S Not Automated, Only for CSS

3.3. Evaluation of Web Application Scanner

Web application scanner evaluations are very important for designers and users.
The fingerprint identification feature in web scanners helps to identify the attackers’ au-
tomated tools by log files and network traffic. Several researchers pointed out that most
cyber-attacks happen due to the misuse of scanners [55]. The traditional approach to
solving such a problem is to match special characters in URL (Uniform Resource Locator)
payloads or HTTP headers from scanners. The limitation of this approach is that attackers
can modify special characters because scanning is a finite process [56]. Therefore, it is
better to explore new technologies to improve fingerprint detection. Black box pen-testing
technique is important for finding security vulnerabilities in an automated fashion. Black
box pen-testing tools work in a point-and-shoot manner, assessing any web application
independent from server-side language. However, black box tools have some limitations,
especially when dealing with complex applications and multiple functionalities.

3.4. Evaluation Methodology and Criteria

In this subsection, the evaluation methodology has been explicitly defined. The black
box penetration testing technique is used in this paper to evaluate open-source web appli-
cation assessment tools. The real advantage of this approach is that it provides a uniform
scenario for launched attacks. The black box approach evaluates web application scanners
with no prior knowledge of web application internal structure. The major components of
web application security perform three significant tasks: crawling, fuzzing, and reporting.
For evaluation purposes, these three tasks are needed to be discussed.

The OWASP [13] is an international non-profit organization primarily focused on web
application security. OWASP project regularly maintains an updated list of severe security
vulnerabilities in web applications. Being an open-source solution, all of their material is freely
available and easily accessible on the internet. This material includes documentation, tools,
videos, and a forum for user guidance. Their popular project is the OWASP Top 10.

The OWASP Top 10 [13] is a frequently updated document focusing on web application
security on the top ten critical risks. This document is composed of a team of security
experts from all over the world. OWASP Top 10 is also known as “Awareness Document” it
provides extensive statistical analysis of the most severe vulnerabilities in web applications.
A list of Web application security vulnerabilities for OWASP Top 10 2021 [12] report is
given below:

1. Broken Access Control;
2. Cryptographic Failures;
3. Injection;
4. Insecure Design;
5. Security Misconfiguration;
6. Vulnerable and Outdated Components;
7. Identification and Authentication Failures;
8. Software and Data Integrity Failures;

Appl. Sci. 2022, 12, 4077 12 of 23

9. Security Logging and Monitoring Failures;
10. Server-Side Request Forgery.

4. Comparison of Selected Web Assessment Tools

The assessment of a web application scanner depends on the quality, and it depends
on these characteristics. In this section, these three characteristics have been defined, which
dictate the quality of the web application scanner. These are as follows:

• Quality of Crawling;
• Quality of Fuzzing;
• Quality of Analysis.

4.1. Quality of Crawling

Crawling is the process of identifying pages of the web application that are vulnerable
to a certain attack. The number of pages crawled by a scanner determines its quality of
crawling. Crawling is not dependent on vulnerability that is analyzed for or presented in
the web application.

4.2. Quality of Fuzzing

The process of entering input to expose a vulnerability is called fuzzing. The quality of
fuzzing depends on the inputs, and a fuzzer enters to find a certain vulnerability. Therefore,
these inputs should exploit particular vulnerabilities regardless of web or SQL server.

4.3. Quality of Analyzing

It is the responsibility of the analyzer to analyze the results that the fuzzer generates.
It should detect vulnerabilities without generating false positives.

This section presents the obtained results from different research reviews with our
contributions using the following measures: vulnerabilities detected by each scanner,
categorization of vulnerabilities based on their severity level, the classification of detected
vulnerabilities, and accuracy of each scanner.

Moreover, DVWA (Damn Vulnerable Web Application) is a vulnerable web application
used as a test bench [20]. It is a PHP MySQL web application that is thoroughly vulnerable.
It is developed to test tools and professionals’ skills in a legal environment. According
to the survey, there is no accurate measure for detecting vulnerabilities. Therefore, there
is a need to discover more vulnerabilities by using scripts and plugins in open-source
tools. Results from proprietary tools such as Acunetix, APPSCAN, Nessus, NetSparker,
and HP WebInspect were collected from different research studies. The results collection
process aimed at a state-of-the-art comparison of these proprietary tools’ performances
on OWASP and NIST defined vulnerabilities. Open-source tools such as OWASP-ZAP,
Burp Suite, Nikto, Arachni [51], and Wapiti [48] are tested on the DVWA framework. As a
result, this framework is vulnerable to the following attacks: Brute Force Attack, Command
Injection Attack, CSRF, File Inclusion, File Upload, Insecure Captcha, SQL injection, SQL
Injection blind, CSS stored, CSS reflected, CSS-DOM, CSP (Content Security Policy) bypass,
and Weak Session ID’s. Most of these attacks’ vulnerabilities are defined by OWASP listed
in Table 3 [9]. Tables 4 and 5 classify and present the detection rate of each vulnerability
for open-source and proprietary evaluated scanners. For example, as presented in Table 5,
the detection rate of Acunetix is higher in the category of CSS, File Injection, Sensitive Data
Exposure, CSRF, and Broken Authentication vulnerabilities. On the other hand, an open-
source tool, OWASP-ZAP, in Table 4 has a lower detection rate in several categories such as
CSS, File Injection, and Insecure Communication.

Appl. Sci. 2022, 12, 4077 13 of 23

Table 3. Total number of vulnerabilities classified and detected by proprietary scanners.

Vulnerabilities Acunetix HP WebInspect NetSparker APPSCAN Nessus

Broken Access Control 115 67 60 58 54
Cryptographic Failures 3 0 0 0 0

Injection 145 90 113 88 29
Insecure Design 2 2 1 0 1

Security Misconfiguration 51 30 15 25 5
Vulnerable and Outdated Components 23 27 25 21 15

Identification and Authentication Failures 165 180 140 130 100
Software and Data Integrity Failures 133 52 115 95 49

Security Logging and Monitoring Failures 12 15 11 10 15
Server-Side Request Forgery 65 95 55 45 52

Table 4. Total number of vulnerabilities classified and detected by open-source scanners.

Vulnerabilities ZAP Nikto W3af Wapiti Arachni BurpSuite

Broken Access Control 26 18 22 5 28 29
Cryptographic Failures 0 0 1 0 0 0

Injection 11 18 31 42 15 90
Insecure Design 11 0 0 1 1 1

Security Misconfiguration 8 4 11 18 17 12
Vulnerable and Outdated Components 0 10 13 2 27 27

Identification and Authentication Failures 743 545 411 223 180 179
Software and Data Integrity Failures 13 8 15 10 8 55

Security Logging and Monitoring Failures 4 6 8 0 13 6
Server-Side Request Forgery 36 43 26 39 25 52

Table 5. Precision rate of evaluated scanners.

Evaluated Scanner
CSS SQLI

Precision
TP FP TP FP

Acunetix 139 0 66 0 100%

IBM APPSCAN 6 5 49 0 84%

Nessus 200 21 43 5 90.88%

BurpSuite 136 3 62 0 98.5%

Wapiti 11 7 4 6 53%

Arachni 136 5 60 0 81.32%

WebInspect 8 7 11 17 44.1%

Nikto 9 2 11 6 71.4%

Netsparker 136 3 64 0 98.5%

W3af 81 3 19 3 94.3%

OWASP-ZAP 136 0 63 0 100%

4.4. Comparative Analysis of Proprietary Tools

• Broken Access Control: In the survey process of proprietary scanners, it was observed
that Acunetix detected most of the broken access control vulnerabilities, and HP
WebInspect detected 67 CSS vulnerabilities. Results of NetSparker and AppScan tools
were similar. Nessus detected 54 vulnerabilities. Detection of broken access control
vulnerability by Acunetix is far better than other proprietary tools.

• Cryptographic Failures: The Acunetix scanner only detected this vulnerability; in other
scanners, we’re unable to detect broken authentication vulnerability.

• Injection: Acunetix detected this vulnerability with 145 scores, NetSparker detected
113 vulnerabilities, HP WebInspect detected 90 vulnerabilities, AppScan detected 88 data
exposure vulnerabilities, and in this comparison, Nessus detected only 29 vulnerabilities.

Appl. Sci. 2022, 12, 4077 14 of 23

• Insecure Design: The detection score of this vulnerability is quite low; Acunetix and HP
WebInspect detected only two vulnerabilities. NetSparker and Nessus detected only one
vulnerability. AppScan could not find any malicious file inclusion vulnerability.

• Security Misconfiguration: Acunetix detected 51 vulnerabilities of this type, whereas
HP WebInspect and AppScan detected 30 and 25 vulnerabilities.

• Vulnerable and Outdated Components: HP WebInspect detected more vulnerable and
outdated components vulnerabilities than other proprietary tools with a 27 score.
NetSparker detected 25, and Acunetix detected 23 vulnerabilities. AppScan detected
21, and Nessus detected 15 vulnerabilities.

• Identification and Authentication Failures: HP WebInspect scanner detected more identi-
fication and authentication failures vulnerabilities with a 180 score. Acunetix stood
second with 165 scores. NetSparker detected 140 vulnerabilities, AppScan detected
130 vulnerabilities, and Nessus detected 100 vulnerabilities.

• Software and Data Integrity Failures: Acunetix scanner had detected more vulnerabilities
of this type compared to other listed proprietary scanners. Acunetix detected 133
software and data integrity failure vulnerabilities. NetSparker detected 115, and App-
Scan detected 95 vulnerabilities. HP WebInspect detected 52, and Nessus detected
54 vulnerabilities. Therefore, the detection results of this vulnerability were good in
Acunetix and NetSparker.

• Security Logging and Monitoring Failures: HP WebInspect and Nessus detected 15
vulnerabilities, Acunetix detected 12, NetSparker detected 11, and AppScan detected
ten vulnerabilities.

• Server-Side Request Forgery: HP WebInspect detected 95 server-side request forgery
vulnerabilities. Acunetix stood second with a 65 score. NetSparker detected 55,
and Nessus detected 52 vulnerabilities. AppScan detected 45 vulnerabilities.

4.5. Comparative Analysis of Open-Source Tools

We assessed six well-known tools in an open-source web application security scanner
tools: ZAP, Nikto, W3af, Wapiti, Arachni, and BurpSuite. We set the same parameters for
the assessment purpose as used in proprietary tools assessment. We assessed these six
tools in the DVWA environment, and the generated results were matched with proprietary
tools results.

• Broken Access Control: In the open-source tools category, BurpSuite detected 29 of these
vulnerabilities, Arachni detected 28 vulnerabilities, and ZAP and W3af detected 26
and 22 vulnerabilities, respectively. On the other hand, Wapiti detected only 5 of these
types of vulnerabilities.

• Cryptographic Failures: W3af only detects this vulnerability in an open-source category.
Other tools were unable to detect this vulnerability.

• Injection: BupSuite detected this vulnerability with the highest score. W3af detected 31
injection vulnerabilities. Nikto detected 18, Arachni detected 15, and ZAP detected
11 vulnerabilities.

• Insecure Design: ZAP detected 11 insecure design vulnerabilities; Nikto and W3af
could not detect any vulnerability of this type. Wapiti and Arachni only detected
one vulnerability.

• Security Misconfiguration: Wapiti and Arachni’s score was 18 and 17, respectively.
BurpSuite detected 12 vulnerabilities, W3af detected 11 vulnerabilities, and ZAP and
Nikto detected 8 and 4 vulnerabilities.

• Vulnerable and Outdated Components: BurpSuite and Arachni detected 27 vulnerabilities.
W3af detected 13, Nikto detected 10, and Wapiti detected only two vulnerabilities.
ZAP could not detect any vulnerability.

• Identification and Authentication Failures: This vulnerability was detected with high
scores as compared to other vulnerabilities. ZAP detected 743 vulnerabilities, Nikto
detected 545 vulnerabilities, W3af score was 411, Wapiti detected 223 vulnerabilities,
and Arachni detected 180 vulnerabilities.

Appl. Sci. 2022, 12, 4077 15 of 23

• Software and Data Integrity Failures: BurpSuite detected 55 vulnerabilities, and W3af and
ZAP detected 15 and 13 vulnerabilities. Arachi and Nikto detected eight vulnerabilities.
Wapiti detected ten vulnerabilities. Comparatively, BurpSuite detected more data
integrity vulnerabilities than other tools.

• Security Logging and Monitoring Failures: Arachni detected 13 vulnerabilities, and Burp-
Suite and Nikto detected six vulnerabilities. W3af and ZAP detected 8 and 4 vulnera-
bilities, respectively. Wapiti could not detect any vulnerability of this type.

• Server-Side Request Forgery: BurpSuite detected 52 vulnerabilities of this type. Nikto
detected 43, Wapiti detected 39, ZAP detected 36, W3af detected 26, and Arachni
detected 25 server-side request forgery vulnerabilities.

As presented in Figure 1, Acunetix is ranked first, and NetSparker stood second in
detecting high severity vulnerabilities. NetSparker stands second in detecting high severity
vulnerabilities. In Figure 2, OWASP-ZAP has a high detection rate in the low severity
vulnerabilities category. Open-source tools such as Burp Suite and Nikto depicted a high
detection ratio of informational categories.

Figure 1. Detected Vulnerabilities on Proprietary Scanners.

Figure 2. Detected vulnerabilities in open-source scanners.

A scanner could generate false-positive results in the black box evaluation of vulner-
able web applications. In the context of black box testing, the scanners mostly rely on
the information from service banners and signature matching checks, which leads to the
false detection of vulnerabilities. Hence, it is important to verify the results manually by
checking their validity and precision. Two approaches are used to validate web scanner
obtained results. False Positive (FP) is referred to as a vulnerability that a scanner wrongly

Appl. Sci. 2022, 12, 4077 16 of 23

reported and a False Negative (FN), which is a vulnerability not detected or reported by a
scanner. In this survey, we focused on false positive (FP) calculation.

4.5.1. Precision of Scanner

The precision of the scanner is measured as the percentage of correctly detected
vulnerabilities or true positives (TP) to the total number of detected vulnerabilities, i.e., TP
and false positives (FP). It is positively collected information, and the formula of precision
can be presented as:

Precision =
TP

TP + FP
Results of six evaluated scanners, the precisions of these open-source scanners for

SQLI and CSS vulnerabilities are presented in Table 6.

Table 6. Recall rate of evaluated scanners.

Evaluated Scanner
CSS SQLI

Precision
TP FN TP FN

Acunetix 139 0 66 0 100%

IBM APPSCAN 6 0 49 0 100%

Nessus 200 0 43 0 100%

BurpSuite 136 1 62 0 99.2%

Wapiti 11 2 4 0 90%

Arachni 136 1 60 0 99.5%

WebInspect 8 0 11 0 100%

Nikto 9 1 11 0 99.5%

Netsparker 136 0 64 0 100%

W3af 81 0 19 0 100%

OWASP-ZAP 136 0 63 0 100%

4.5.2. Accuracy of Scanner

Accuracy is the percentage of the sum of correctly detected true positives and true
negatives to the summation of all classified instances, i.e., True Positives (TP), False Positives
(FP), False negatives (FN), and True negatives (TN). It depicts the closeness of the true
value to the predicted value and can be calculated by the formula given below.

Accuracy =
TP + TN

TP + FP + FN + TN

4.5.3. Recall

The recall is the calculation of correctly identified positive instances that are really
positive. It is also referred to as sensitivity. It can be calculated by the formula below, and a
comparative analysis of the recall rate is provided in Table 6.

Recall =
TP

TP + FN

4.6. Limitations

Penetration tools have some limitations as well, some of which are described here:

• These tools cannot detect all the vulnerabilities in web applications. Therefore, these
tools are not efficient enough to find vulnerabilities such as information disclosure
and encryption flaws.

Appl. Sci. 2022, 12, 4077 17 of 23

• Access control flaws are harder to detect with these tools. Detecting hard-coded back
doors or identifying multi cover attacks are difficult to detect [57].

• There are no specific goals associated with automated penetration testing tools. There-
fore, these automated tools must check every possible flaw in web applications [58].

5. Our Contributions

As discussed in Section V, the quality of a web application scanner depends on three
properties, Crawling, Fuzzing and Analyzing. First, crawling quality depends on the
number of pages crawled by a scanner. Secondly, the quality of Fuzzing depends on
the inputs that a fuzzer enters to find a certain vulnerability. During the development
process of an indigenous scanner for detecting web application vulnerabilities, different
open-source tools and technologies were used to develop a toolkit that can scan a given
URL as a commercial scanner does. We focused on the crawling and detection process of
web application scanning to enhance the performance of the developed toolkit.

After surveying different commercial and open-source web application scanning tools,
it was assessed that different tools have different features and characteristics. For example,
some scanners have better crawling techniques and others have better detection techniques.
After analyzing the performance and accuracy of surveyed scanner, it was discovered that
after improving the crawling and fuzzing properties of a scanner, the performance of these
scanners could be improved.

Our first objective is to improve the crawler coverage of the scanner. An enhanced
scanner coverage can be achieved by replacing the crawler component of a scanner with a
better one. This technique might be helpful for some scanners but is not good for others,
specifically if the integrated crawler works well. Therefore, an approach was chosen to
integrate a better crawler component with other scanners. This newly integrated compiler
provides additional URLs for a web application. To get the additional URLs of a web
application, two approaches can be used: endpoint extraction from the source code of a
web application and then using these detected URLs with an integrated crawler.

Endpoint extraction can be conducted by searching the web application underscan’s
source code (including configuration files). Using this approach, a crawler can uncover
hidden parameters of requests (e.g., debugging parameters). However, this approach is
only feasible when the source code of the web application under test is available. If it is
not available, then the second approach comes into play. This approach consists of using
the best available crawler to obtain additional URLs. Our survey assessed that Arachni
provides better crawling performance compared to other open-source crawlers such as
ZAP, W3af, and Wapiti.

We used the second approach to develop the web application scanner toolkit. To check
the crawling coverage, WIVET (Web Input Vector Extractor Teaser) version 4 was used,
which is a benchmarking project specifically designed to assess crawling coverage. Table 7
compares crawling coverage results of tools with default and integrated crawlers.

Table 7. Site coverage rate before and after using Arachni Crawler.

Scanner Raw Coverage
Coverage when Seeded
with Arachni Crawled

Results

Arachni 95%

OWASP-ZAP 68% 93.5%

W3af 22% 93.5%

Wapiti 49% 93%

Nikto 41% 93.5%

Appl. Sci. 2022, 12, 4077 18 of 23

This table shows that raw crawling coverage of Arachni is already good, while ZAP,
Wapiti, and W3af find half of all resources. However, reliably performing authenticated
scans is difficult due to some reasons. For example, it finds difficulties with various
authentication methods, preventing logouts during scans, and re-authenticating sessions
(e.g., when a web application with integrated protection mechanisms invalidates the
authenticated session when scanned). Therefore, some scanners have difficulties with the
authentication process.

To cope with these difficulties, a module OAuth v 2.0 is implemented It provides a
wizard to configure authentication requests, store the authentication cookies received from
web applications, and injects them into subsequent requests from the scanner to ensure
that requests are requested handled as authenticated one by the web application. Moreover,
Arachni uses PhantomJS, a headless browser, and it extracts more information by allowing
request and response information from HTTP. One can use only the crawler option by
using the switch(-checks=-) option in the Arachni command to not load any checks or
(–checks=trainer) to load the trainer, enabling the crawling function. URLs generated after
crawling from a web application under test are used as seed values for other web scanners.

Figure 3 presents a graphical representation of old and new detected vulnerabilities by
using an integrated crawler. Results have been significantly improved by using the Arachni
crawler for generating URLs lists with the OAuth authentication framework. In the next
step, these URLs are provided as a seed value to other open-source scanners (ZAP, W3af,
and Wapiti), and their vulnerabilities and detection capabilities have been improved.

Figure 3. Reported vulnerabilities using before and after Arachni crawler.

Table 8 depicts the configurations settings for the executed scans. In configuration
(-/-), we set the scanner without any seed values, i.e., no URLs list is provided by using
the Arachni crawler and no authentication framework is used. Scanners are used with
their default settings. In configuration (S/-), seed values, i.e., URLs’ list, are provided
by using Arachni crawler to another scanner but without any authentication framework.
In configuration (S/A), the seed value and authentication framework are used to obtain
better detection results.

Appl. Sci. 2022, 12, 4077 19 of 23

Table 8. Configurations used during the evaluation.

Config. Scans Executed

-/- Without Seeding and Authentication
Configuration

S/- With Seeding and Non-Authentication
Configuration

S/A With Seeding and Authentication configuration
(using both technical solutions)

Moreover, most open-source tools are available in a desktop application form or
installed within the application server. This toolkit is available in desktop applications
and can be accessed through a web link. A pen-tester can install a desktop application of
this toolkit on its machine and scan a given URL like the Acunetix web scanner provides
this functionality.

The detection results have also been improved by using a new crawler with ZAP,
W3af, and Wapiti. Figure 3 depicts that the detection rate of vulnerabilities has been
increased significantly.

6. Open Challenges/Future Directions

While performing penetration testing, automated tools work swiftly. Contrary to this,
a manual approach needs more time than an automated approach. Reconnaissance and
information gathering related tasks can also be conducted with automated tools. Therefore,
in such scenarios, automated tools can be used for reconnaissance and scanning purposes
to find the right target for further vulnerability exploitation. Automated testing using
open-source and proprietary tools is much more effective because it covers all the aspects.
We cannot be sure of the vulnerabilities it detects by using these automated tools.

6.1. Automated Scripts Generation

With automated tools, the false-positive rates are appeared to be high. Some manual
analysis is required to confirm the reported vulnerabilities. Even in cases where the size of
the application is large, an automated security scan comes in handy. However, the result
given by the automated tool is not necessarily the conclusion. Manual analysis is often
required to confirm the vulnerabilities. Manual techniques are also helpful in finding
business logic flaws. Therefore, there is a need to research manual testing techniques
that make this process less time consuming and convenient for a pen-tester. Research on
automatic script generation for exploitation purposes can make manual testing easier.

6.2. Lower False Positives in Automation

When a new vulnerability/exploit is released, most of the automated tools have to
wait for the next update to use it in their tests, whereas a human can learn about a new
technique and implement it the very next day. However, this again requires an expert.
Updated automated tools are reliable to use. If a zero-day vulnerability has been detected
in the environment, it is cumbersome to detect and identify security threats. A tester can
write an exploit in manual testing depending on the vulnerability. This leads to a more
comprehensive testing methodology with lower false positives than most automated tools
cannot perform. Sometimes in automated tools, exploitation of the detected vulnerability
is not possible due to false positives. Therefore, another open challenge is the deduction of
false positives in automated tools to obtain more accurate results.

Appl. Sci. 2022, 12, 4077 20 of 23

6.3. Insufficient Skills for Exploitation

Automated tools generate false positives and negatives (10 to 70% depending on
methodology and product) that present insufficient security requirements. Moreover, in-
sufficient capabilities of tools also cause inaccuracies. It all depends on the expertise of a
manual tester that uses automated tools, validates the generated results, and determines the
true security findings. We cannot be sure or rely fully on these tools whether the vulnerabil-
ities they are detecting are vulnerabilities that exist in the system or not. Automated tools
are not good for penetration testing of logical vulnerabilities of the system. Automation is
enabled to determine that the application is completely assessed from the perspective of
security loopholes. Several vulnerabilities, for example, CSRF (Cross-Site Request Forgery)
and source code logical errors, require skilful certified security experts to identify and
exploit security loopholes.

We concluded for future work to mature web vulnerability scanners for the minimiza-
tion of false-positive detection rate. False-positive vulnerabilities mostly appear at a high
rate by using automated tools that may result in improper security evaluation of the target
websites. Moreover, the automation process cannot determine that an application is com-
pletely tested from all types of security loopholes. Therefore, these vulnerability scanners
should have a proper mechanism for understanding the limitation of the application to
determine security concerns. Further, we know that automated tools are only as reliable as
their updates. Not timely updates of tools may result in not finding the latest thread and
vulnerabilities of websites. Therefore, all tools must ensure their regular update to detect
Zero-day and latest vulnerabilities. One other aspect we see is that remediation of the tool
should be in more detail. Remediation of found vulnerability should include technical
details and codes for patching that vulnerability. It will assist the Penetration tester much
more if patching of vulnerabilities is a concern. Every tool cannot detect all vulnerabilities
present in a web application; therefore, there is a need for mutual compliance to detect
vulnerabilities detected by other tools.

7. Conclusions

The assessment of web applications contains many actions that aim to increase the over-
all security and robustness against different cyber-attacks. Developers and pen-testers use
different tools to scan web applications and detect every possible vulnerability dynamically.
In this paper, eleven web application assessment tools are surveyed and evaluated with dif-
ferent capabilities by intentionally scanning web applications such as DVWA. The selected
web application assessment tools were the top listed scanners in 2019. The web application
scanning tools are evaluated using measures such as detection rate accuracy, precision,
capability to detect different vulnerabilities, and their severity level. According to some
research papers and our assessment, OWASP-ZAP has a higher vulnerability detection
rate in the open-source tools category; however, others say Acunetix and NetSparker have
fewer false-positive rates, i.e., they have a better vulnerability identification capability in
the proprietary tools category. Moreover, this survey provides compared results of different
detected vulnerabilities. A comparative analysis will be performed by developing plugin
scripts and algorithms for open-source web assessment tools. This approach will help
to increase crawling coverage with better authentication features and helps to decrease
false positives.

In the future, other web application assessment tools can also be compared with
these tools for a better false positive detection rate. Some of these tools can be customized
in terms of their features and functions to detect web application vulnerabilities better.
Open-source tools such as Nikto and Arachni use scripts and plugins for vulnerability
detection. Therefore, more plugins and scripts are developed to detect more significant
vulnerabilities. All tools cannot generate the same results, and if one tool can detect any
potential vulnerability that others cannot detect, it can be customized and developed in
such a way that it can detect the same kind of vulnerability.

Appl. Sci. 2022, 12, 4077 21 of 23

Author Contributions: Conceptualization, J.S.; methodology, J.S.; writing—original draft preparation,
J.S., M.K.H. and I.T.J.; writing—review and editing, I.T.J., K.N.Q., M.A. and N.C.; funding acquisition,
N.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ivanov, D.; Kalinin, M.; Krundyshev, V.; Orel, E. Automatic security management of smart infrastructures using attack graph

and risk analysis. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4), London, UK, 27–28 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 295–300.

2. Jyothi, P.D.; Lakshmy, K. Vuln-Check: A Static Analyzer Framework for Security Parameters in Web. In Soft Computing and Signal
Processing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 233–247.

3. Bhorkar, G. Security Analysis of an Operations Support System. 2017. Available online: https://aaltodoc.aalto.fi/handle/123456
789/29252 (accessed on 12 April 2022).

4. Seng, L.K.; Ithnin, N.; Said, S.Z.M. The approaches to quantify web application security scanners quality: A review. Int. J. Adv.
Comput. Res. 2018, 8, 285–312. [CrossRef]

5. Holik, F.; Horalek, J.; Marik, O.; Neradova, S.; Zitta, S. Effective penetration testing with Metasploit framework and methodologies.
In Proceedings of the 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest,
Hungary, 19–21 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 237–242.

6. Stasinopoulos, A.; Ntantogian, C.; Xenakis, C. Commix: Detecting and Exploiting Command Injection Flaws; White Paper; Department
of Digital Systems, University of Piraeus: Piraeus, Greece, 2015.

7. Grossman, J. Whitehat website security statistics report. Retrieved March 2007, 8, 2010.
8. Symantec. Welcome to Integrated Cyber Defense. Available online: https://docs.broadcom.com/docs/integrated-cyber-defense-

reference-guide (accessed on 12 April 2022).
9. Qasaimeh, M.; Ala’a, S.; Khairallah, T. Black box evaluation of web application scanners: Standards mapping approach. J. Theor.

Appl. Inf. Technol. 2018, 96, 4584–4596.
10. Babovic, Z.B.; Protic, J.; Milutinovic, V. Web Performance Evaluation for Internet of Things Applications. IEEE Access 2016,

4, 6974–6992. [CrossRef]
11. Nidhra, S.; Dondeti, J. Black box and white box testing techniques—A literature review. Int. J. Embed. Syst. Appl. (IJESA) 2012,

2, 29–50. [CrossRef]
12. OWASP. Welcome to the OWASP Top 10—2021. 2021. Available online: https://owasp.org/Top10/ (accessed on 12 April 2022).
13. OWASP. OWASP Foundation. Available online: https://owasp.org/ (accessed on 12 April 2022).
14. Araújo, R.; Pinto, A.; Pinto, P. A Performance Assessment of Free-to-Use Vulnerability Scanners-Revisited. In Proceedings of

the IFIP International Conference on ICT Systems Security and Privacy Protection, Oslo, Norway, 22–24 June 2021; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 53–65.

15. Acunetiex. Acunetix Web Vulnerability Scanner. 2019. Available online: https://www.acunetix.com/?ab=v1 (accessed on 12
April 2019).

16. Tenable. Nessus Vulnerability Scanner. 2011. Available online: https://www.tenable.com/products/nessus (accessed on 12
April 2022).

17. HP. HP WebInspect. 2011. Available online: http://www.hp.com/hpinfo/newsroom/press_kits/2011/risk2011/HP_
WebInspect_data_sheet.pdf (accessed on 12 April 2022).

18. IBM. IBM AppScan. 2013. Available online: https://www.ibm.com/support/pages/sites/default/files/inline-files/$$$FILE/
AppScanUserGuide_0.pdf (accessed on 12 April 2022).

19. Netsparker. Netsparker Web Application Security Solution. 2019. Available online: https://www.invicti.com/ (accessed on 24
June 2019).

20. DVWA. Damn Vulnerable Web Application. Available online: https://dvwa.co.uk/ (accessed on 24 June 2019).
21. Roy, S.; Sharmin, N.; Acosta, J.C.; Kiekintveld, C.; Laszka, A. Survey and Taxonomy of Adversarial Reconnaissance Techniques.

arXiv 2021, arXiv:2105.04749.
22. Doupé, A.; Cova, M.; Vigna, G. Why Johnny can’t pentest: An analysis of black-box web vulnerability scanners. In Proceedings

of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Bonn, Germany, 8–9 July
2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 111–131.

23. PortSwigger. Burp Suite Scanner. Available online: https://portswigger.net/burp/vulnerability-scanner (accessed on 12
April 2022).

24. Hu, L.; Chang, J.; Chen, Z.; Hou, B. Web application vulnerability detection method based on machine learning. In Journal of
Physics: Conference Series; IOP Publishing: Guiyang, China, 2021; Volume 1827, p. 012061.

25. Li, J. Vulnerabilities mapping based on OWASP-SANS: A survey for static application security testing (SAST). Ann. Emerg.
Technol. Comput. (AETiC) 2020, 4, 1–8. [CrossRef]

https://aaltodoc.aalto.fi/handle/123456789/29252
https://aaltodoc.aalto.fi/handle/123456789/29252
http://doi.org/10.19101/IJACR.2018.838012
https://docs.broadcom.com/docs/integrated-cyber-defense-reference-guide
https://docs.broadcom.com/docs/integrated-cyber-defense-reference-guide
http://dx.doi.org/10.1109/ACCESS.2016.2615181
http://dx.doi.org/10.5121/ijesa.2012.2204
https://owasp.org/Top10/
https://owasp.org/
https://www.acunetix.com/?ab=v1
https://www.tenable.com/products/nessus
http://www.hp.com/hpinfo/newsroom/press_kits/2011/risk2011/HP_WebInspect_data_sheet.pdf
http://www.hp.com/hpinfo/newsroom/press_kits/2011/risk2011/HP_WebInspect_data_sheet.pdf
https://www.ibm.com/support/pages/sites/default/files/inline-files/$$$FILE/AppScanUserGuide_0.pdf
https://www.ibm.com/support/pages/sites/default/files/inline-files/$$$FILE/AppScanUserGuide_0.pdf
https://www.invicti.com/
https://dvwa.co.uk/
https://portswigger.net/burp/vulnerability-scanner
http://dx.doi.org/10.33166/AETiC.2020.03.001

Appl. Sci. 2022, 12, 4077 22 of 23

26. Noman, M.; Iqbal, M.; Manzoor, A. A Survey on Detection and Prevention of Web Vulnerabilities. Int. J. Adv. Comput. Sci. Appl.
2020, 11, 521–540. [CrossRef]

27. Hamam, H.; Derhab, A. An OWASP top ten driven survey on web application protection methods. In Proceedings of the Risks
and Security of Internet and Systems: 15th International Conference, CRiSIS 2020, Paris, France, 4–6 November 2020; Revised
Selected Papers; Springer Nature: Berlin/Heidelberg, Germany, 2021; Volume 12528, p. 235.

28. Amankwah, R.; Chen, J.; Kudjo, P.K.; Towey, D. An empirical comparison of commercial and open-source web vulnerability
scanners. Softw. Pract. Exp. 2020, 50, 1842–1857. [CrossRef]

29. Aldeid. WackoPicko. Available online: https://github.com/adamdoupe/WackoPicko (accessed on 12 April 2022).
30. Bau, J.; Bursztein, E.; Gupta, D.; Mitchell, J. State of the art: Automated black-box web application vulnerability testing. In

Proceedings of the 2010 IEEE Symposium on Security and Privacy, Berleley/Oakland, CA, USA, 16–19 May 2010; IEEE: Piscataway,
NJ, USA, 2010; pp. 332–345.

31. Parvez, M.; Zavarsky, P.; Khoury, N. Analysis of effectiveness of black-box web application scanners in detection of stored SQL
injection and stored XSS vulnerabilities. In Proceedings of the 2015 10th International Conference for Internet Technology and
Secured Transactions (ICITST), London, UK, 14–16 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 186–191.

32. Suteva, N.; Zlatkovski, D.; Mileva, A. Evaluation and testing of several free/open source web vulnerability scanners 2013. In
Proceedings of the 10th Conference for Informatics and Information Technology (CIIT 2013), Bitola, Macedonia, 18–21 April 2013.

33. Idrissi, S.; Berbiche, N.; Guerouate, F.; Shibi, M. Performance evaluation of web application security scanners for prevention and
protection against vulnerabilities. Int. J. Appl. Eng. Res. 2017, 12, 11068–11076.

34. Momeni, E.; Cardie, C.; Diakopoulos, N. A survey on assessment and ranking methodologies for user-generated content on the
web. ACM Comput. Surv. (CSUR) 2016, 48, 41. [CrossRef]

35. Kumar, M.; Majithia, S.; Bhushan, S. An Efficient Model for Web Vulnerabilities Detection based on Probabilistic Classification.
Int. J. Technol. Comput. (IJTC). Techlive Solut. 2016, 50–58. Available online: https://www.semanticscholar.org/paper/An-
Efficient-Model-for-Web-Vulnerabilities-based-on-Kumar-Majithia/f09ddc0501358e234a5f8e9ebec359beb91db8f1 (accessed on 12
April 2022).

36. Raj, G.; Mahajan, M.; Singh, D. Security Testing for Monitoring Web Service using Cloud. In Proceedings of the 2018 International
Conference on Advances in Computing and Communication Engineering (ICACCE), Paris, France, 22–23 June 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 316–321.

37. Ahmed, M.; Adil, M.; Latif, S. Web application prototype: State-of-art survey evaluation. In Proceedings of the 2015 National
Software Engineering Conference (NSEC), Rawalpindi, Pakistan, 17 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 19–24.

38. Hasan, A.; Meva, D. Web Application Safety by Penetration Testing. Int. J. Adv. Stud. Sci. Res. 2018, 3. Available online:
https://www.academia.edu/38248493/Web_Application_Safety_by_Penetration_Testing (accessed on 12 April 2022).

39. Mohammed, R. Assessment of Web Scanner Tools. Int. J. Comput. Appl. 2016, 133, 1–4. [CrossRef]
40. InfoSec. Introduction to the Nikto Web Application Vulnerability Scanner. Available online: https://resources.infosecinstitute.

com/topic/introduction-nikto-web-application-vulnerability-scanner/ (accessed on 12 April 2022).
41. Curphey, M.; Arawo, R. Web application security assessment tools. IEEE Secur. Priv. 2006, 4, 32–41. [CrossRef]
42. Fang, Y.; Long, X.; Liu, L.; Huang, C. DarkHunter: A Fingerprint Recognition Model for Web Automated Scanners Based on

CNN. In Proceedings of the 2nd International Conference on Cryptography, Security and Privacy, Guiyang, China, 16–19 March
2018; ACM: New York, NY, USA, 2018; pp. 10–15.

43. Alsaleh, M.; Alomar, N.; Alshreef, M.; Alarifi, A.; Al-Salman, A. Performance-based comparative assessment of open source web
vulnerability scanners. Secur. Commun. Netw. 2017. Available online: https://www.hindawi.com/journals/scn/2017/6158107
(accessed on 12 April 2022).

44. Terry, M.; Oigiagbe, O.D. A comprehensive security assessment toolkit for healthcare systems. Colon. Acad. Alliance Undergrad.
Res. J. 2015, 4, 1–6.

45. Black, P.E.; Fong, E.; Okun, V.; Gaucher, R. Software assurance tools: Web application security scanner functional specification
version 1.0. Special Publication 2008. Available online: https://www.govinfo.gov/content/pkg/GOVPUB-C13-4be4dc7c71623
dd4fdc2be6167bc769e/pdf/GOVPUB-C13-4be4dc7c71623dd4fdc2be6167bc769e.pdf (accessed on 12 April 2022).

46. Introduction to AppScan Enterprise. Available online: https://www.ibm.com/docs/en/dsm?topic=guide-appscan-enterprise-
scanner-overview (accessed on 12 April 2019).

47. OWASP Zed Attack Proxy Project. Available online: https://owasp.org/www-project-zap/ (accessed on 12 April 2022).
48. Automated Audit Using WAPITI. 2016. Available online: https://owasp.org/www-community/Automated_Audit_using_

WAPITI (accessed on 12 April 2022).
49. Wapiti—The Black Box Vulnerability Scanner for Web Applications. Available online: https://wapiti-scanner.github.io (accessed

on 12 April 2019).
50. Mukhopadhyay, I.; Goswami, S.; Mandal, E. Web penetration testing using nessus and metasploit tool. IOSR J. Comput. Eng.

2014, 16, 126–129. [CrossRef]
51. Arachni, Web Application Security Scanner Framework. 2017. Available online: https://www.arachni-scanner.com/ (accessed

on 12 April 2019).
52. CIRT.net. Nikto2. 2019. Available online: https://cirt.net/ (accessed on 12 April 2022).
53. Geek, P. What is Burp Suite. 2019. Available online: https://portswigger.net/burp (accessed on 1 December 2019).

http://dx.doi.org/10.14569/IJACSA.2020.0110665
http://dx.doi.org/10.1002/spe.2870
https://github.com/adamdoupe/WackoPicko
http://dx.doi.org/10.1145/2811282
https://www.semanticscholar.org/paper/An-Efficient-Model-for-Web-Vulnerabilities-based-on-Kumar-Majithia/f09ddc0501358e234a5f8e9ebec359beb91db8f1
https://www.semanticscholar.org/paper/An-Efficient-Model-for-Web-Vulnerabilities-based-on-Kumar-Majithia/f09ddc0501358e234a5f8e9ebec359beb91db8f1
https://www.academia.edu/38248493/Web_Application_Safety_by_Penetration_Testing
http://dx.doi.org/10.5120/ijca2016907794
https://resources.infosecinstitute.com/topic/introduction-nikto-web-application-vulnerability-scanner/
https://resources.infosecinstitute.com/topic/introduction-nikto-web-application-vulnerability-scanner/
http://dx.doi.org/10.1109/MSP.2006.108
https://www.hindawi.com/journals/scn/2017/6158107
https://www.govinfo.gov/content/pkg/GOVPUB-C13-4be4dc7c71623dd4fdc2be6167bc769e/pdf/GOVPUB-C13-4be4dc7c71623dd4fdc2be6167bc769e.pdf
https://www.govinfo.gov/content/pkg/GOVPUB-C13-4be4dc7c71623dd4fdc2be6167bc769e/pdf/GOVPUB-C13-4be4dc7c71623dd4fdc2be6167bc769e.pdf
https://www.ibm.com/docs/en/dsm?topic=guide-appscan-enterprise-scanner-overview
https://www.ibm.com/docs/en/dsm?topic=guide-appscan-enterprise-scanner-overview
https://owasp.org/www-project-zap/
https://owasp.org/www-community/Automated_Audit_using_WAPITI
https://owasp.org/www-community/Automated_Audit_using_WAPITI
https://wapiti-scanner.github.io
http://dx.doi.org/10.9790/0661-1634126129
https://www.arachni-scanner.com/
https://cirt.net/
https://portswigger.net/burp

Appl. Sci. 2022, 12, 4077 23 of 23

54. Tools, P.T. w3af Package Description. 2019. Available online: http://docs.w3af.org/en/latest/install.html (accessed on 1
December 2019).

55. Catakoglu, O.; Balduzzi, M.; Balzarotti, D. Attacks landscape in the dark side of the web. In Proceedings of the Symposium on
Applied Computing, Marrakech, Morocco, 3–7 April 2017; ACM: New York, NY, USA, 2017; pp. 1739–1746.

56. Doupé, A.; Cavedon, L.; Kruegel, C.; Vigna, G. Enemy of the state: A state-aware black-box web vulnerability scanner. In
Proceedings of the 21st USENIX Security Symposium (USENIX Security 12), Bellevue, WA, USA, 8–10 August 2012; pp. 523–538.

57. Sutton, M.; Greene, A.; Amini, P. Fuzzing: Brute Force Vulnerability Discovery; Pearson Education: London, UK, 2007.
58. McAllister, S.; Kirda, E.; Kruegel, C. Leveraging user interactions for in-depth testing of web applications. In Proceedings of the

International Workshop on Recent Advances in Intrusion Detection, Cambridge, MA, USA, 15–17 September 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 191–210.

http://docs.w3af.org/en/latest/install.html

	Introduction
	Literature Review
	Security Assessment for Web Application Tools
	Analyzed Tools
	Reviewed Tools
	Evaluation of Web Application Scanner
	Evaluation Methodology and Criteria

	Comparison of Selected Web Assessment Tools
	Quality of Crawling
	Quality of Fuzzing
	Quality of Analyzing
	Comparative Analysis of Proprietary Tools
	Comparative Analysis of Open-Source Tools
	Precision of Scanner
	Accuracy of Scanner
	Recall

	Limitations

	Our Contributions
	Open Challenges/Future Directions
	Automated Scripts Generation
	Lower False Positives in Automation
	Insufficient Skills for Exploitation

	Conclusions
	References

