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Abstract: To use machine vision technology in visual quality control of cereal seeds, sufficient
knowledge is necessary. In this work, the capability of machine visual systems, equipped with
industrial digital cameras for the identification and classification of seven-grain groups in wheat seed
samples, was studied. Two statistical models and three support vector machines were employed
in this study. Through image processing of 21,000 single grains, the shape, colour, and textural
features of each grain were determined. Ninety-one features were ranked through the ReliefF method.
The shape features were the most prominent, followed by the textural and colour features. Among
the five models tested, the highest classification accuracy was obtained using quadratic support
vector machine (QSVM) and the first 35 features. In the test run of this model with independent
data, the classification accuracy for sound white wheat, small white wheat, broken white wheat,
shrunken white wheat, red wheat, barley and rye were, respectively, 98.7, 98, 99.3, 90.7, 99, 100, and
97.3%, with an overall average accuracy of 97.6%. In the context of this study, the machine vision
system—comprising an industrial digital camera and quadratic support vector machine or non-linear
discriminate analysis method—was identified as a valuable system in the investigation of the visual
qualities of wheat seeds.

Keywords: cereal classification; wheat certification; image processing; support vector machine; ReliefF

1. Introduction

Seed quality determines the production rate, price, and quality of the final agricultural
product. To produce high-quality wheat grains without any alien kernel, a strict evaluation
of wheat seeds is necessary before packaging. Currently, the main portion of the wheat
seeds is processed in cereal winnowing factories. Quality control experts take samples
from the seeds produced after winnowing and the seed is manually certified along with
the plant in seed laboratories of different research centres in the provinces. A decision for
grading wheat is limited to the study of the visual qualities of seed samples by trained
individuals. Manual operations affect the evaluated results in accordance with the personal
experiences of the investigator. Different operational contexts, personal judgements, and
fatigue levels influence the results of quality decisions by inspectors and experts. Human
mistakes and mood fluctuations cause problems in quality control assessments of wheat
seeds. It is a difficult, time-consuming task, calling for experienced staff. In Iran, wheat
breeding researchers frequently encounter such problems while measuring and comparing
the visual qualities of wheat seeds manually. During winnowing, it is necessary to check
the output product to assess the operations of the cleaning unit.
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Thus, quantitative and objective methods for measuring cereal features are useful and
will be required in the future. Machine vision systems have been widely used in different
research areas and recent technological developments in computer sciences and image
processing have expanded the use of digital images. Recent studies have indicated that
image processing is one of the key elements in developing automatic evaluation systems
for crops. The results indicated that the digital image processing system is much more
accurate in comparison with the manual methods [1]. By employing this advanced tool,
one can attain standardization, integration, cost reduction, and improvement in quality
control while increasing accuracy and reducing time. Regarding the classification of cereals
and the alien grains, extensive studies have been conducted worldwide, and a limited
number of them were conducted in Iran. To present a machine vision system for quality
control of wheat seeds, it is required to conduct thorough and foundational research.

These studies have identified and classified wheat and barley grains variety through
image processing with an acceptable accuracy [2–6]. For a single-seed classification of
red wheat, durum wheat, barley, wild oat, and rye, using three groups of features (shape,
colour, and texture), a thorough study was conducted with a video camera [7]. The highest
accuracy in this research belonged to the model comprising three group features: shape,
colour, and texture. To identify damaged wheat grains, the images of grains while falling
were captured by a high-speed digital camera and subsequently processed. By using LDA
(linear discriminate analysis) and KNN (K-nearest neighbour) methods, an accuracy of
91–94% was obtained [8]. Some researchers reported that not only the cereal grains but also
the dockage in samples can be accurately classified by machine vision systems [9].Colour
and texture features are more helpful in combination than alone in grain classification [10].
One can attain the highest accuracy in classifying wheat and barley by considering three
features: maximum radius, green band mean, and grey-level co-occurrence matrix (GLCM)
at 90◦ [11]. Visual features of wheat based on digital image processing work very well in
identifying the germinated and musty wheat seeds [12].

A literature review shows that, in normal imaging, machine vision technology uses
grain feature differences such as shape, texture, and colour for the identification of product
verity and constituent elements. In past studies, different sizes of a wheat grain and
attributes of being shrunken or broken in conjunction with other grains have not been
studied simultaneously. In the classification, there are either two groups of sound and
impaired wheat seeds, or several groups of sound seeds. In addition, past studies have
used a digital camera, a video camera, or a scanner. To date, there are no reports of using an
industrial digital camera to classify cereals. The study of the production process of certified
wheat seeds has been the basis for selecting grain groups in this study. Barley grains, rye,
and foreign wheat cultivars are difficult to distinguish in the field due to their similarities in
appearance and the physical characteristics of these grains to the main seed wheat passing
through threshing machines and reaching the bagging stage. This includes broken, small,
and wrinkled grains. The main purpose of this study is to employ a machine vision system
based on an industrial digital camera for the classification of seven groups of qualified
wheat seed and foreign grains including sound white wheat, small white wheat, broken
white wheat, shrunken white wheat, red wheat, barley, and rye. The ranking of features,
application of support vector machine classification technique, and classical methods of
statistical discrimination are also examined.

2. Materials and Methods

The general process of the machine vision system constitutes a hardware section
for preparing the images and subsequently transferring them to a software section. The
software deciphered the features of kernels and modelled them for classification. The
workflow included preparation of samples, image capture, image processing, deciphering,
feature ranking, modelling, and finally comparison of the classifiers.
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2.1. Preparing Grain Samples

The Morvarid wheat variety was selected as the basic seed for white wheat and four-
grain groups, including sound white wheat, small white wheat, broken white wheat, and
shrunken white wheat, which were prepared from it. The other three groups were the
grains of red wheat (Zagros variety), barley, and rye. The barley samples were prepared
by mixing four local prevalent barley varieties (Bahman, Dasht, Khorram, and Makuyi).
The seven-grain groups were gathered from four seed-processing factories in different
regions of Ardabil province. From each constituent group, 100 samples were selected, each
containing 3000 grains of each variety; separated; and packaged. An image of the grain
groups is presented in Figure 1.
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Figure 1. (a) Sound white wheat, (b) small white wheat, (c) barley, (d) rye, (e) red wheat, (f) broken
white wheat, and (g) shrunken white wheat.

2.2. Imaging

An industrial digital camera (DFK72AUC02) with a CMOS sensor type was used for
imaging. Unlike the prevalent cameras and camcorders, the horizontal and vertical pixels
in this camera are equal, a value of 2.2 µm, with horizontal and vertical resolutions of
2592 and 1944, respectively. To prevent image distortion in imaging margins, a Japanese
telecentric lens (MP1614_mp2, focal length 16 mm, Type 2/3 model, Coputar Company)
was attached. The camera was installed at a distance of 30 cm from the panel on which
seeds were placed. Local calibration of the camera was performed using three coins with a
specific area. The relationship between the number of pixels and measurements of the real
sample was determined. Circular daylight fluorescent lamp [13] with a power of 22 watts
and a conical chamber were used for lighting. To standardize the light conditions, the
inner wall of the lighting chamber was painted white and then coated with magnesium
oxide [14]. Between the lens of the camera and the circular lamp, a metal wall was placed
to receive the reflected light from the grain samples. A photo resistor sensor controlled the
stability of the light intensity. The camera was connected to a portable computer via a USB
cable (shown in Figure 2). Owing to the high applicability and functionality of MATLAB,
all ofthe programs and algorithms of the camera connection, image processing, modelling,
and evaluation of classifying methods were analysed by MATLAB version 2015a. The
programs were run in Toshiba TECRA_A9 series portable computer. The computer was
equipped with an Intel dual core processor of 2.20 GHZ (Intel-R Core TM 2 Duo CPU),
1 GB RAM, and Windows XP sp3 operating system.
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Figure 2. System configuration: (1) computer, (2) illumination chamber, (3) industrial digital camera,
(4) sample board and rail drawer, (5) photo resistor sensor and display, (6) fluorescent lamp, and
(7) camera stand and table.

A black Steinbach cardboard (code 08) was used as the panel on which the grains were
to be placed. Cardboard stencils were prepared with 30 holes of exactly the size of wheat
grains. After putting each sample with 30 grains on the stencil over the black panel, the
stencil was removed. The separated grains were put in the rail drawer, and by moving the
drawer inside the lighting chamber, the grains were exposed to the camera’s field of view.
By running the graphical user interface program, the image of the sample was observed on
the monitor, and by pressing the record button, the image of the grain was saved in the
computer in RGB mode and five-megapixel resolution. In this way, 700 images (100 images
of each grain variety) were obtained. Each image was composed of 30 grains.

2.3. Image Processing

An integrated program was written to conduct the pre-process operations and to
decipher shape features and, by calling the functions of texture and colour features (sepa-
rately written), to calculate and save the collection of features for each grain. Algorithm
implantation was as follows: (1) importing the image, (2) cropping the image to the dimen-
sions of 2590 pixels length and 1990 pixels width, (3) conversion to greyscale, (4) binary
thresholding of pixels against background, (5) conversion to the binary image, (6) filling the
probable inner empty space of the grains, (7) noise removal, (8) grain labelling, (9) calcula-
tion of the shape features, (10) multiplication of obtained binary images the in the labelling
phase by the three-coloured layers of the original image and generating the noiseless colour
image, (11) rotation of the images of the grains to the horizontal axis, (12) calling the
colour computation function, (13) calling the texture computation function, and finally
(14) saving all of the features based on the class of each grain in a table. After imaging
with accurate and controlled lighting, the most important step in pre-processing was the
determination of the threshold value for conversion of the grey image to the binary. The
threshold must be implemented in such a way that the edge borders of grain varieties are
completely separated from the background. The result of this section influences all of the
calculations and, subsequently, the classifications. Three methods were used to determine
automatic threshold: Otsu threshold [15]; the proposed algorithm by Guevara; and the
image histogram threshold of Parker, which uses repetitive processes [11]. These three
methods were used for both individual groups and their combinations. Considering the
results obtained and the histogram of the images, the optimized threshold value of 0.25
was applied in the processing of all images. That way, there was no need to calculate the
value of threshold for each image separately.



Appl. Sci. 2022, 12, 4133 5 of 12

2.4. Calculating the Shape Features

The algorithm for morphological features was written in the main image pre-processing
program, which upon receiving the binary and labelled image, calculated the features sepa-
rately for each grain. By using the calibration coefficient, the length unit was converted
from pixels to millimetres and the features were converted accordingly. Calculations of
the features such as area (A), periphery (P), main axis length, smallest axis length, length,
width, rigidity, equivalent diameter and eccentricity was conducted by the regionprops
function in MATLAB tools. For calculating other features, the following functions were
employed in MATLAB:

Thinness Ratio (TR): It measured the roundness of the kernel.

TR =
P2

4πA
(1)

Aspect Ratio: Major Axis Length/Minor Axis Length.
Rectangular Aspect Ratio: Length/Width.
Area Ratio: (Length ×Width)/Area.
Maximum Radius (mm): It was the maximum distance between a pixel on the boundary
and the centre of the kernel.
Minimum Radius (mm): It was the minimum distance between a pixel on the boundary
and the centre of the kernel.
Radius Ratio: Maximum Radius/Minimum Radius. Mean Radius (µR): It was the mean of
all radii of the kernel region.
Standard Deviation of all Radii (σR): It was the standard deviation of the distances of all
pixels on the boundary from the centre of the kernel.
Haralick Ratio: µR/σR.
Fourier Descriptors: The one-dimensional distance function dk was calculated for all pixels
on the boundary of a kernel as follows:

dk =

[
(ik − cik)

2 +
(

jk − cjk

)2
]1/2

(2)

where
(ik,jk) = kth pixel coordinates on the boundary of the kernel;
(cik,cjk) = centroid of the kth kernel.

The magnitude of the Fourier descriptors was calculated as follows:

FDu =
[
Ru

2 + Iu
2
]1/2

(3)

For u = 0, 1, 2, . . . (N − 1). The real value of the descriptor was defined as follows:

Ru =
N−1

∑
k=0

dk· cos
[

2πku
N

]
(4)

Additionally, the imaginary value of the descriptor was defined as follows:

Iu =
N−1

∑
k=0

dk· sin
[

2πku
N

]
(5)

where
N = number of pixels on the boundary of the kernel.

The first seven Fourier descriptors (u = 0, 1, 2, 3, 4, 5 and 6) were used for analysis.
Calculating moments: Spatial moments are a set of invariant moments, insensitive

to transition, congruence, reflection, and rotation [11]. These moments are statistical
measurements of the object’s attributes. Seven standard invariant moments were calculated
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for the binary image of each grain using normalized central moments introduced by [15].
A total of 31 shape features was found for each grain.

2.5. Calculating Colour Features

The function defined for deciphering colour features received the colour image and,
after isolating three colours of red (R), green (G), and blue (B), started the calculations
as follows:

First, the values of HSI were calculated by the following equations [15].

I =
R + G + B

3
(6)

S = 1− 3Min(R, G, B)
I

(7)

H = cos−1


1
2 [(R−G) + (R− B)][

(R−G)2 + (R− B)(G− B)
]1/2

 (8)

where I is the colour intensity, S is saturation, and H is hue. The values of RGB were
normalized by dividing with the value of R + G + B. The value of HSI was in the range
from 0 to 1. Equation (8) generates the values of H at 0◦–180◦, 0 ≤ H ≤ 180. If (B/I) > (G/I),
then H will be greater than 180◦. In this situation, the value of H is calculated as (360 − H);
then the value of H is divided by 180 to maintain a range of 0–1. When R = G = B, the value
of S is zero, making it meaningless to define angle H, in which case H was also assumed to
be 0. When R, G, and B were zero, then I = 0 and both H and S were undefined. In such
situations, S and H were assumed to be 0 [16]. The number of pixels in each grain image
(area of the grain) is considered the frequency of single colours. The 3 parameters of mean,
variance, and standard deviation for six single colours (R, G, B, H, S, and I) were calculated,
and finally, 18 colour features were extracted for each grain image.

2.6. Calculating Texture Features

The specific function for deciphering texture features receives the horizontal colour im-
age in the four-square periphery of each grain and then calculates the texture features. The
aforementioned algorithm extracts three primary colours of red, green, and blue (R, G, B)
and their constituents {X = (R + G + B)/3}, {X1 = (3R + 2G + B)/6}, {X2 = (2R + 1G + 3B)/6}
and {X3 = (1R + 3G + 2B)/6}. In this way, the special colour bands or the constituents
in classification will be determined with better accuracy. To reduce calculation time, the
grey level intensity of the images was reduced from 256 to eight in all mentioned seven
bands. Then, the grey-level co-occurrence matrix (GLCM) was calculated independently.
By dividing GLCM of each colour band by all the elements of the matrix, the normalized
values were obtained. Six texture features were defined for each of the seven colour bands,
i.e., a total of 42-texture features were defined for each grain. These were extracted as
follows [15]:

Contrast =
K

∑
i=1

K

∑
j=1

(i− j)2pij (9)

Homogeneity =
K

∑
i=1

K

∑
j=1

pij

1 + |i− j| (10)

Correlation =
K

∑
i=1

K

∑
j=1

(i−mr)(j−mc)pij

σrσc
(11)

Energy =
K

∑
i=1

K

∑
j=1

(
pij

)2
(12)
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Entropy = −
K

∑
i=1

K

∑
j=1

pij log2 pij (13)

Variance = σr × σc (14)

where i and j are the rows and columns of the normalized co-occurrence matrix (pij); K is
the intensity of grey level images (K = 8); and mc and mr, and σr and σc are, respectively,
the means and standard deviations obtained by summing over the rows and columns of
the normalized co-occurrence matrices.

2.7. Ranking Features

The application of more features than the optimum not only decreases the accuracy of
classification but also impairs the classifying operation [9]. There are examples in which
independent but noisy features provided poor statistical information. Among different
methods for reducing features, the ReliefF algorithm works well for correlative and noisy
features, and it can calculate the correlation between features and the related groups [17].
Generally, we should select features with less noise and significant different values in each
group. To determine the importance of each feature and to select from 91 items, the ReliefF
algorithm in MATLAB was employed to conduct the ranking operations. This algorithm
first chooses a sample subset from the training samples collection. The user must define
the number of samples in this subset and place it as the input of the algorithm. By trial and
error, the suitable number of samples was determined to be 15. The algorithm chooses a
sample from this subset in random; then, for each feature of this sample, it finds the nearest
hit and the nearest miss based on the Euclidean metric. After determining the nearest hit
and the nearest miss, it updates the weights of the features. The bigger this value, the better
this feature works in separating samples of one class from others.

2.8. Preparing Classification Models

In most studies, statistical classifiers have acceptable accuracy in classifying different
groups of grains [1,11,13,18]. By using independent variables, these models create discrimi-
nate functions and through these functions, the classification and identification of groups
are implemented. Statistical classification algorithms with the application of linear and
quadratic statistical discriminate analysis were created in MATLAB, and by using them,
linear discriminate analysis (LDA) and quadratic discriminate analysis (QDA) were trained
for all the ranked features.

Another method of modelling is the classifiers of support vector machine (SVM). SVM
works based on the statistical theory of Vapnik [19]. Briefly put, SVM algorithm transcends
the training data by a non-linear mapping, and in this new dimension, it searches for a
hyperplane that separates the samples of one class from another. This is a new method
that has recently found wider uses in classification than other traditional methods such as
perceptron neural networks [20]. Reports of the application of this method for classifying
cereal grains have indicated good results [21–23]. By selecting three kernel functions (linear,
quadratic, and cubic polynomial), the three models linear support vector machine (LSVM),
quadratic support vector machine (QSVM), and cubic support vector machine (CSVM)
were created by a one-against-one coding [19]. These models were ranked by the tenth
to the last feature and were trained by an increase in five features per step. The model
of support vector machine was created by the Gaussian function, but because of its weak
performance, it is not presented here. In the training and determination of the accuracy
of all five models, the evaluation and training data division was conducted by the k-fold
cross-validation method. In this technique, each sample of the main data is placed in the
training collection equally as others and is selected only once for testing. By determining a
value for k, the collection of data is divided into k number of equal parts. One part is set
aside for testing and the other part (k − 1) is used for designing the model. This process
takes place for all k parts of the collection. The accuracy of the model is determined by
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calculating the mean of these k repetitions. Because of the large amount of data, the value
of k equalled five in this research.

3. Results

The first 40 features of the ranked 91 items are indicated in Table 1. The features are
ranked in descending order in accordance with their share of weight in the classification
model. The first 10 features are related to shape, among which the area ratio is the most
effective. The reason for this effectiveness is the differences ingrains in the edge and the
uniformity of shape features in almost all grain groups except broken wheat. Among the
first 35 top features, there are 16 shape features, 8 colour features, and 11 texture features.
The share of colour features is less than the shape and texture features (Table 1). The
eleventh and fifteenth to eighteenth features are average variances in the colours, and the
reason for this is the colour combination differences of grain. As the variance in colour
features increased in grain groups, their share in the top features decreased. The texture
difference of grain surfaces and their low correlation brought them a good share of the
top features. Among the effective features related to texture, single-colour entropy and
different colour combination had the greatest shares. The reason was the difference in the
texture of the grains surface and the randomness of colour intensity of the pixels in relation
to each other.

Table 1. Ranked features by the ReliefF algorithm, with only the first 40 features presented (Morpho-
logical (M), Color (C), and Texture (T)).

Ranking Feature Weight Ranking Feature Weight

1 Area Ratio (M) 0.096 21 Blue GLCM Entropy (T) 0.05
2 Area (M) 0.091 22 Haralik Ratio (M) 0.047
3 First invariant moment (M) 0.091 23 X2 GLCM Entropy (T) 0.045
4 Minor Axis (M) 0.088 24 X3 GLCM Entropy (T) 0.044
5 Mean Radius (M) 0.087 25 Sixth Fourier descriptor (M) 0.044
6 Major Axis (M) 0.083 26 Blue GLCM Correlation (T) 0.044
7 Radius Standard Deviation (M) 0.08 27 X GLCM Entropy (T) 0.044
8 Solidity (M) 0.08 28 Hue Mean (C) 0.044
9 Maximum Radius (M) 0.077 29 Green GLCM Entropy (T) 0.042
10 Perimeter (M) 0.075 30 Blue Mean (C) 0.042
11 Saturation Mean (C) 0.074 31 Sixth invariant moment (M) 0.042
12 Minimum Radius (M) 0.073 32 Red Standard Deviation (C) 0.042
13 First Fourier descriptor (M) 0.071 33 Green GLCM Contrast (T) 0.041
14 Third Fourier descriptor (M) 0.066 34 X GLCM Homogeneity (T) 0.04
15 Saturation Standard deviation (C) 0.064 35 Red GLCM Homogeneity (T) 0.04
16 Red Mean (C) 0.061 36 X1 GLCM Entropy (T) 0.04
17 Green Mean (C) 0.061 37 Red Varians (C) 0.04
18 Saturation Variance (C) 0.059 38 X1 GLCM Homogeneity (T) 0.04
19 Red GLCM Contrast (T) 0.055 39 X1GLCM Contrast (T) 0.04
20 Red GLCM Entropy (T) 0.053 40 Green GLCM homogeneity (T) 0.039

The five classification methods presented in the Materials and Methods section were
modelled in accordance with the 91 ranked features. The average of accuracy of classifiers
in relation to the number of ranked features is presented in Figure 3. When using the top
10 features for classification, the accuracy average was low and less than 85%. By increasing
the number of top features to 20, the accuracy average augmented up to 90% (91 to 94%) for
all models, and it remained stable up to 30 features. When the features were increased to
35, the accuracy improved to 97%. Then, in support vector machines, this value was stable;
in LDA, it had an insignificant increase; and in QDA, it decreased (Figure 3). The average
classification accuracy of training models based on the top 35 features for each method, in-
cluding linear support vector machine (LSVM), quantized support vector machine (QSVM),
cubic support vector machine (CSVM), linear discriminate analysis (LDA), and quadratic
discriminate analysis (QDA), were 96.8, 97.2, 96.9, 94.7, and 96%, respectively.



Appl. Sci. 2022, 12, 4133 9 of 12

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 12 
 

were increased to 35, the accuracy improved to 97%. Then, in support vector machines, 
this value was stable; in LDA, it had an insignificant increase; and in QDA, it decreased 
(Figure 3). The average classification accuracy of training models based on the top 35 
features for each method, including linear support vector machine (LSVM), quantized 
support vector machine (QSVM), cubic support vector machine (CSVM), linear 
discriminate analysis (LDA), and quadratic discriminate analysis (QDA), were 96.8, 97.2, 
96.9, 94.7, and 96%, respectively. 

 
Figure 3. Classification accuracy results obtained with respect to the number of ranked features 
employed using five classifiers (LDA, QDA, LSVM, QSVM, and CSVM). 

To predict seven-grain classes based on independent data, only the models created 
with 35 top features were employed. The results of the five selected models after the 
application of independent data are shown in Table 2. The least classification accuracy for 
seven-grain classes was 95%, observed in the linear discriminate analysis. The highest 
accuracy—97.6%—was observed in quantized support vector machine. The results of 
classification with independent data were not significantly different from those with 
training data, proving the interoperability of the models in predicting the class of new 
data. The classification accuracy of shrunken grains was the lowest in all models, and it 
was the factor for diminishing the accuracy in all models. Barley grains were classified 
with the highest accuracy in all models. In four of the models, they were classified with 
100% accuracy (Table 2). This is in line with the studies reporting the high 
distinguishability of barley grains from wheat [11]. 

Table 2. The results of classification produced by five models on test data using the first 35 features. 
The kernel classes are: (a) sound white wheat, (b) small white wheat, (c) barley, (d) rye, (e) red wheat, 
(f) broken white wheat, and (g) shrunken white wheat. 

Classification Models 
Kernel Classes Mean of 

Classifyication 
Accuracy 

a b c d e f g 

LDA 99.7 93.7 99.7 95.7 98.7 94.7 83 95 
QDA 98 98.3 100 98 98.3 97.7 86.3 96.7 
LSVM 99 98 100 98 98.7 98.3 90 97.4 
QSVM 98.7 98 100 97.3 99 99.3 90.7 97.6 
CSVM 99 97.7 100 98 99 99.3 87.7 97.2 

75

80

85

90

95

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

LDA

QDA

LSVM

QSVM

CSVM

M
ea

n
A

cc
ur

ac
y 

[%
]

Number of ranked features
Figure 3. Classification accuracy results obtained with respect to the number of ranked features
employed using five classifiers (LDA, QDA, LSVM, QSVM, and CSVM).

To predict seven-grain classes based on independent data, only the models created
with 35 top features were employed. The results of the five selected models after the
application of independent data are shown in Table 2. The least classification accuracy
for seven-grain classes was 95%, observed in the linear discriminate analysis. The high-
est accuracy—97.6%—was observed in quantized support vector machine. The results
of classification with independent data were not significantly different from those with
training data, proving the interoperability of the models in predicting the class of new data.
The classification accuracy of shrunken grains was the lowest in all models, and it was
the factor for diminishing the accuracy in all models. Barley grains were classified with
the highest accuracy in all models. In four of the models, they were classified with 100%
accuracy (Table 2). This is in line with the studies reporting the high distinguishability of
barley grains from wheat [11].

Table 2. The results of classification produced by five models on test data using the first 35 features.
The kernel classes are: (a) sound white wheat, (b) small white wheat, (c) barley, (d) rye, (e) red wheat,
(f) broken white wheat, and (g) shrunken white wheat.

Classification
Models

Kernel Classes Mean of
Classifyication

Accuracya b c d e f g

LDA 99.7 93.7 99.7 95.7 98.7 94.7 83 95
QDA 98 98.3 100 98 98.3 97.7 86.3 96.7
LSVM 99 98 100 98 98.7 98.3 90 97.4
QSVM 98.7 98 100 97.3 99 99.3 90.7 97.6
CSVM 99 97.7 100 98 99 99.3 87.7 97.2

The time required for training support vector machine models is much more than that
for statistical classification models. However, there was no significant difference in the
classifying speed of the created model in encountering independent data. Thus, by relying
on the importance of training time in relation to classification accuracy, one can choose
the suitable model. Here, the quantized support vector machine was selected as the best
model because of its highest accuracy. The interference matrix of this model in identifying
new grains is presented in Table 3. The grains of sound white wheat, sound white wheat,
broken white wheat, red wheat, barley, and rye had acceptable classification accuracies.



Appl. Sci. 2022, 12, 4133 10 of 12

Table 3. Confusion matrixes of the QSVM classifier using the first 35 features on test data. The grains
are (a) sound white wheat, (b) small white wheat, (c) barley, (d) rye, (e) red wheat, (f) broken white
wheat, and (g) shrunken white wheat.

Target Classes Test Samples
Output Classes

Classification Accuracy
a b c d e f g

a 300 296 2 0 0 1 0 1 98.7
b 300 0 294 0 0 0 0 6 98
c 300 0 0 300 0 0 0 0 100
d 300 0 0 3 292 3 0 2 97.3
e 300 1 1 0 1 297 0 0 99
f 300 0 0 0 0 0 298 2 99.3
g 300 3 13 0 5 2 5 272 90.7

4. Discussion and Conclusions

A continuous increase in the number of classification features reduces accuracy. This
fact was observed in the QDA model. Except for the first 35 features, the other features
were almost insignificant. Thus, by leaving the classification accuracy untouched, they
can be removed and one can only use the top 35 features of Table 1 in classifying seven-
grain groups (sound white wheat, sound white wheat, broken white wheat, shrunken
white wheat, red wheat, barley, and rye). An acceptable classification accuracy and the low
intrusion of sound white wheat and red wheat grains is a consequence of their differences in
colour and texture. Being uniform in colour and texture, barley grains were classified with
100% accuracy, while shrunken white wheat grains were classified with 90.7% accuracy. The
similarities in colour and shape of shrunken white wheat with other grains except barley
decreases classification accuracy in general. For example, 13 grains out of 300 shrunken
white wheat were wrongly classified as sound white wheat class. Venora et al. [1] reached
95% accuracy in classifying shrunken white wheat by analysing the image of the transmitted
light through the bulk of single-layer. It should be noted that the number of classes in
their study was fewer than in the present work. The average of classification accuracy
of this research is also lower than the work of Majumdar S. and D. S. Jayas [7]. They
studied only five groups of complete cereal grains and used a camcorder for imaging. For
this reason, they may have attained a higher accuracy. However, in comparison with the
study of Paliwal et al. [7], this work had a higher classification accuracy. Since they had
10 classification groups, the accuracy was quite low.

By taking note of the obtained acceptable accuracy, one can conclude that imaging with
the resolution of five mega pixels (1920 × 2560) is enough to evaluate the visual features of
wheat. The use of fluorescent lamps in a closed (controlled) environment may suffice as
a lighting system due to the stability of light intensity. The application of all the features,
however, might decrease the classification accuracy. The suitable area for classification
accuracy with lower number of features indicates the applicability of the ReliefF method
in ranking features; a comparison of different methods, especially genetics algorithms, is
highly recommended. Statistical classification models and support vector machines gave an
acceptable accuracy by employing only 35 features (16 shape features, 11 texture features,
and 8 colour features). The lowest classification accuracy in identifying seven groups of
grains with the use of independent data was observed in the linear discriminate analysis
(LDA) model. The quadratic support vector machine (QSVM) was proven to be of better
applicability in this study. Barley grains were identifiable with the highest accuracy due to
their shape differences. It can be concluded that the industrial digital camera and support
vector machine classification methods or statistical methods have enough potential for
classifying quality elements of wheat seed. It is possible to increase the identifiable groups
if system training with new groups was required.
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