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Featured Application: This paper proposes a new deep learning design to obtain accurate plots
of RS information. The innovative model incorporates embedding layers of small (representable)
sizes, variational layers to improve the latent space and to spread samples, and a Euclidean simi-
larity measure to place samples according to the intuitive human interpretation of distances.

Abstract: Visual representation of user and item relations is an important issue in recommender
systems. This is a big data task that helps to understand the underlying structure of the informa-
tion, and it can be used by company managers and technical staff. Current collaborative filtering
machine learning models are designed to improve prediction accuracy, not to provide suitable visual
representations of data. This paper proposes a deep learning model specifically designed to display
the existing relations among users, items, and both users and items. Making use of representative
datasets, we show that by setting small embedding sizes of users and items, the recommender
system accuracy remains nearly unchanged; it opens the door to the use of bidimensional and three-
dimensional representations of users and items. The proposed neural model incorporates variational
embedding stages to “unpack” (extend) embedding representations, which facilitates identifying
individual samples. It also replaces the join layers in current models with a Lambda Euclidean
layer that better catches the space representation of samples. The results show numerical and visual
improvements when the proposed model is used compared to the baselines. The proposed model
can be used to explain recommendations and to represent demographic features (gender, age, etc.)
of samples.

Keywords: embedding; collaborative filtering; variational method; deep learning; recommender
systems; recommendation explanations; data visual interpretation

1. Introduction

Recommender Systems (RS) [1] are machine learning-based personalization applica-
tions. They facilitate human/machine integration by providing accurate recommendations
of items to users; mainly, items are products or services recommended to collaborative
clients. Remarkable commercial companies that incorporate RS are Spotify, Netflix, Tri-
pAdvisor, and Amazon. RS can be classified according to their filtering strategy: demo-
graphic [2], content-based [3], context-aware [4], social [5], collaborative [6] and different
ensembles [7]. Of the mentioned filtering approaches, the Collaborative Filtering (CF) is
the most relevant since it returns the most accurate predictions and recommendations.
The first CF implementations made use of the memory-based K-Nearest Neighbors (KNN)
algorithm [8] due to its simplicity and because it conceptually fits with the recommendation
task. Nevertheless, the KNN algorithm has some drawbacks when applied to CF RS: it
is not accurate enough and it is not efficient, since successive executions are necessary to
make successive recommendations. For these reasons, the KNN approach was replaced
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by model-based methods, such as Matrix Factorization (MF) [9], non-Negative Matrix
Factorization (NMF) [10] and Bayesian NMF (BNMF) [11].

MF models generate hidden factors for both users and items. Hidden factors can
be considered as embedding representations. The rating prediction of each item to each
user is obtained by just making the dot product of both (user and item) embeddings. MF
models are not specifically designed to plot visual representations, but their embedding
values can be processed to provide recommendation explanations [12] and to draw relation-
ships [13]. Currently, MF models are being replaced by neural networks (NN) approaches,
and consequently, hidden factors are replaced by neural embedding layers. The most
relevant NN models in the CF area are DeepMF [14] and Neural Collaborative Filtering
(NCF) [15]. DeepMF makes a deep learning implementation of the MF model; thus, it
contains a user embedding layer, an item embedding layer, and a ‘Dot’ layer to join the
preceding embeddings. NCF replaces the DeepMF ‘Dot’ layer with an MLP and eventually
combines deep and shallow learning.

Embeddings are abstract, low-dimensional representations of information. There are
a large number of fields where embeddings are used to encode data structures; network
embeddings are largely applied to graphs [16], where they embed entities and relationships
in low-dimensional spaces [17]. Gene sequences have been predicted from embeddings [18],
and biomedical networks [19] have been evaluated as social graphs. Social communities
are detected in the embedding-based Silhouette [20], via clustering of network node em-
beddings. Image applications are also a recurrent target for embedding processing, such as
the person identification based on pose invariant embedding [21], image tag refinement
through deep collaborative embedding [22], and handcrafted image retrieval [23] using
supervised deep feature embedding. Natural language processing is also an area where
tokens must be coded through different types of embedding models. Beyond the most
known word2vec model, there are specific models, such as the convolution-deconvolution
fusion word embedding [24], which makes a fusion of context and task information. Finally,
fairness in RS is improved by means of an embedding-based combination of MF and deep
learning models [25].

In the CF area, embedding layers have been used to implement autoencoders, such as
the probabilistic autoencoder in [26] fed with the user-item data, the combination of stacked
convolutional autoencoders, and stacked denoising autoencoders [27] to extract knowledge
in RS. Context-aware information is coded using a deep learning autoencoder [28] that
predicts scores and extracts features. However, the usual embedding-based architecture in
the RS area exploits collaborative relationships, such as in [29] where they use embeddings
to code user-item bipartite graphs for recommendation and representation learning. Rela-
tionships are also managed by means of low-dimensional dense embeddings learned from
the sparse features in a wide and deep RS architecture [30]. A k-partite graph is used in [31]
to characterize several types of information in recommendation tasks, and embeddings
for different kinds of information are projected in the same latent space. A collaborative
user network embedding has been proposed for social RS, where the cold start problem
is addressed by combining MF and Bayesian personalized ranking [32]. A method to
automatically set embedding sizes in RS [33] is based on the use of a reinforcement learning
agent that adaptatively selects adequate sizes. Finally, internal embedding information is
combined in [34] to obtain prediction and recommendation reliabilities.

Using deep learning variational approaches, we obtain wider, more representative,
and more robust latent spaces and embedding representations. Neural autoencoders are,
in certain cases, reinforced with a variational stage, building Variational Auto-Encoder
(VAE) models. Mainly, VAEs are particularly applied to the image processing area, e.g.,
reconstructing images [35], creating super-resolution images by encoding low-resolution
images in a dense latent space vector [36], and reducing blurring by adding a conditional
sampling mechanism [37]. This paper proposes adding variational layers to the neural
model suggested to improve the latent space where the embedding samples are located. It
mimics the underlying VAE operative to obtain super-resolution images, reducing blurring,
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and handling low-resolution samples: using VAE, the latent space is enriched, and samples
are spread. Enriched embeddings are used in image processing to decode high-resolution
images, unblurred images, etc., whereas we propose the use of enriched embeddings to
improve the visual representation of RS information.

From the explained research, this paper proposes an innovative deep learning model
that incorporates two embedding layers: one for code users and the other for code items.
Both embeddings will have small sizes to make it possible to draw bi- or three-dimensional
graphs of user and item samples. The accuracy loss caused by the small embedding sizes
(two or three neurons each embedding) will be tested in the paper. The proposed model
also incorporates a variational stage, designed to spread the latent space where item and
user embeddings are represented. Both user and item embeddings will be followed by
their own Gaussian variational layers whose parameter values are learned in the whole
neural model. The expected results are accurate low-dimensional item and user graphs,
where samples are spread in a latent space area and not ‘compressed’ in a reduced space
region, making it easier to discriminate between adjacent samples. Finally, a ‘Lambda’ join
layer is added to the model to implement the Euclidean distance between the embeddings
of the items and the embeddings of the users. This layer replaces the ‘Dot’ product layer of
the traditional DeepMF model or the MLP stage of the NCF model. The Euclidean Lambda
layer’s purpose is to keep near to related user or item embeddings and to keep far from
nonrelated user or item embeddings, such as humans intuitively understand distances.

In short, this paper proposes a new deep learning design to obtain accurate plots of RS
information. The innovative model incorporates embedding layers of small (representable)
sizes, variational layers to improve the latent space and to spread samples, and a Euclidean
similarity measure to place samples according to the intuitive human interpretation of
distances. Experiments have been conducted using representative CF data sets to test
the proposed model. The rest of the paper has been structured as follows: In Section 2
the proposed model is explained, Section 3 shows the experiments’ design and results,
Section 4 the results are discussed. Finally, Section 5 contains the main conclusions of the
paper and future work.

2. Models and Methods

The current deep CF state of the art includes two remarkable neural models: DeepMF
(Figure 1a) and NCF (Figure 1b). As shown in Figure 1, both DeepMF (Figure 1a) and NCF
(Figure 1b) models provide two embedding layers: the first codes users and the second
codes items. These are the embeddings that this paper addresses. DeepMF (Figure 1a) uses
only a dot product to combine user and item factors, as well as the MF machine learning
method. It is simple and it provides accurate results; nevertheless, it does not catch the
nonlinear complex relations existing among users and items embedding. To solve the
drawback mentioned, the NCF model (Figure 1b) incorporates an MLP that non-linearly
combines factors of the user and the item, returning scalar regression values (predictions).
Previously, a concatenate layer joined the embedding values of the user and the item and
provided a single tensor flow to the MLP.
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The embedding layers of the existing CF models are not designed for visual repre-
sentations due to the following reasons: (1) they are vectors of excessive large sizes to be
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visualized, (2) their values tend to cluster in small representation areas, and (3) The neural
learning process does not consider visually understandable similarity measures (such as
the Euclidean distance). To tackle the aforementioned drawbacks, we will provide three
different contributions: (1) Testing the accuracy impact of reducing the embedding sizes
just to two or three dimensions, (2) Expanding the embedding values representation by
using the variational approach, and (3) Incorporating the Euclidean similarity measure in
the deep neural model.

Contribution 1: In the CF field, it is particularly useful to visually represent users and
items in such a way that clients, company managers, and technical staff can understand the
existing relations among users, items, and between both users and items. This leads us to
code users and items using only two or three dimensions. The key question here is: is it
affordable for the accuracy we will lose in the process? As we will show in the next section,
the answer is yes, tested datasets show little significant accuracy decrease.

Contribution 2: We borrow the variational method from the variational autoencoder
field; they expand the embedding representation of samples, making it possible to improve
clustering and classification, and to return a progressive morphing when needed. Figure 2
explains the variational approach, where each sample embedding (white circle) can be
probabilistically located (grey circles) nearby (green circle) to its nonvariational fixed
location (white circle). Variational methods are usually implemented by setting a Gaussian
distribution in each embedding dimension. The defined set of parameters of the Gaussian
distributions (blue and orange distributions) establishes the probabilistic area where the
samples lay out. Our neural model specifically learns both the mean and variance of each
Gaussian distribution.
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As explained, the variational approach expands the area where the sample embeddings
lay out. This is particularly adequate for our embedding representation goal since it will
make it easier to visually catch our attention on the existing sample relations. As an
example, in Figure 3 we show the variational result (embeddings) of the proposed model
applied to the MNIST dataset, where samples have been stochastically spread to make
the classification of the classes easier. Figure 3 left and right graphs show, respectively,
the obtained latent space and its cumulative normal distribution. The cumulative normal
distribution is frequently used to support generative tasks; in this case, it can be used to
generate fake embeddings, and then to obtain fake samples (MNIST numbers). In the CF
area, this opens the door to implementing augmentation data and to obtaining augmented
RS datasets.

Contribution 3: Traditional DeepMF and NCF models implement, respectively, a dot
layer and an MLP network (Figure 1). Both approaches (dot layer and MLP network) can
be considered as similarity functions, and none of them are designed to arrange embedding
representations in a visual disposition. Our proposed model replaces these functions with
a visually convenient similarity measure: the Euclidean distance. It will set the embedding
representation of samples in such a way that similar samples will be located at nearby
locations. It is expected that what is gained in understanding the RS representation is not
lost in the accuracy of the CF.
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By combining the three mentioned contributions, we have designed the deep neu-
ral models shown in Figure 4. The user model (orange) and the item model (blue) are
conceptually identical: their first stage “embedding layers” (bottom-left of Figure 4) is an
embedding layer that maps user or item IDs to coded values. It is expected that users with
similar behavior (similar casted votes) will be assigned similar embedding values. Same
for items; items similarly voted will be coded in an equivalent way. Please note that an
embedding size of two or three neurons is expected to adequately capture the diversity of
the existing sets of users and items in the recommender system. In this case, we will be
able to visually represent users and items by drawing graphs in two or three dimensions.
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The next stage of the proposed model: ‘variational parameter layers’, at the bottom
of Figure 4, is responsible for learning the most adequate values of the Gaussian distri-
butions that implement the variational behavior of our model (Figure 2). We split the
user embedding into two separated tensor flows, implemented through both the ‘mean’
layer and the ‘variance’ layer, providing us with the mean and variance of each Gaussian
distribution (two or three distributions, in our case). We also split the item embedding
into two separated tensor flows. The user mean and the user variance layers must be
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combined to obtain the user variational embedding (same for the item to obtain the item
variational embedding). To implement the Figure 2 operation a ‘Lambda’ layer is used; this
layer makes the variational sample generation. Each sample is stochastically generated
attending to the Gaussian distributions that the model has learned; in the Figure 2 example,
the generated sample has more probability to be spread through the orange Gaussian
distribution than the blue one, since the orange one has a higher variance.

Please note that the variational sample has the same vector size as the user (or item)
embedding, its ‘mean’ layer and its ‘variance’ layer. Finally, “Flatten” layers are added to
the model to reshape data to unidimensional users and item vectors (of size 2 or 3).

The parallel user and item flows (orange and blue ones) provide both the user varia-
tional vector and the item variational vector (“Flatten layers” stage in Figure 4). Tradition-
ally, they would be merged using a dot product or an MLP model (Figure 1). As explained,
instead, we will incorporate a ‘Lambda’ layer that implements the Euclidean similarity
measure (“Euclidean layer’ in the bottom right of Figure 4). It will force the main model
(the green one) to arrange variational user embeddings and variational item embeddings in
a joined spatial area susceptible to being visually represented and easily understandable to
humans. We use the regression model (green) to make training; once the model is trained,
we can easily predict user variational embeddings from user IDs (orange model), and
item variational embeddings from item IDs (blue model). It is important to stress that the
proposed model is not designed to improve prediction accuracy (green model). The model
is designed to obtain visually understandable representations of the users and the items
embeddings (orange and blue inner models).

To get a deeper understanding of the proposed model, Code 1 provides the Keras/Python
implementation of the model kernel.

Code 1. Keras/Python kernel of the proposed model.

def sampling(args):
z_mean, z_var = args
epsilon = K.random_normal(shape=(1, latent_dim), mean=0., stddev=1)
return z_mean + K.exp(z_var) * epsilon

def euclidean(args):
movie_v, user_v = args
return K.sqrt(K.sum(K.square(movie_v - user_v), axis=−1))

def variational_Euclidean(latent_dim):
user_input = Input(shape=[1])
user_embedding = Embedding(num_users + 1, latent_dim)(user_input)
user_embedding_mean = Dense(latent_dim) (user_embedding)
user_embedding_var = Dense(latent_dim) (user_embedding)
user_embedding_z = Lambda(sampling) ([user_embedding_mean, user_embedding_var])
user_vec = Flatten()(user_embedding_z)
movie_input = Input(shape=[1])
movie_embedding = Embedding(num_movies + 1, latent_dim)(movie_input)
movie_embedding_mean = Dense(latent_dim) (movie_embedding)
movie_embedding_var = Dense(latent_dim) (movie_embedding)
movie_embedding_z = Lambda(sampling) ([movie_embedding_mean,
movie_embedding_var], latent_dim)
movie_vec = Flatten()(movie_embedding_z)
similar = Lambda(euclidean)([movie_vec, user_vec])
var_eucl_pred = Model([user_input, movie_input], similar)
var_eucl_user = Model(user_input, user_vec)
var_eucl_item = Model(movie_input, movie_vec)
return var_eucl_pred, var_eucl_user, var_eucl_item
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3. Experiments and Results

To run the designed experiments, we have chosen a set of open and representative CF
databases. Table 1 shows the main parameter values of the selected datasets: MovieLens
100K [38], MovieLens1M [38], and a subset (Netflix*) of the Netflix database [39]. Please
note the high number of Netflix* users compared to the MovieLens datasets. The chosen
datasets have a similar structure, where their kernel is the CF information of ratings stored
in files containing tuples: <user_id, item_id, rating>. Basically, they differ from each other
in their sizes: number of users, items, and ratings. Additionally, the combination of the
previous values determines the sparsity of the CF data. Please note that MovieLens 100K
and MovieLens 1M not only differ in their number of ratings, but also in the number of
users and items, and consequently in their sparsity (Table 1). Since the MovieLens 1M
version is richer than the MovieLens 100K, its accuracy will be also better, as we will
see in Table 2.

Table 1. Values of the main parameters of the tested datasets.

Dataset #Users #Items #Ratings Scores Sparsity

Movielens 100K 943 1682 99,831 1 to 5 93.71
MovieLens 1M 6040 3706 911,031 1 to 5 95.94

Netflix* 23,012 1750 535,421 1 to 5 98.68

Table 2. Mean absolute error results using the proposed variational Euclidean method (embedding
sizes = 2, 3, 5, 10 and the comparative accuracy obtained by setting an embedding size 2 versus an
embedding size 10. The lower the MAE values, the better the result.

Dataset\Embedding Size
Mean Absolute Error (MAE) Achieved

Accuracy2 3 5 10

Movielens 100K 0.7355 0.7368 0.7297 0.7213 98.04%
MovieLens 1M 0.6927 0.6875 0.6839 0.6801 98.15%

Netflix* 0.7260 0.7250 0.7248 0.7243 99.76%

From the aforementioned contributions, we will provide three different experiments
to substantiate the proposed neural model: (1) CF quality impact by setting different
embedding sizes, (2) numerical improvement of the proposed model versus the DeepMF
baseline, (3) visual improvement of the proposed model versus the DeepMF baseline.

Experiment 1: This experiment tests the ‘Contribution 1′ assessment stated in the
preceding section. As explained in the preceding section, it is necessary to test the RS
accuracy when a bottleneck is set to the embedding layers. Since we need to visually
represent embedding samples, we use embedding sizes: 2 (two-dimensional representation)
or 3 (three-dimensional representation), whereas the usual implementation sizes range
from 5 to 10. Our first experiment tests the accuracy loss when small embedding sizes are
set. For each tested dataset (Table 1), we obtain the Mean Absolute Error (MAE) by setting
embedding sizes = {2, 3, 5, 10}. Table 2 shows the MAE results, as well as the achieved
accuracy percentage comparing the embedding sizes 2 and 10. As can be seen, very little
accuracy is lost setting visualizable embedding sizes (2 and 3) compared to the usual sizes
(5 to 10). Notably, only 2% of accuracy is lost in the worst-case scenario. The results in
Table 2 open the door to visually represent the sample embeddings of items and users,
knowing that the embedding values are meaningful to provide accurate CF predictions.

Experiment 2: This experiment numerically shows the improvement obtained by
combining the three contributions stated in the preceding section. Once we have validated
the adequacy of using visualizable embedding sizes, it is time to test the obtained improve-
ment using the proposed approach. We will test visual improvement using the standard
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intra-clustering quality measure equation that processes the distance of all the samples to
their centroid. That is:

intra-clustering =
1
|S| ∑

x∈S
d(x, v) (1)

where:

d(x, v) =
√

∑
i∈{1,...,n}

(xi − vi)
2 (2)

S is the set of samples, v is the S centroid and ‘n’ is the dimension size. Please note
that whereas in the clustering field we look for low intra-clustering values, our embedding
visualization aim is to spread embedding representations and to avoid them too being
packed together. In this way, we will be able to better catch relations among samples. So, the
higher our ‘intra-clustering’ quality measure, the better the results. In the CF embedding
visualization field, we could call this quality measure an ‘unpacking measure’. Table 3
shows the comparative results that test the non-variational dot product DeepMF baseline
versus the proposed variational Euclidean model. Table 3 provides quality results for both
user embeddings and item embeddings. As can be seen, representative improvements are
obtained when the proposed model is used.

Table 3. Unpacking quality measure results (intra-clustering results from the quality measure defined
in the ‘Experiment 2′) for both user and item embeddings. The higher the quality value, the better the
result. “proposed” and “baselines” are absolute values, whereas “improv.” shows the improvement
percentage of the proposed model versus the baseline one.

Embedding
Dataset/Model

Users Items

Proposed Baseline Improv. Proposed Baseline Improv.

Movielens 100K 0.8317 0.4789 73.66% 0.8943 0.6346 40.92%
MovieLens 1M 0.8289 0.5552 49.29% 0.9762 0.7372 32.42%

Netflix* 0.8790 0.4572 92.25% 0.9160 0.8569 6.90%

Experiment 3: This experiment visually shows the improvement obtained by com-
bining the three contributions stated in the preceding section. The visual results of the
proposed variational Euclidean model have been compared to the proposed non-variational
dot product baseline (DeepMF). Figure 5 shows the returned graphs for both models when
applied to the datasets in Table 1. The top graphs in Figure 5 show the baseline results,
whereas the bottom graphs plot the proposed model results. As can be seen, the MovieLens
100K dataset (left graphs) displays an unpacked (extended) vision of both user and item
samples when the proposed model (bottom-left graph) is used, compared to the baseline
(top-left graph) one. The proposed model makes it easier to compare the relationship
between samples by visually inspecting the (Euclidean) distances in the graphs. It also
decreases intersections between users and items embedding representations. What we
are looking at here explains the ‘unpacked’ quality values shown in Table 3. MovieLens
1M (center graphs) and Netflix* (right graphs) show similar layouts to MovieLens 100K,
suggesting that, on CF datasets, the proposed model performs as expected.

As an example of the proposed model application, Figure 6 shows some demographic
information from MovieLens 100K. Both graphs in Figure 6 show the location of the users.
The graph on the left plots gender information: female (red) versus male (blue). The right
graph plots age information: over 40 years of age (red) versus younger users (blue). Please
note that the user plot in the bottom left graph of Figure 5 (MovieLens 100K) is not the same
as the shapes shown in Figure 6; this is because they belong to different model trainings.
Figure 6 is just an example that shows some type of demographic information: male versus
female, and younger versus older users. Similar graphs can be obtained from different
demographic features of users and from the item’s type: zip code, incomings, educational
level, genre of movies, type of music, year of book publication, etc. Figure 6 shows that
there is not a clear pattern to cluster users attending to their gender or age; that is, in the
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MovieLens 100K dataset, males and females rate movies in a similar way, analogously to
the younger and older user case. What is relevant here is that we can obtain representative
two and three-dimension representative graphs showing the location of CF demographic
features. This big data visual information can be useful to take commercial decisions,
implement segmented marketing, understand business data, improve RS information,
balance data, correct biased datasets, etc.
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To facilitate reproducibility, Table 4 shows the selected values of the involved parame-
ters in the learning process of the proposed model.
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Table 4. Parameter values chosen for the proposed model learning.

# Layers 5

# Neurons in each non-exit layer Experiment #1: {2, 3, 5, 10},
Experiments #2 and #3: {2}

# Epochs 20
Batch size 16
Activation function of the non-exit layers ReLu
Activation function of the exit layer Linear
Loss function Euclidean distance
Gaussian random distribution Mean: 0, Variance: 1

4. Discussion

The variational proposed model has proven to adequately afford the visual represen-
tation of samples in the CF field. To fulfill this objective, we have tested the impact of
limiting the embedding sizes to two neurons (obtaining two-dimensional graphs) or to
three neurons (obtaining three-dimensional graphs). Results show a prediction quality
of over 98% when the embedding sizes are two or three, compared to the usual five to
ten embedding sizes (Table 2). Combining the variational approach and the Euclidean
distance loss function, the intra-clustering quality measure improves in the proposed model
compared to the DeepMF baseline (Table 3). This improvement can be visually observed
by plotting each of the dataset embeddings (Figure 5). The proposed variational model
has a better performance than the DeepMF baseline due to two different factors: (a) the
designed variational stochasticity (which does not exist in the DeepMF model) spreads the
embedding samples through the latent space (Figures 3 and 5), as the generative learning
does to obtain fake images by interpolating embeddings; and (b) the proposed Euclidean
function can arrange sample embeddings in the latent space in a comprehensible way to
humans, compared to the non-Euclidean loss functions that usually implement the baseline
model: mean squared differences, mean absolute error, etc.

5. Conclusions

Recommender Systems research is focused on accuracy, but there are some other
relevant goals that should be achieved, such as the representative visualization of the
collaborative filtering items and users. This can be considered a big data analytics tool that
helps system managers. This paper provides an innovative neural model to make visual
representations of user and item embeddings. First, we have shown that it is possible to
reduce the model embedding sizes to just two or three neurons without any significant
loss in prediction accuracy. Then, we have introduced Gaussian variational layers to
the proposed model in order to spread the area where samples are located. Finally, a
Lambda layer replaces the DeepMF Dot layer (or the NCF MLP); this layer implements the
Euclidean distance. Both the Gaussian variational layers and the Lambda-Euclidean layer
running together in the proposed model return suitable accuracy results and improved
sample representations.

Experiment results show that the user and item embedding representations are con-
veniently spread through visual representation areas, making it possible to discriminate
close samples and to relate between sample pairs. The centroid-based intra-cluster quality
measure shows a significant improvement in the proposed neural model compared to
the baseline. The plotted graphs also show better embedding representations when the
proposed model is tested using the three selected representative collaborative filtering
datasets. Results open the door to future works such as: (1) representing demographic
features (gender, age, etc.) of samples; (2) explaining recommendations by providing a
graph showing, in the same area, the active user, their recommendations and the nearest
voted items to both the active user and the recommended items; and (3) incorporating
three-dimensional embedding representations in 3D commercial environments.
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