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Abstract: Automobile windshields are typically curved, creating an oblique angle of attack between
the wiper blade and the windshield. This attack angle means that the wiper may jump off the
windshield while wiping, causing a chattering noise and preventing the rainwater from being fully
wiped off the windshield. Thus, it is important to examine the dynamics of the wiper blade under
friction. In this study, the relationship between the attack angle and the jumping phenomenon
is clarified through dynamic analysis. We introduce an analytical two-link model corresponding
to an actual wiper blade that considers the exchange of dynamic and static friction between the
windshield and the blade. The dynamic friction is assumed to be negatively correlated with the
relative velocity, and the static friction is described by a set-valued function. As the motion transitions
from the stick state to the slip state, the equation to be solved changes. Hence, the initial condition
after a transition must agree with the final condition before the transition. Because the governing
equations are nonlinear and the solution is highly dependent on the initial condition, the transition
time and corresponding state variables are vital. The slack variable method is used to obtain the
exact transition time and initial conditions. The sign of the normal force acting on the blade from the
windshield determines the occurrence of the jump phenomenon. A larger attack angle makes the
jump phenomenon more likely. However, the jump phenomenon does not occur when the motion of
the blade reverses. Experimental observations support the theoretical description of the wiper blade.

Keywords: wiper blade; jump phenomenon; nonlinear dynamics; dynamic and static friction; slack
variable method

1. Introduction

To ensure excellent aerodynamic performance and aesthetics, automobile windshields
are generally constructed to have some integral curvature. Thus, an angle is generated
between the symmetry plane of the wiper blade and the normal vector of the windshield
surface. This is defined as the attack angle. The presence of the attack angle means that
the wiper blade may jump away from the windshield during the wiping process, which
causes a chattering noise and incomplete wiping. These issues negatively affect the driving
experience and pose a safety hazard. In developing the optimal wiper blade design that
does not suffer from the jumping phenomenon, it is essential to understand the dynamics
of the wiper blade in consideration of the attack angle.

Several studies have analyzed the jumping phenomenon and chatter noise of wiper
blades. Grenouillat et al. [1] conducted experiments to determine the range of pressure that
keeps the wiper blade in contact with the wiping surface and the attack angles at which
chatter noise occurs. A four-degree-of-freedom model including the displacement of the
holder in the transverse and longitudinal directions was then developed and analyzed.
By analyzing the stability of the model with respect to the pressure under different attack
angles, the conditions for the unstable motion of the wiper blade were derived. The
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theoretically obtained results were found to be in good agreement with the experimental
data. Awang et al. [2] built a finite element model of the whole wiper system, including
the arm and levers, to analyze the chatter noise and vibration generated by the wiper
blade. They used this model to perform complex eigenvalue analysis and achieved good
agreement with experimental modal analysis and vibration measurements. Furthermore,
they proposed several improved wiper profiles. Lancioni et al. [3] employed numerical
analysis to elucidate how the attack angle affects the wiper blade to produce the jumping
phenomenon. In addition to the slip state and stick state, the free flight state after jumping
was analyzed. They found that a chattering of about 100 Hz was produced, indicating that
this is a complex vibration that mixes the above three different states of motion. Their study
also considered different types of friction and the change of rotational stiffness created by
the contact between the lip and wiper head. However, the wiper blade was only modeled
with one link, and no experimental verification was performed. Okura et al. [4] developed
a theoretical model of a wiper with an arm and blade to analyze the dynamics of the wiper
system. The gradient of the coefficient of dynamic friction with respect to velocity was
considered in the model, as was the attack angle. The condition whereby the wiper blade
jumps away from the windshield was analyzed independently, and the equation of motion
was determined for various conditions. Although this study considered the contact between
the shoulder and the head, it was assumed that the angle of the link would not change
after the contact, and the stiffness was fixed. Unfortunately, the results obtained from the
theoretical analysis were not supported by experimental data. Zolfagharian et al. [5] used
a control method combining particle swarm optimization with an input-shaping controller
to suppress the wiper blade noise produced by the horizontal stick–slip motion and the
vertical jump phenomenon. Using this method, the timing of the input control signal
could be adjusted optimally. Experiments found that the noise was effectively suppressed
compared with the case without control. However, this study only provided a control
method; there was no detailed dynamic analysis to clarify the mechanism whereby various
behaviors were produced.

In studying the dynamics of wiper blades, the characterization of the friction be-
tween the wiper blade and the windshield is an important factor that cannot be ignored.
Koenen et al. [6] performed experiments to test how friction affects the wiper dynamics
under different motion conditions. They found that the coefficient of dynamic friction
decreases with increasing temperature in dry conditions. In wet conditions, the coefficient
of dynamic friction is large in the boundary regime with an almost-zero wiping velocity
and becomes small in the hydrodynamic regime corresponding to faster wiping velocities.
Between these two regimes, i.e., the mixed lubrication regime, the coefficient of dynamic
friction decreases as the velocity increases. This relationship follows the Stribeck curve [7].
When water evaporates from the wiping surface, the glass becomes tacky. Under such
conditions, the coefficient of dynamic friction is greater than in dry conditions. Nakano [8]
used a simple one-degree-of-freedom model to analyze the mechanism of stick–slip motion
under the influence of Coulomb friction. It was demonstrated that the difference between
dynamic friction and static friction is the fundamental cause of stick–slip motion. Nakano
concluded that the generation of this motion is related to the relative velocity, normal
load, stiffness, and damping of the system. Bódai et al. [9] tested how the normal load
and wiping velocity affect the coefficient of friction between the wiper and the glass. A
special glass cylinder and wiper device were built to allow the behavior of friction in the
entire wiper system to be studied. Furthermore, a mathematical model was developed
to interpret the experimental results qualitatively. In their experiments in wet conditions,
they found that the friction coefficient decreased with increasing normal load and wiping
velocity. Le Rouzic et al. [10] used a one-degree-of-freedom spring–mass damper system
under the influence of the Stribeck law to clarify the unstable velocity region in which the
equilibrium state becomes unstable through a Hopf bifurcation leading to a cycle solution,
i.e., self-excited oscillation. A series of experiments showed that the coefficient of dynamic
friction and the relative velocity follow Stribeck curves. The wiping noise was found to
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be caused by self-excited vibration as a result of friction. However, the analytical model
developed from the theory did not consist of a wiper head and links. Reddyhoff et al. [11]
analyzed the vibration mechanism of the wiper generated by friction. Their experiments
indicated that the wiper blade generates two frequency components of vibration during
sliding. Finite element analysis clarified that these two frequency components match the
eigenfrequencies of the first two bending modes of the blade. It was also shown that water
has the effect of adding mass to the system, thus affecting the vibration frequency. As
a result, they proposed several solutions for reducing the wiper noise. Unno et al. [12]
investigated the dynamics around the wiper reversal point through numerical analysis and
experiments. Dynamic and static friction were modeled separately, and different equations
were solved numerically for the slip and stick states. To ensure the correctness of the
numerical analysis of the nonlinear system, the exact transition times of the different states
were derived using the slack variable method. Further experiments were conducted to
verify the theoretical analysis. However, the effects of the attack angle and the nonlinear
rotation stiffness on the system dynamics were not considered in this study, despite the
attack angle being an important aspect in the wiper blade dynamics.

In the study of the tribology between rubber and glass, the change in the coefficient of
dynamic friction under wet conditions is particularly critical. Deleau et al. [13] investigated
the tribological behavior of the contact between the rubber blade and the windshield. On a
wet windshield, the rubber blade has the same actual contact area as on a dry windshield
under extremely slow velocity. However, as the sliding velocity increases, the dry area
gradually decreases, and a thin film of water can be formed. The lubrication effect of the
thin film of water in between the rubber blade and windshield leads to a reduction in
the coefficient of dynamic friction. Bódai et al. [14] clarified that the film arises because
the pressure of the fluid gradually increases as the sliding velocity increases. Due to
the presence of the film, the friction is mainly controlled by the fluid film friction. Thus,
the friction coefficient is significantly reduced. However, due to the low viscosity of water,
the reduction of the friction coefficient at low sliding velocity cannot be explained by the
hydrodynamic effect.

Several studies have taken the attack angle into account. Chevennement-Roux et al. [15]
developed a finite element model considering the attack angle to analyze the dynamics
of the wiper system. The stability of the system was analyzed for different values of the
normal pressure and attack angle. The validity of this model was then verified through a
series of experiments. Min et al. [16] built an experimental setup to simulate the waves on
the windshield. The waves have the effect of changing the contact angle of the wiper blade,
which corresponds to the so-called attack angle effect. As the liquid on the windshield is
removed by the wipers, the coefficient of dynamic friction becomes greater than 1. The
waviness changes the wiping velocity of the wiper blade and the coefficient of dynamic
friction, leading to noise.

In recent years, there have been many studies about wiper blades from different
perspectives. Mohamad et al. [17] considered many factors that influence the dynamic
behavior and characteristics of rubber wiper blade performance. These factors include the
different types of wipers, environment conditions such as humidity, temperature, and air
friction, as well as the stiffness increases of the used wiper blades. This study experimentally
illustrated how these factors affect the dynamic behavior and characteristics of rubber wiper
blade performance in great detail. Lee et al. [18] compared the wiper blade before use
with the wiper blade after more than one year of use by structural analysis. The changes
of the contact distribution and wiping angle were investigated to assess the mechanical
properties and shape changes of the wiper blade due to prolonged use. Three main factors
affecting the cross-section of the wiper blade were found. As a result, the design direction
of the cross-sectional shape of a wiper blade was predicted. Chen et al. [19] solved the
theoretical problem of the vibration of rubber wiper blades on the convex windshield. The
three-dimensional vibration problem from the elasticity perspective was considered. Two
classes of vibration frequencies corresponding to two types of deformation were found
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by the theoretical analysis. Then, two mathematical formulas for the vibration problem of
the rubber wiper blade on a convex windshield were obtained. The theoretical predictions
were in good agreement with the experimental results.

In the present study, all of the above-mentioned factors are considered in analyzing the
dynamics of the wiper blade. These factors include the attack angle, independent dynamic
and static friction models, the lubrication effect of the thin film of water, and the change in
rotation stiffness brought about by the shoulder–head contact. We first introduce a two-
degree-of-freedom analytical model for the wiper blade. Dynamic friction is considered to
be negatively related to the relative velocity of the motion, and static friction is considered
to be a set-valued function that keeps the system in equilibrium. Unlike the case where
the attack angle is not considered, the normal force cannot be obtained independently,
because the friction force affects the normal force. A simulation algorithm was established
based on the relevant equations. In the numerical simulations, we used different equations
of motion to solve the corresponding motion states. As the governing equations in each
state are nonlinear, the initial condition has a significant effect on the simulation result.
To ensure the accuracy of the result, we used the slack variable method to determine the
exact time at which the transition occurs between the different states. The purpose of this
study is to analyze the dynamics of the wiper blade in the range where the normal force is
positive, i.e., until the jump phenomenon occurs, and to detect the state of the wiper blade
at this point. Through numerical simulations with different values of the attack angle, it
is shown that a large attack angle makes the jumping phenomenon more likely to occur.
The configuration of the blades required to produce the jump is theoretically determined.
We also conduct experiments using a real wiper blade. The experimental results are in
qualitatively good agreement with those from our theoretical system.

2. Analytical Two-Link Model and Equations of Motion
2.1. Analytical Two-Link Model

As shown in Figure 1, a wiper blade consists of a head, neck, and lip. The head is
clamped by the holder so that the wiper blade can be driven by the holder. In general,
the thickness of the wiper blade below the head is not uniform. As in the figure, the thick-
ness of the lip gradually decreases from top to bottom below the narrow neck. The shoulder
is formed at the very top of the lip. The contact between the shoulder and the head leads to
an increase in rotation stiffness, and this effect is taken into account when we model the
wiper blade. The wiping surface corresponding to the windshield is angled with respect to
the horizontal surface. The angle generated between the center line of the wiper blade and
the normal vector of the wiping surface is defined as the attack angle.

Head

Neck

Lip

Shoulder

Holder

Wiping surface

Attack angle

(b)(a)

Figure 1. Cross-section of wiper system with attack angle. (a) Shoulder stays away from the head;
(b) shoulder contacts the head.
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The two-link model of the wiper blade is shown in Figure 2. The first and second links
(from top to bottom) correspond to the neck and lip, respectively. Their total length and the
distance from the top to the center of gravity are indicated in the figure. The displacement
of the head is limited in the horizontal direction by the holder, but it can move freely in the
vertical direction. The mass, rotational inertia, stiffness, and damping of each component
are also shown in the figure.

x

y
O

θ 

First link
I",m"

Second link
I#,m#

m 

c k 

k"
c"

k#
c#

l"

l#

l
g1

l
g2

Wiping surface

x

y
O

θ 

hd

θ

φ

(u,v)(u",v")

(u#,v#)

(u$,v$)

(a) (b)

Figure 2. Two-link model of wiper system. (a) Upright state; (b) buckled state.

The origin is set at the uppermost position of the entire model when both links are
pointing vertically downward and the head spring k0 is at its original length. The x- and
y-directions are perpendicular and parallel to the wiping surface, respectively; the x-axis
is inclined from the vertical direction at θ0. To apply the normal load to the wiper blade,
the spring k0 can be compressed by a length of hd. The distance from the origin to the
wiping surface is constant, so given the length hd, the position relationship of the entire
model can be determined by the angles of the two links, θ and ϕ. Thus, this is a two-degree-
of-freedom model in which the independent variables are the two link angles θ and ϕ. Our
purpose is to clarify the characteristic dynamics under the transition between the dynamic
and static friction of the wiper blade. We think that a simplified essential model with
the smallest possible number of parameters is important to find the essential parameters
governing the dynamics under the transition between dynamic and static frictions. The
calculation results for the simple analytical model develop the physical understanding of
the behavior of the wiper blade depending on the system parameters.

As mentioned above, the rotation stiffness of the first link increases when the shoulder
contacts the head. To take this effect into account, the restoring moment of the first link
Mk1 is given as follows:

Mk1 =


−k12(θ + θ0)− (k12 − k11)θc, θ + θ0 < −θc

−k11(θ + θ0), −θc ≤ θ + θ0 ≤ θc

−k12(θ + θ0) + (k12 − k11)θc, θ + θ0 > θc

. (1)

The parameter k11 represents the rotational stiffness of the first link without shoulder–
head contact, and k12 represents the rotational stiffness of the first link with shoulder–head
contact. The parameter θc represents the angle of the first link when contact between the
shoulder and the head occurs.
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The relationship between θ + θ0 and Mk1 is illustrated in Figure 3. When the absolute
value of the sum of the attack angle and the angle of the first link does not exceed θc,
i.e., the shoulder does not contact the head, the rotational stiffness of the first link is k11.
The restoring moment varies within a narrow range. However, when the absolute value of
the sum of the attack angle and the angle of the first link is greater than θc, i.e., the shoulder
contacts the head, the rotational stiffness of the first link becomes k12, which is much greater
than k11. In this condition, the restoring moment changes from the maximum value in the
non-contact case, and the rate of change with respect to the angle will increase.

O θ+θ!

θc

M
k1

.

θc

k
11

k
12

－

－

－

Figure 3. Restoring moment of the first link. k11 and k12 are the rotation stiffness of the shoulder with
or without head contact, respectively. θc is the angle at which the shoulder begins to contact the head.

2.2. Equations of Motion of the Model

From the model, we can obtain the following governing equations of motion (a detailed
derivation is given in Appendix A).

d2θ

dt2

[
−(m0 + m1)l1 sin θ

cos θ0
+ m1lg1 sin(θ + θ0) + m2l1 tan θ0 cos(θ + θ0)

]
+

d2 ϕ

dt2

[
−(m0 + m1 + m2)l2 sin ϕ

cos θ0
+ m2lg2 sin(ϕ + θ0)

]
=

(
dθ

dt

)2[ (m0 + m1)l1 cos θ

cos θ0
−m1lg1 cos(θ + θ0) + m2l1 tan θ0 sin(θ + θ0)

]
+

(
dϕ

dt

)2[ (m0 + m1 + m2)l2 cos ϕ

cos θ0
−m2lg2 cos(ϕ + θ0)

]
+ k0

[
l1

(
1− cos θ

cos θ0

)
+ l2

(
1− cos ϕ

cos θ0

)
− hd

]
+ c0

[(
dθ

dt

)
l1 sin θ

cos θ0
+

(
dϕ

dt

)
l2 sin ϕ

cos θ0

]
+ N cos θ0 + f sin θ0 − (m0 + m1 + m2)aω2 sin θ0 cos(ωt),

(2)
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d2θ

dt2

[
−m1l1lg1 sin θ

cos θ0
sin(θ + θ0) +

m2l2
1 cos θ

cos θ0
cos(θ + θ0) + m1l2

g1 + I1

]

+
d2 ϕ

dt2

[
m2l1lg1 cos(ϕ− θ)−

(
m1lg1 + m2l1

)
l2 sin ϕ sin(θ + θ0)

cos θ0

]

=

(
dθ

dt

)2
[(

m1lg1 + m2l1
)
l1 cos θ sin(θ + θ0)

cos θ0

]

+

(
dϕ

dt

)2
[(

m1lg1 + m2l1
)
l2 cos ϕ sin(θ + θ0)

cos θ0
+ m2l1lg2 sin(ϕ− θ)

]

+ Mk1 − c1

(
dθ

dt

)
+ k2(ϕ− θ) + c2

[(
dϕ

dt

)
−
(

dθ

dt

)]
+ Nl1 sin θ + f l1 cos θ −

(
m1lg1 + m2l1

)
aω2 cos θ cos(ωt),

(3)

d2θ

dt2

[
m2l1lg2 cos ϕ

cos θ0
cos(θ + θ0)

]
+

d2 ϕ

dt2

[−m2l2lg2 sin ϕ

cos θ0
sin(ϕ + θ0) + m2l2

g2 + I2

]
=

(
dθ

dt

)2[m2l1lg2 cos ϕ sin(θ + θ0)

cos θ0

]
+

(
dϕ

dt

)2[m2l2lg2 cos ϕ sin(ϕ + θ0)

cos θ0

]
− k2(ϕ− θ)− c2

[(
dϕ

dt

)
−
(

dθ

dt

)]
+ Nl2 sin ϕ + f l2 cos ϕ−m2lg2aω2 cos ϕ cos(ωt).

(4)

There are four unknown quantities in these three equations, namely the angles of the
two links θ and ϕ, the normal force N, and the friction force f . One additional equation is
required to obtain the solution. This is obtained next by considering the different states
of motion.

Unlike the case where the attack angle is not considered (θ0 = 0), it is impossible
to obtain an equation for the normal force independently. If the attack angle is zero,
Equation (2) can be deformed as follows:

N =
d2θ

dt2

[
−(m0 + m1)l1 sin θ + m1lg1 sin θ

]
+

d2 ϕ

dt2

[
−(m0 + m1 + m2)l2 sin ϕ + m2lg2 sin ϕ

]
−
(

dθ

dt

)2[
(m0 + m1)l1 cos θ −m1lg1 cos θ

]
−
(

dϕ

dt

)2[
(m0 + m1 + m2)l2 cos ϕ−m2lg2 cos ϕ

]
+ k0[l1(1− cos θ) + l2(1− cos ϕ)− hd] + c0

(
dθ

dt
l1 sin θ +

dϕ

dt
l2 sin ϕ

)
.

(5)

Equation (5) is an independent equation that determines the normal force N. The
friction force f can also be derived from the relationship with N. We can then obtain
the solution by substituting N and f into Equations (3) and (4). The normal force N has
no effect on the horizontal restraining force on the head, because its direction is always
perpendicular to this force. However, in this study (θ0 6= 0), the restraining force in the
horizontal direction of the head must be balanced in the x- and y-directions. This force
is simultaneously influenced by the normal force N and the friction force f in the x- and
y-directions. As a result, we obtain an equation that appears to show that the normal force
N is determined by the friction force f . We numerically calculate these equations in a
unique way.
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2.3. Friction Models in the Slip and Stick States

There are two states in which the motion of the wiper blade is governed by different
kinds of friction. The slip state corresponds to the case where the relative velocity between
the tip of the wiper blade and the windshield is nonzero. The friction acting on the tip
of the wiper blade is dynamic in this case. The wiper blade is in the stick state when the
relative velocity is continuously zero, in which case static friction acts on the blade.

The dynamic friction is uniquely determined by the relative velocity. As long as the
stick state is maintained, the absolute value of the static friction can be taken arbitrarily in
the range from zero to the maximum static friction. Hence, different models are required
for the slip and stick states.

The dynamic friction in the slip state is modeled as a function of the relative velocity.
The displacement along the y-axis of the tip of the wiper blade, which corresponds to v3 in
Figure 2, can be expressed as follows:

v3 = a[1− cos(ωt)]− (C− l1 cos θ − l2 cos ϕ) tan θ0 + l1 sin θ + l2 sin ϕ, (6)

where C is a constant representing the distance from the origin to the wiping surface. The
relative velocity can be expressed as follows:

v̇3 = aω sin(ωt) +
dθ

dt

[
l1 cos(θ + θ0)

cos θ0

]
+

dϕ

dt

[
l2 cos(ϕ + θ0)

cos θ0

]
. (7)

In the motion of the rubber in contact with the glass, the change in the coefficient of
dynamic friction under wet conditions due to the thin film of water in between the rubber
blade and glass is particularly critical. A thin film of water can be formed between the
wiper blade and glass because the pressure of the fluid gradually increases as the sliding
velocity increases [14]. The lubrication effect of the thin film of water leads to a reduction in
the coefficient of dynamic friction [13]. Thus, the relationship between the relative velocity
of the tip of the second link v̇3 and the coefficient of dynamic friction µd is assumed to be
as follows in the case v̇3 6= 0:

µd = sign(v̇3){A exp(−B|v̇3|) + E}, (8)

where the coefficient of dynamic friction is assumed to be equal to the coefficient of the
maximum static friction when v̇3 is zero and has a negative correlation with v̇3. The
parameters A and E define the coefficient of the maximum static friction µmax as follows:

µmax = A + E. (9)

The parameter B reflects the magnitude of the negative correlation. A, B, and E are all
positive constants, and sign (v̇3) is the signum function, expressed as

sign(v̇3) =

{
1, v̇3 > 0
−1, v̇3 < 0

. (10)

The dynamic friction fd is then expressed as

fd = −µdN. (11)

The normal force N is always positive, except when the jump phenomenon oc-
curs. Therefore, the dynamic friction fd always acts in the direction opposite the relative
velocity v̇3.
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In the stick state, the relative velocity remains at zero continuously and the equilibrium
should be maintained. The absolute value of the friction force should be less than the
maximum static friction and balance the tangential force of the wiper blade. Considering
the above characteristics, the static friction is defined as follows:

fs = Sign(v̇3)µmax N, (12)

where Sign(v̇3) is a set-valued function expressed as

Sign(v̇3) = [−1, 1], v̇3 = 0. (13)

By combining the two models for dynamic and static friction, the relationship between
the coefficient of friction and the relative velocity is as shown in Figure 4. Given the
relationship between the normal force N and the friction force f for the different states
of motion, the behavior of the two links can be analyzed. For the four unknown quanti-
ties, in addition to Equations (2)–(4), the other equations in the slip and stick states are
Equations (11) and (12), respectively.

O

μ

v�
.

Coefficient of dynamic friction
Coefficient of static friction

μ
max

μ
max

μ
max

:Coefficient of maximum static friction

－

Figure 4. Relationship between coefficient of friction and relative velocity of wiper blade and
wiping surface.

By introducing the representative time T =

√
I2+m2l2

g2
k2

and the representative length

L = a, the dimensionless forms of Equations (2)–(4) are expressed as follows:
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θ̈

[−m∗d l∗1 sin θ

cos θ0
+ m∗a l∗g1 sin(θ + θ0) + m∗b l∗1 tan θ0 cos(θ + θ0)

]
+ ϕ̈

[−l∗2 sin ϕ

cos θ0
+ m∗b l∗g2 sin(ϕ + θ0)

]
=θ̇2

[
m∗d l∗1 cos θ

cos θ0
−m∗a l∗g1 cos(θ + θ0) + m∗b l∗1 tan θ0 sin(θ + θ0)

]
+ ϕ̇2

[
l∗2 cos ϕ

cos θ0
−m∗b l∗g2 cos(ϕ + θ0)

]
+ k∗0

[
l∗1

(
1− cos θ

cos θ0

)
+ l∗2

(
1− cos ϕ

cos θ0

)
− h∗d

]
+ c∗0

(
θ̇l∗1 sin θ

cos θ0
+

ϕ̇l∗2 sin ϕ

cos θ0

)
+ N∗ cos θ0 + f ∗ sin θ0 −ω∗2 sin θ0 cos(ω∗t∗),

(14)

θ̈

[
−m∗a l∗1 l∗g1 sin θ

cos θ0
sin(θ + θ0) +

m∗b l∗21 cos θ

cos θ0
cos(θ + θ0) + m∗a l∗2g1 + I∗1

]

+ ϕ̈

[
m∗b l∗1 l∗g1 cos(ϕ− θ)−

m∗e l∗2 sin ϕ sin(θ + θ0)

cos θ0

]
=θ̇2

[
m∗e l∗1 cos θ sin(θ + θ0)

cos θ0

]
+ ϕ̇2

[
m∗e l∗2 cos ϕ sin(θ + θ0)

cos θ0
+ m∗b l∗1 l∗g2 sin(ϕ− θ)

]
+ M∗k1 − c∗1 θ̇ + k∗2(ϕ− θ) + c∗2

(
ϕ̇− θ̇

)
+ N∗l∗1 sin θ + f ∗l∗1 cos θ −m∗e ω∗2 cos θ cos(ω∗t∗),

(15)

θ̈

[
m∗b l∗1 l∗g2 cos ϕ

cos θ0
cos(θ + θ0)

]
+ ϕ̈

[
−m∗b l∗2 l∗g2 sin ϕ

cos θ0
sin(ϕ + θ0) + m∗b l∗2g2 + I∗2

]

=θ̇2

[
m∗b l∗1 l∗g2 cos ϕ sin(θ + θ0)

cos θ0

]
+ ϕ̇2

[
m∗b l∗2 l∗g2 cos ϕ sin(ϕ + θ0)

cos θ0

]
− k∗2(ϕ− θ)− c∗2

(
ϕ̇− θ̇

)
+ N∗l∗2 sin ϕ + f ∗l∗2 cos ϕ−m∗b l∗g2ω∗2 cos ϕ cos(ω∗t∗),

(16)

where the dots denote derivatives with respect to the dimensionless time t∗. The dimen-
sionless parameters are as follows:

ω∗ = ω

√
I2 + m2l2

g2

k2
, l∗1 =

l1
a

, l∗2 =
l2
a

, l∗g1
=

lg1

a
, l∗g2

=
lg2

a
, h∗d =

hd
a

,

m∗a =
m1

m0 + m1 + m2
, m∗b =

m2

m0 + m1 + m2
, m∗d =

m0 + m1

m0 + m1 + m2
,

m∗e =
m1lg1 + m2l1

(m0 + m1 + m2)a
, I∗1 =

I1

(m0 + m1 + m2)a2 , I∗2 =
I2

(m0 + m1 + m2)a2 ,

k∗0 =
k0

(
I2 + m2l2

g2

)
k2(m0 + m1 + m2)

, M∗k1
=

Mk1

(
I2 + m2l2

g2

)
k2a2(m0 + m1 + m2)

, k∗2 =
k2

(
I2 + m2l2

g2

)
k2a2(m0 + m1 + m2)

,

c∗0 =
c0

m0 + m1 + m2

√
I2 + m2l2

g2

k2
, c∗1 =

c1

a2(m0 + m1 + m2)

√
I2 + m2l2

g2

k2
,

c∗2 =
c2

a2(m0 + m1 + m2)

√
I2 + m2l2

g2

k2
.

(17)
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3. Numerical Calculation Method in Different States
3.1. Numerical Calculation Method in the Slip State

From hereon, the superscript ∗ representing dimensionless quantities is omitted for
simplicity. The unknown friction force f can be eliminated by substituting Equation (11)
into Equations (14)–(16). The equations for the unknown variables θ, ϕ, and N become

A1θ̈ + B1 ϕ̈ = C1 + NH, (18)

A2θ̈ + B2 ϕ̈ = C2 + Nl1G1, (19)

A3θ̈ + B3 ϕ̈ = C3 + Nl2G2, (20)

where A1, A2, A3, B1, B2, B3, C1, C2, C3, H, G1, and G2 are

A1 =
−mdl1 sin θ

cos θ0
+ malg1 sin(θ + θ0) + mbl1 tan θ0 cos(θ + θ0), (21)

A2 =
−mal1lg1 sin θ

cos θ0
sin(θ + θ0) +

mbl2
1 cos θ

cos θ0
cos(θ + θ0) + mal2

g1 + I1, (22)

A3 =
mbl1lg2 cos ϕ

cos θ0
cos(θ + θ0), (23)

B1 =
−l2 sin ϕ

cos θ0
+ mblg2 sin(ϕ + θ0), (24)

B2 = mbl1lg1 cos(ϕ− θ)− mel2 sin ϕ sin(θ + θ0)

cos θ0
, (25)

B3 =
−mbl2lg2 sin ϕ

cos θ0
sin(ϕ + θ0) + mbl2

g2 + I2, (26)

C1 =θ̇2
[

mdl1 cos θ

cos θ0
−malg1 cos(θ + θ0) + mbl1 tan θ0 sin(θ + θ0)

]
+ ϕ̇2

[
l2 cos ϕ

cos θ0
−mblg2 cos(ϕ + θ0)

]
+ c0

(
θ̇l1 sin θ

cos θ0
+

ϕ̇l2 sin ϕ

cos θ0

)
+ k0

[
l1

(
1− cos θ

cos θ0

)
+ l2

(
1− cos ϕ

cos θ0

)
− hd

]
−ω2 sin θ0 cos(ωt),

(27)

C2 =θ̇2
[

mel1 cos θ sin(θ + θ0)

cos θ0

]
+ ϕ̇2

[
mel2 cos ϕ sin(θ + θ0)

cos θ0
+ mbl1lg2 sin(ϕ− θ)

]
+ Mk1 − c1θ̇ + k2(ϕ− θ) + c2

(
ϕ̇− θ̇

)
−meω2 cos θ cos(ωt),

(28)

C3 =θ̇2
[

mbl1lg2 cos ϕ sin(θ + θ0)

cos θ0

]
+ ϕ̇2

[
mbl2lg2 cos ϕ sin(ϕ + θ0)

cos θ0

]
− k2(ϕ− θ)− c2

(
ϕ̇− θ̇

)
−mblg2ω2 cos ϕ cos(ωt),

(29)

H = cos θ0 − µd sin θ0, (30)

G1 = sin θ − µd cos θ, (31)

G2 = sin ϕ− µd cos ϕ. (32)

Using Equation (20), the normal force N is expressed in terms of θ and ϕ as

N =
A3θ̈ + B3 ϕ̈− C3

l2G2
. (33)
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Substituting Equation (33) into Equations (18) and (19) yields(
A1 −

A3H
l2G2

)
θ̈ +

(
B1 −

B3H
l2G2

)
ϕ̈ = C1 −

C3H
l2G2

, (34)

(
A2 −

l1 A3G1

l2G2

)
θ̈ +

(
B2 −

l1B3G1

l2G2

)
ϕ̈ = C2 −

l1C3G1

l2G2
. (35)

Equations (34) and (35) can also be written in matrix form as follows:[
a11 a12
a21 a22

][
θ̈
ϕ̈

]
=

[
P1
P2

]
, (36)

where a11, a12, a21, a2, P1, and P2 are

a11 = A1 −
A3H
l2G2

, (37)

a12 = B1 −
B3H
l2G2

, (38)

a21 = A2 −
l1 A3G1

l2G2
, (39)

a22 = B2 −
l1B3G1

l2G2
, (40)

P1 = C1 −
C3H
l2G2

, (41)

P2 = C2 −
l1C3G1

l2G2
. (42)

The differential equations for θ and ϕ can be rewritten as follows using Equation (36):

θ̈ =
a22P1 − a12P2

a11a22 − a12a21
, (43)

ϕ̈ =
−a21P1 + a11P2

a11a22 − a12a21
. (44)

The state equation can then be written as Equation (45), and the Runge-Kutta method
can be used for the numerical calculation of θ and ϕ.

d
dt


θ
θ̇
ϕ
ϕ̇

 =


θ̇
θ̈
ϕ̇
ϕ̈

. (45)

3.2. Numerical Calculation Method in the Stick State

Unlike the slip state, a definite relationship between the friction force f and the normal
force N cannot be established in the stick state. Static friction acts at the tip of the blade as a
constraining force to balance the external forces acting on the wiper blade and keep the tip
stationary. The holonomic constraint that the displacement of the tip cannot vary must be
satisfied. A constant α is introduced to indicate the stationary position of the tip. In the
stick state, the distance Φ between the tip and α should always be 0. This condition can be
expressed as follows:

Φ = v3 − α = 0, (46)
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where the y-coordinate position of the tip v3 is given by Equation (6). In the stick state, v3
remains constant at α. Equation (46) is an independent equation describing the relationship
between θ and ϕ. The dynamic behavior of the wiper blade in the stick state becomes resolv-
able by associating Equation (46) with Equations (14)–(16). However, because Equation (46)
is not a differential equation, a set of algebraic and differential equations (ADEs) consisting
of Equations (14)–(16) and (46) must be solved.

To solve this set of ADEs, Baumgarte’s stabilization method [20] is employed to modify
the ADEs into a set of differential equations. The second-order differential equation:

Φ̈ + β1Φ̇ + β2Φ = 0 (47)

is introduced instead of Equation (46). The parameters β1 and β2 are both constants. The
solution Φ of Equation (47) can be maintained close to 0 if β1 and β2 in Equation (47) have
suitable values. Equation (47) can be written in dimensionless form as follows:

θ̈

[
l1 cos(θ + θ0)

cos θ0

]
+ ϕ̈

[
l2 cos(ϕ + θ0)

cos θ0

]
=θ̇

[
l1 sin(θ + θ0)

cos θ0

]
+ ϕ̇

[
l2 sin(ϕ + θ0)

cos θ0

]
− β1Φ̇− β2Φ−ω2 cos(ωt).

(48)

Combining the differential equations and rewriting them in matrix form yields

B


θ̈
ϕ̈
N
f

 = Q, (49)

where the matrices B and Q are

B =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 0 0

, (50)

Q =


Q1
Q2
Q3
Q4

. (51)

The elements of B and Q are given in Appendix B.
The differential equations for θ and ϕ are then obtained from Equation (49) by multi-

plying the inverse of matrix B from the left side.

4. Behavior of Wiper Blade
4.1. Employment of the Slack Variable Method to Obtain the Transition Time and State Variables

There are two state transitions—the transition of the friction state from slip to stick or
from stick to slip and the transition of the stiffness of the first link.

Because of the nonlinearity of the governing equations, it is important to find the exact
transition time and the state variables of the wiper blade at this point. In nonlinear systems,
even small errors in the initial conditions may cause significant errors in the calculation
results. However, as shown in Figure 5, the transient time and conditions of the wiper
blade at the exact transition time te cannot be obtained from calculations using a discrete
time step size ∆t.
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tn-1

t

tn te tn+1

State A State B

State transition

Δt Δt

Figure 5. Exact state transition time and discrete calculation time. te: exact transition time; tn−1, tn,
tn+1: discrete calculation times.

We introduce the slack variable method [21] to detect the transition time and calculate
the conditions at that point accurately. First, the slack variable s is introduced. This variable
satisfies Equation (52).

s = R(t(s)). (52)

Differentiating Equation (52) with respect to s gives

ds
ds

= 1 =
dR
ds

=
dR
dt

dt
ds

. (53)

Deforming Equation (53) yields

dt
ds

=

(
dR
dt

)−1
. (54)

Regarding s as an independent variable and substituting Equation (54) into the state
Equation (45) yield

d
ds


t
θ
θ̇
ϕ
ϕ̇

 =


dt
ds

dθ
dt

dt
ds

dθ̇
dt

dt
ds

dϕ
dt

dt
ds

dϕ̇
dt

dt
ds

 =



(
dR
dt

)−1

θ̇
(

dR
dt

)−1

θ̈
(

dR
dt

)−1

ϕ̇
(

dR
dt

)−1

ϕ̈
(

dR
dt

)−1


. (55)

In the calculations of using the discrete time, we consider the case in which the state
transition occurs in the interval [tn, tn+1], as shown in Figure 6. The calculation then starts
again from tn using s as the independent variable and t as the dependent variable. The
exact transition time te and the conditions of the wiper blade at this time can be obtained
by integrating Equation (55) from s0 to se, where se is defined later.
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tn-1

t

tn te tn+1

State A State B

State transition

Δt Δt

s

ses 

Figure 6. Process of slack variable method.

4.2. Conditions of State Transitions
4.2.1. Transition from Slip to Stick State

When applying the slack variable method, it is essential to apply the appropriate R
function for different state transitions.

In the slip state, the relative velocity v̇3 is assumed to be nonzero. The state transition
from slip to stick occurs when v̇3 becomes zero. Hence, the R function for the state transition
from slip to stick is as follows:

R = v̇3 = ω sin(ωt) +
l1θ̇ cos(θ + θ0)

cos θ0
+

l2 ϕ̇ cos(ϕ + θ0)

cos θ0
. (56)

The derivative of t with respect to s is

dt
ds

=

(
dR
dt

)−1
= (v̈3)

−1

=

[
ω2 cos(ωt) +

l1θ̈ cos(θ + θ0)

cos θ0
+

l2 ϕ̈ cos(ϕ + θ0)

cos θ0
− l1θ̇2 sin(θ + θ0)

cos θ0
− l2 ϕ̇2 sin(ϕ + θ0)

cos θ0

]−1

.

(57)

The exact transition time is obtained by substituting Equation (57) into Equation (55)
and integrating the result with respect to s from s0 to se.

4.2.2. Transition from Stick to Slip State

In the calculations for the stick state, if the absolute value of the static friction force f
is greater than the maximum friction force µmax N, the force equilibrium of the wiper blade
will be destroyed. Hence, when the static friction force f reaches the maximum friction
force µmax N, the state transitions from stick to slip. The R function for the state transition
from stick to slip is as follows:

R = | f | − µmax N. (58)

The derivative of t with respect to s is

dt
ds

=

(
dR
dt

)−1
=

(
d| f |
dt
− µmax

dN
dt

)−1

, (59)

which can also be obtained by differentiating Equation (49). The exact transition time
is obtained by substituting Equation (59) into Equation (55) and integrating from s0 to
se, as described above. Here, s0 is the value of | f | − µmax N at tn and se is the value of
| f | − µmax N at te, which is zero.
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4.2.3. Transition of the Rotational Stiffness

In addition to the above two transitions, there is also a state transition in the rotational
stiffness, because the first link is piecewise linearly related to the shoulder contact, as shown
in Figure 3. The state transition occurs when the angle of the first link θ passes through θc
while in motion. The R function for this transition can be set as follows:

R = θ. (60)

The derivative of t with respect to s can be easily computed as

dt
ds

=

(
dR
dt

)−1
=
(
θ̇
)−1. (61)

The exact transition time is determined through the same process as for the stick–
slip transitions, except that the start and end points of the integration are different. The
calculation starts at s0, which is the angle θ at tn, and ends at se, which is the angle at which
shoulder contact occurs, θc.

4.3. Numerical Calculation Results

Following the method described above, a numerical calculation program was devel-
oped in Matlab®, and the differential equation solver ODE45 was used to obtain solutions.
The parameter values in the program were obtained from the actual wiper blade used
in subsequent experiments. The maximum speed of the head, which is determined by
a and ω, was found to be about 125 mm/s. The dynamic friction in the velocity region
from 0–125 mm/s exhibits strongly nonlinear characteristics. The initial condition for the
numerical calculation was the stick state. The calculations terminated at the end of one
round trip of the wiper blade. The parameters used in the program are listed in Table 1.

Table 1. Parameters and values used in the program.

Parameter Value Units

m0 1.01× 10−2 kg
m1 6.4× 10−5 kg
m2 1.16× 10−5 kg
I1 6.8× 10−11 kg m2

I2 2.8× 10−12 kg m2

l0 2× 10−2 m
l1 3.15× 10−3 m
l2 1.53× 10−3 m
lg1 1.37× 10−3 m
lg2 7.64× 10−4 m
k0 3.92× 101 kg/s2

k11 7.1× 10−4 kg m2/s2

k12 2.13× 10−2 kg m2/s2

k2 1.4× 10−3 kg m2/s2

c0 8.2× 10−2 kg m/s
c1 1.825× 10−7 kg m2/s
c2 5.451× 10−8 kg m2/s
a 5× 10−2 m
ω 2 × π/2.5 rad/s
hd 5× 10−3 m
A 0.4
B 5 s/m
E 0.2
β1 0.01
β2 0.01
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The numerical results in Figure 7 show the relationship between the attack angle and
the jump phenomenon. Figure 8 shows enlarged views of Figure 7c,f around the jump
phenomenon. Figure 7a,b show the changes in the angles θ and ϕ, while Figure 7d,e show
the change in the normal force N of the wiper blade over one reciprocal motion with attack
angles of 0 and 5 degrees, respectively. From the figures, it can be seen that the wiper blade
does not jump under these conditions. Figure 7c shows the changes in θ and ϕ with an
attack angle of 10 degrees. In this condition, the normal force N changes direction, i.e., the
jump phenomenon occurs, as shown in Figures 7f and 8b. Figures 7c and 8a confirm that
the two angles become 0 at the same time when the jump phenomenon occurs, which does
not happen in other conditions. Around the reversal point, both angles become 0 at the
same time, as shown in Figure 7d–f. However, the normal force N does not become 0,
and so, the jump phenomenon does not occur. Therefore, the occurrence of the stick–slip
motion is a necessary condition for producing the jump phenomenon.
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Figure 7. Behavior of wiper blade zero and nonzero attack angle. (a) Angular displacements of two
links with zero attack angle. (b) Angular displacements of two links with 5-degree attack angle.
(c) Angular displacements of two links with 10-degree attack angle. (d) Normal force of wiper blade
with zero attack angle. (e) Normal force of wiper blade with 5-degree attack angle. (f) Normal force
of wiper blade with 10-degree attack angle.
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Figure 8. Enlarged view of Figure 7c,f from 1.64–1.72 s. Panels (a) and (b) correspond to Figure 7c,f,
respectively.
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5. Experimental Results
5.1. Experimental Apparatus and Procedure

To verify the accuracy of the theoretical analysis, the experimental setup shown in
Figure 9 was created. There is a spring with a spring constant of 1.43 N/mm and an original
length of 0.2 m above the holder. A pressure force is supplied to the holder by rotating the
screw to change the length of the spring. This is equivalent to determining the value of
hd. The entire system can move liberally within the stroke of the linear bearing. The wiper
blade is clamped by the holder and driven by the actuator to perform a reciprocating motion
on the wiping surface. Before each experiment, water was sprayed on the wiping surface.

Wiper blade Wiping surface

Linear bearing

Holder

Spring

Screw Actuator

Stroke

Rotating stage

(a) (b)

Figure 9. Experimental apparatus (a) without attack angle and (b) with an 18-degree attack angle.

An enlarged view of the wiper blade is shown in Figure 10. There are three white dots
marked on the neck, the center of rotation of the second link, and the tip of the wiper blade.

Head

First link

Second link
Markers

Figure 10. Enlarged view of the wiper blade.

The motion of the wiper blade was filmed by a high-speed video camera (FASTCAM-
APX RS 250 K, Photron Inc., San Diego, CA, USA) with a frame rate of 3000 fps at a
1024 × 512 pixel resolution on a screen measuring 3.165 × 10−2 m × 1.583 × 10−2 m. Thus,
each pixel had dimensions of 3.091 × 10−5 m. We conducted two experiments for attack
angles of 0, 10, and 18 degrees. In the first experiment, the camera recorded the location at
which the jump phenomenon occurs during the wiping process. In the second experiment,
the filming position was located around the reversal point of the wiper blade.

5.2. Experimental Results

After filming, we used image analysis software (Dipp-Motion V, DITECT Corp.,
Toronto, ON, Canada) to track the markers on the wiper blade in advance. From the
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tracking results, we obtained the angular changes of the two links and the change in dis-
placement of the tip of the wiper blade in the direction perpendicular to the wiping surface.

Figure 11 shows the experimental results obtained during the wiping process; Figure 12
shows an enlarged view of Figure 11c,f near the occurrence of the jump phenomenon.
Figure 11d,e confirm that attack angles of 0 and 10 degrees do not produce the jump phe-
nomenon. When the attack angle is 18 degrees, however, the jump phenomenon occurs,
as shown in Figures 11f and 12b. We can also confirm from Figures 11c and 12a that the
angles θ and ϕ converge to 0 at the same time when the jump phenomenon occurs. In turn,
these two angles do not converge to 0 at the same time when no jump phenomenon occurs,
as shown in Figure 11a,b.
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Figure 11. Experimental results during wiping process with zero and nonzero attack angles.
(a) Angular displacements of two links with zero attack angle. (b) Angular displacements of two
links with 10-degree attack angle. (c) Angular displacements of two links with 18-degree attack angle.
(d) Variation of y-coordinate of the tip with zero attack angle. (e) Variation of y-coordinate of the tip
with 10-degree attack angle. (f) Variation of y-coordinate of the tip with 18-degree attack angle.
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Figure 12. Enlarged view of Figure 11c,f from 0.09–0.1 s. Panels (a) and (b) correspond to Figure 11c,f,
respectively.

The experiments also suggested that the stick–slip motion does not occur around
the reversal point. Thus, even if the angles become 0 at the same time, there is no jump
phenomenon. Figure 13 shows the experimental results obtained around the reversal point
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with different attack angles. Figure 13d–f confirm that the wiper blade does not jump
away from the wiping surface around the reversal point at the different attack angles.
This is despite the two angles becoming 0 at the same time in this process, as shown in
Figure 13a–c.
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Figure 13. Experimental results around the reversal point with zero and nonzero attack angles.
(a) Angular displacements of two links with zero attack angle. (b) Angular displacements of two
links with 10-degree attack angle. (c) Angular displacements of two links with 18-degree attack angle.
(d) Variation of y-coordinate of the tip with zero attack angle. (e) Variation of y-coordinate of the tip
with 10-degree attack angle. (f) Variation of y-coordinate of the tip with 18-degree attack angle.

There are quantitative discrepancies between the theoretical and experimental results.
For example, in the theoretical results, the angles of the two links vary periodically also
in the state where the jump phenomenon does not occur, as in Figure 7a,b. However,
the angles of the two links do not change significantly in the experiments in such a state,
as in Figure 11a,b. Besides, although it was theoretically and experimentally shown that
the jump phenomenon becomes more likely as the attack angle increases, the theoretical
and experimental values of the attack angle where the jump phenomenon starts to occur
are different quantitatively. In the theoretical result, a 10-degree attack angle produces the
jump-up phenomenon, as shown in Figure 7c,f. However, there is no jump phenomenon
with a 10-degree attack angle in the experimental result, as shown in Figure 11b,e. In
addition, in the theoretical results where the jump phenomenon occurs, the angles of the
two links are very close to 0 at about 1.66 s and 1.68 s before they become 0 at the same time,
as in Figure 8a. However, the angles of the two links are not so close to 0 at about 0.05 s,
0.06 s and 0.07 s before they become 0 at the same time in the experimental results shown
in Figure 11c. The actual wiper blade is an infinite-degree-of-freedom elastomer rather
than the low-degree-of-freedom two-link model used in the theoretical analysis. This is the
reason for the quantitative discrepancies between the theoretical and experimental results.

6. Conclusions

In this study, we analyzed the occurrence of the jump phenomenon of a wiper blade
depending on the attack angle. We introduced a two-degree-of-freedom model of a wiper
blade and considered effects such as dynamic and static friction, nonlinear rotation stiffness,
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and attack angle on the dynamic behavior of the wiper blade. In the slip state, we considered
the negative slope between the dynamic friction and the relative velocity. In the stick state,
we used Baumgarte’s stabilization method for the numerical calculations. As the numerical
simulation results of nonlinear systems are highly dependent on the initial conditions, we
also used the slack variable method to determine the exact time of each state transition and
the state of motion at that point. When considering the attack angle, the normal force N is
no longer independent, but is influenced by the friction force f . We established a simulation
program based on these considerations. The simulation results indicated that a larger attack
angle made the jump phenomenon more likely. The reason for the jump phenomenon can
be attributed to the angle of the two links becoming 0 at the same time during the stick–slip
motion of the wiper blade. In contrast, if the wiper blade is not in stick–slip motion, such
as during the process of reversal, the jumping phenomenon does not occur even if the two
angles become 0 at the same time. The results of our theoretical analysis were confirmed by
experiments conducted using an actual wiper blade. The theoretical analysis for the model
of wiper blade considering a constant attack angle can be proven to be effective. The attack
angle varies continuously on the practical windshield of the car. The present theoretical
approach can be easily applicable to such a practical situation.
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Nomenclature

m0 weight of the head
m1 weight of the first link
m2 weight of the second link
I1 moment of inertia of the first link about the center of gravity
I1 moment of inertia of the second link about the center of gravity
l0 original length of the head spring
l1 length of the first link
l2 length of the second link
lg1 distance from the top to the center of gravity of the first link
lg2 distance from the top to the center of gravity of the second link
k0 spring constant of the head
k11 rotation stiffness of the first link without shoulder contact
k12 rotation stiffness of the first link with shoulder contact
k2 rotation stiffness of the second link
c0 damping of the head
c1 damping of the first link
c2 damping of the second link
a amplitude of the oscillator
ω frequency of the oscillator
hd initial compression of the head spring
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θ angle of the first link
ϕ angle of the second link
v3 displacement along the y-axis of the tip of the wiper blade
θc angle of shoulder contact
µd coefficient of dynamic friction
µmax maximum static friction
α y-direction coordinate of the tip after transition from the slip state to the stick state
N normal force acting on the tip
f friction force acting on the tip

Appendix A. Process of Deriving the Equations of Motion

The model of the wiper blade can be divided into a free body diagram, as shown in
Figure A1.

FS+Fd

F0
Fv1

Fu1
Fv1

Fu1

Fu2

Fv2

Fv2

Fu2

N

f

Figure A1. Free body diagram of the model.

The equations of motion for each part are as follows:

m0ü = Fu1 − (Fs + Fd) cos θ0 + F0 sin θ0, (A1)

m0v̈ = Fv1 + (Fs + Fd) sin θ0 + F0 cos θ0, (A2)

m1ü1 = −Fu1 + Fu2 , (A3)

m1v̈1 = −Fv1 + Fv2 , (A4)

m2ü2 = −Fu2 − N, (A5)

m2v̈2 = −Fv2 + f . (A6)

Combining Equations (A1) and (A2) and eliminating the internal forces through
Equations (A3)–(A6), we obtain

(m0ü + m1ü1 + m2ü2) cos θ0 + (m0v̈ + m1v̈1 + m2v̈2) sin θ0 + N cos θ0 + f sin θ0 = Fs + Fd. (A7)
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The equations of rotation of the two links are as follows:

I1θ̈ =− Fu1 lg1 sin θ + Fv1 lg1 cos θ − Fu2

(
l1 − lg1

)
sin θ + Fv2

(
l1 − lg1

)
cos θ

+ Mk1 − c1θ̇ + k2(ϕ− θ + θ0) + c2
(

ϕ̇− θ̇
)
,

(A8)

I2 ϕ̈ =− Fu2 lg2 sin ϕ + Fv2 lg2 cos ϕ + N
(
l2 − lg2

)
sin ϕ + f

(
l2 − lg2

)
cos ϕ

− k2(ϕ− θ + θ0)− c2
(

ϕ̇− θ̇
)
.

(A9)

The distance from the origin to the wiping surface is fixed at a certain constant value.
This distance, named C, is defined as

C = (l0 + l1 + l2 − hd) cos θ0. (A10)

The variation of the length of the spring k0 can also be expressed as

∆l = l1

(
1− cos θ

cos θ0

)
+ l2

(
1− cos ϕ

cos θ0

)
− hd. (A11)

Thus, the restoring force Fs and damping force Fd can be expressed as

Fs = k0∆l = k0

[
l1

(
1− cos θ

cos θ0

)
+ l2

(
1− cos ϕ

cos θ0

)
− hd

]
, (A12)

Fd = c0∆̇l = c0

(
θ̇

l1 sin θ

cos θ0
+ ϕ̇

l2 sin ϕ

cos θ0

)
. (A13)

The wiper is driven by the reciprocating motion of the head. The reciprocating motion
is given as a simple harmonic oscillation of frequency ω and amplitude a, i.e.,

y = a(1− cos ωt). (A14)

The geometric relationships of each coordinate are as follows:

u = C− l1 cos θ − l2 cos ϕ, (A15)

v = y− (C− l1 cos θ − l2 cos ϕ) tan θ0, (A16)

u1 = C− l1 cos θ − l2 cos ϕ + lg1 cos θ, (A17)

v1 = y− (C− l1 cos θ − l2 cos ϕ) tan θ0 + lg1 sin θ, (A18)

u2 = C− l2 cos ϕ + lg2 cos ϕ, (A19)

v2 = y− (C− l1 cos θ − l2 cos ϕ) tan θ0 + l1 sin θ + lg2 sin ϕ. (A20)

Substituting Equations (A12), (A13), and (A15)–(A20) into Equations (A7)–(A9), we
obtain Equations (2)–(4).

Appendix B. Elements of Matrices B and Q

b11 =
−mdl1 sin θ

cos θ0
+ malg1 sin(θ + θ0) + mbl1 tan θ0 cos(θ + θ0), (A21)

b12 =
−l2 sin ϕ

cos θ0
+ mblg2 sin(ϕ + θ0), (A22)

b13 = − cos θ0, (A23)
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b14 = − sin θ0, (A24)

b21 =
−mal1lg1 sin θ

cos θ0
sin(θ + θ0) +

mbl2
1 cos θ

cos θ0
cos(θ + θ0) + mal∗2g1 + I1, (A25)

b22 = mbl1lg1 cos(ϕ− θ)− mel2 sin ϕ sin(θ + θ0)

cos θ0
, (A26)

b23 = −l1 sin θ, (A27)

b24 = −l1 cos θ, (A28)

b31 =
mbl1lg2 cos ϕ

cos θ0
cos(θ + θ0), (A29)

b32 =
−mbl2lg2 sin ϕ

cos θ0
sin(ϕ + θ0) + mbl2

g2 + I2, (A30)

b33 = −l2 sin ϕ, (A31)

b34 = −l2 cos ϕ, (A32)

b41 =
l1 cos(θ + θ0)

cos θ0
, (A33)

b42 =
l2 cos(ϕ + θ0)

cos θ0
, (A34)

Q1 =θ̇2
[

mdl1 cos θ

cos θ0
−malg1 cos(θ + θ0) + mbl1 tan θ0 sin(θ + θ0)

]
+ ϕ̇2

[
l2 cos ϕ

cos θ0
−mblg2 cos(ϕ + θ0)

]
+ k0

[
l1

(
1− cos θ

cos θ0

)
+ l2

(
1− cos ϕ

cos θ0

)
− hd

]
+ c0

(
θ̇l1 sin θ

cos θ0
+

ϕ̇l2 sin ϕ

cos θ0

)
−ω2 sin θ0 cos(ωt),

(A35)

Q2 =θ̇2
[

mel1 cos θ sin(θ + θ0)

cos θ0

]
+ ϕ̇2

[
mel2 cos ϕ sin(θ + θ0)

cos θ0
+ mbl1lg2 sin(ϕ− θ)

]
+ Mk1 − c1θ̇ + k2(ϕ− θ) + c2

(
ϕ̇− θ̇

)
−meω2 cos θ cos(ωt),

(A36)

Q3 =θ̇2
[

mbl1lg2 cos ϕ sin(θ + θ0)

cos θ0

]
+ ϕ̇2

[
mbl2lg2 cos ϕ sin(ϕ + θ0)

cos θ0

]
− k2(ϕ− θ)− c2

(
ϕ̇− θ̇

)
−mblg2ω2 cos ϕ cos(ωt),

(A37)

Q4 = θ̇

[
l1 sin(θ + θ0)

cos θ0

]
+ ϕ̇

[
l2 sin(ϕ + θ0)

cos θ0

]
− β1Φ̇− β2Φ−ω2 cos(ωt). (A38)

Appendix C. Experimental Identification of the Parameters Expressing the Stiffness
and Damping in the Analytical Model

The parameters related to the rotational stiffness and damping of the two links at
the two joints in the analytical model were experimentally identified by using the free
oscillations of the actual wiper blade.

First, we set the wiper blade upside down, as shown in Figure A2. We experimentally
obtained the free oscillations in the cases when the neck part is free and fixed. These two
cases correspond to the states where only the first link and only the second one can be
rotated, respectively.
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(a) (b)

Neck

Lip

Figure A2. Two fixation methods of the experimental setup. (a) The neck can be rotated. (b) The neck
is fixed.

The free vibrations were recorded using a high-speed video camera. Then, the markers
made on the wiper blade in advance were traced. From the tracking data, the angle
variation of the free vibrations in both cases can be obtained. In turn, the natural frequency
and damping ratio of the free vibrations can be derived. The inverted wiper blade can be
regarded as the link vibrating about a point as shown in Figure A3.

x

y k
c

lg

I, m

x

k
c

θ

O

(a) (b)

O
y

Figure A3. Model of inverted wiper blade. (a) Static inverted state. (b) Rotating state.

The mass of the link is m. The moment of inertia of this rigid body around the origin is
I. The distance from the center of gravity of this rigid body to the origin is lg. The rotation
stiffness and damping of this link is k and c, respectively. The equation of motion for this
system is

Iθ̈ + cθ̇ + kθ −mglg sin θ = 0. (A39)

This equation can be rewritten as

θ̈ + 2ζωn θ̇ + ωn
2θ = 0, (A40)

where ζ and ωn are, respectively,

ζ =
c

2
√

I
(
k−mglg

) , (A41)
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ωn =

√
k−mglg

I
. (A42)

When ζ < 1, the solution of Equation (A40) is

θ = Ae−ζωnt cos(ωdt + ϕ), (A43)

where ωd = ωn
√

1− ζ2. A and ϕ in Equation (A43) are determined by the initial condition.
The solution corresponds to the time history of the experimentally obtained free oscillation.
Since the experimentally obtained damping ratio is about 0.1, the frequency of damped free
vibration ωd is almost the same as the natural frequency ωn. Regarding the experimentally
obtained frequency as fn, the following equation can be obtained:

ωn = 2π fn =

√
k−mglg

I
. (A44)

The rotation stiffness k can be derived from Equation (A44).

k = (2π fn)
2 I + mglg. (A45)

Substituting Equation (A44) into Equation (A41) yields

ζ =
c

2
√

I
(
k−mglg

) =
c

4π fn I
. (A46)

In turn, the damping c can be derived as

c = 4π fn Iζ. (A47)
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