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Abstract: Jakyakgamcho-tang (JYGCT) has been used to treat various diseases. The interstitial cells of
Cajal (ICC) regulate gastrointestinal (GI) motility as pacemaker cells. Here, we examined the effects
of JYGCT on the pacemaker potential of the ICC in the small intestine. We observed that JYGCT
inhibited the pacemaker potential in a dose-dependent manner. Glibenclamide did not affect the
pacemaker potential and on these conditions, JYGCT also had no effect on the pacemaker potential.
Pretreatment with capsazepine or SB452533 blocked the JYGCT-induced effects. In the presence of
SQ-22536, JYGCT did not inhibit the pacemaker potential. Additionally, JYGCT inhibited spontaneous
[Ca2+]i oscillations and JYGCT-induced ITR increase was associated with TMEM16A, motilin and
substance P activation. Moreover, JYGCT was effective in alleviating the symptoms of irritable bowel
syndrome. Our results suggest that JYGCT inhibited the pacemaker potential of the ICC via KATP,
the TRPV1 or the cyclic AMP pathway, and intracellular Ca2+ regulation, indicating that JYGCT can
affect ICC and thus have the function of regulating GI motility. Therefore, JYGCT may be used as a
GI motility disorder regulator or disease prevention agent.

Keywords: Jakyakgamcho-tang; gastrointestinal motility; interstitial cells of Cajal; pacemaker potential;
prokinetic agent

1. Introduction

Jakyakgamcho-tang (JYGCT; Glycyrrhiza uralensis and Paeonia lactiflora) is a traditional
herbal medicine and has been used to treat various disease conditions, including muscle
pain and acute abdominal pain [1–10]. JYGCT shows excellent efficacy in enhancing spleen
function and relieving liver function and is used clinically in the treatment of various
indications, such as muscle and abdominal pain, and bronchial asthma [2–4]. JYGCT has
the function of decreasing the paclitaxel-induced painful neuropathy, such as allodynia
and hyperalgesia [6] and reduces muscle cramps without any side effects [7]. It shows
an anti-inflammatory effect and an antispasmodic effect on skeletal muscle [1,8]. It also
reduces the serum uric acid levels and increases the sympathetic activities in hyperuricemic
vegetarians [9]. In addition, JYGCT also affects the gastrointestinal (GI) tract. It is effective in
relieving abdominal pain in acute GI inflammation [11], and it inhibits the transient receptor
potential (TRPV) 1 channel and suppresses serotonin production, thereby alleviating the
visceral hypersensitivity [12].

GI motility is a highly regulated process and an essential factor determining the quality
of life [13]. The interstitial cells of Cajal (ICC) are essential in GI motility and are considered
the pacemakers of the GI tract [14–16]. Injury of ICC leads to various diseases related to GI
motility [17]. Therefore, research on these cells is important to understand the regulation
of GI motility. However, the question remains as to whether JYGCT exerts regulatory
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effects on ICC or GI motility and whether the underlying mechanisms require investigation.
Therefore, we investigated the regulatory effect of JYGCT on ICC physiological signaling
pathways and GI motility in mice.

2. Materials and Methods
2.1. Preparation of JYGCT

JYGCT extract was obtained using distilled water, as described previously [5]. The
Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine have
the voucher specimens (2012-KE42-1 and 2012-KE42-2). Gallic acid, oxypaeoniflorin, (+)-
catechin, albiflorin, paeoniflorin, liquiritin, benzoic acid and so on, were detected by
high-performance liquid chromatography (HPLC) [5].

2.2. Preparation of Cell Cultures

The Animal Experiment Ethics Committee of Pusan National University (no. PNU-
2020-2831) guidelines were followed. Institute of Cancer Research (ICR) mice were sacri-
ficed by cervical dislocation and then the small intestines were isolated and the mucous
membranes were removed. Cells were isolated using collagenase and cultured in smooth
muscle growth medium (SMGM; Clonetics, San Diego, CA, USA) in a CO2 incubator at
37 ◦C.

2.3. Patch Clamp Experiments

We used the patch clamp technique to record ICC pacemaker potential. A Na+-Tyrode
bath and KCl (140 mM) pipette solution were used. Electrophysiological techniques were
conducted and results were analyzed using pClamp and Origin software (version 6.0,
Microcal, Northampton, MA, USA).

2.4. Intracellular Free Calcium Ion Concentration [Ca2+]i

The cultured ICC were loaded with fura-2 AM and measured [Ca2+]i with a PTI Delta
scan illuminator (Photon Technology International Inc., Birmingham, NJ, USA).

2.5. ITR Measurement

After intragastric administration of JYGCT to ICR mice, Evans blue (5%, w/v; 0.1 mL/kg)
was intragastrically administered 30 min later. ITR was measured 30 min after the Evans
blue administration.

2.6. GI Motility Dysfunction (GMD) Model Mice

We made the GMD mouse models by using the acetic acid. AA was injected intraperi-
toneally and allowed to rest for 30 min. ITR was measured 30 min after the Evans blue
administration.

2.7. Gut Hormone Levels

After JYGCT (0.5 g/kg) was fed once a day for 5 days, MTL, substance P (SP), somato-
statin (SS), and vasoactive intestinal polypeptide (VIP) hormone levels were detected using
commercial kits.

2.8. Western Blotting

After feeding SM (0.5 g/kg) for 5 days, anti-transmembrane protein 16A (TMEM16A;
Abcam, Cambridge, UK), anti-c-kit (Cell Signaling Technology, Denver, MA, USA), anti-
transient receptor potential melastatin 7 (TRPM7; Abcam, Cambridge, UK), and anti-β-actin
(Santa Cruz Biotechnology, Dallas, TX, USA) antibodies were used in the small intestine.
Other experimental methods were carried out according to the general methods [18].



Appl. Sci. 2022, 12, 4175 3 of 11

2.9. Irritable Bowel Syndrome (IBS) Experiments

C57/BL6 mice (6 weeks) induced colitis by 0.1 mL zymosan suspension (30 mg/mL)
which was administered trans-anally via a feeding needle into the colons of mice. Zymosan,
PBS or JYGCT were administered daily for 3 consecutive days. After 3 days of adminis-
tration, the experiment was conducted on the 4th day. The zymosan-injected mice were
divided into three groups (n = 9 per group) and treated with PBS (control), zymosan or
JYGCT (500 mg/kg).

2.10. Macroscopic Scoring

The weight of the large intestine was measured after removing the stool, and the length
of the large intestine was measured from the cecum to the anus. The individual scores were
graded: stool score (0, normal; 1, loose/moist; 2, amorphous/sticky; and 3, diarrhea). The
stool status was measured by three researchers using the blind method.

2.11. Drugs

The drugs used in the experiments were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

2.12. Statistical Analysis

Results are represented as the mean ± standard error (SE). The results were ana-
lyzed using Prism 6.0 (La Jolla, CA, USA) and Origin version 8.0 (OriginLab Corporation,
Northampton, MA, USA). One-way analysis of variance (ANOVA) or Student’s t-test for
unpaired data were used to compare control and experimental groups. A p-value < 0.05
was considered statistically significant.

3. Results
3.1. JYGCT Inhibits the Pacemaker Potential of the ICC in the Murine Small Intestine

We performed whole-cell patch clamp experiments using the cultured ICC to examine
the pacemaker potential of these cells. We noted that, under these conditions, the ICC spon-
taneously generated a pacemaker potential with a mean frequency of 11.3 ± 0.9 cycles/min
and a mean amplitude of 24.8 ± 1.3 mV. When JYGCT (1–10 mg/mL) was applied, the
pacemaker potential decreased (Figure 1A). The mean frequency was 9.3 ± 0.5 cycles/min
(p < 0.01) at 1 mg/mL, 5.6 ± 0.5 cycles/min (p < 0.0001) at 5 mg/mL, and 1.5 ± 0.4 cycles/min
(p < 0.0001) at 10 mg/mL (Figure 1E); the mean amplitude was 23.9 ± 1.0 mV, 2.4 ± 0.5 mV
(p < 0.0001), and 2.1 ± 0.8 mV (p < 0.0001) (Figure 1F). Thus, these results suggest that
JYGCT inhibits the pacemaker potential of the ICC.

3.2. ATP-Sensitive K+ Channels Are Involved in the JYGCT-Induced Pacemaker Potential
Inhibition in the ICC

To investigate the involvement of the K+ channels, we used several K+ channel
blockers. In the presence of TEA, JYGCT inhibited the pacemaker potential in the ICC
(Figure 2A). In addition, JYGCT inhibited the pacemaker potential when co-treated with
4-aminopyridine or apamin (Figure 2B,C). Moreover, glibenclamide (an ATP-sensitive
K+ (KATP) channel blocker) did not affect the pacemaker potential and, under these
conditions, JYGCT also showed no effect on the pacemaker potential (Figure 2D); further,
glibenclamide reversed the effects of JYGCT (Figure 2E). In the presence of 5 mg/mL
JYGCT, the mean frequency and amplitude were 5.6 ± 0.6 cycles/min and 2.6 ± 0.4 mV
for TEA, 5.3 ± 0.5 cycles/min and 2.6 ± 0.4 mV for 4-aminopyridine, 5.5 ± 0.6 cycles/min
and 2.5 ± 0.4 mV for apamin, and 12.1 ± 0.9 cycles/min (p < 0.0001) and 22.7 ± 1.0 mV
(p < 0.0001) for glibenclamide (Figure 2F,G). These results suggest that JYGCT activates the
KATP channels in the ICC.
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Figure 1. Effect of JYGCT on the pacemaker potential in the ICC. (A–D) JYGCT inhibited the
pacemaker potential; (E,F) Summary of the inhibitory frequency and amplitude effects of JYGCT on
the pacemaker potential in the ICC. Bars represents the mean ± SE. ** p < 0.01. **** p < 0.0001. JYGCT:
Jakyakgamcho-tang; CTRL: control.
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Figure 2. Effect of various K+ channel blockers on the inhibition of pacemaker potential by JYGCT
in the ICC. (A) Pretreatment with TEA had no effect; (B) 4-aminopyridine did not affect the inhi-
bition by JYGCT; (C) Apamin did not affect the pacemaker potential inhibition induced by JYGCT;
(D) Glibenclamide blocked the pacemaker potential inhibition by JYGCT; (E) The suppression of
pacemaker potential by JYGCT was restored by glibenclamide; (F,G) Summary of the inhibitory fre-
quency and amplitude effects of pretreatment with TEA, 4-aminopyridine, apamin or glibenclamide.
Bars represents the mean ± SE. **** p < 0.0001. JYGCT: Jakyakgamcho-tang; CTRL: control; TEA:
tetraethylammonium; 4-amino: 4-aminopyridine; Apa: apamin; Gliben: glibenclamide.



Appl. Sci. 2022, 12, 4175 5 of 11

3.3. Transient Receptor Potential Vanilloid 1 (TRPV1) Channels Are Involved in the
JYGCT-Induced Pacemaker Potential Inhibition in the ICC

Many studies show that TRPV1 is involved in the physiological functions of the GI
tract [19–21]; therefore, we investigated the relevance of the TRPV1 channel. We incubated
cells with capsazepine or SB452533, a TRPV1 receptor antagonist, for 5 min. Pretreat-
ment with capsazepine or SB452533 blocked the JYGCT-induced effects (Figure 3A,B).
The frequency of the pacemaker potential with JYGCT and capsazepine or SB452533 was
11.4 ± 0.9 cycles/min (p < 0.0001) or 11.9 ± 1.0 cycles/min (p < 0.0001), with a correspond-
ing amplitude of 22.7 ± 1.1 mV (p < 0.0001) or 22.8 ± 1.7 mV (p < 0.0001) (Figure 3C,D).
Thus, these results suggest that the TRPV1 channels regulate the JYGCT-induced responses.
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Figure 3. Effect of capsazepine or SB452533 on the pacemaker potential inhibition by JYGCT in
the ICC. (A) Pretreatment with capsazepine blocked the pacemaker potential inhibition by JYGCT;
(B) SB452533 blocked the pacemaker potential inhibition by JYGCT; (C,D) Summary of the inhibitory
frequency and amplitude effects of pretreatment with capsazepine or SB452533. Bars represents
the mean ± SE. **** p < 0.0001. JYGCT: Jakyakgamcho-tang; Cap: capsazepine; SB: SB452533;
CTRL: control.

3.4. Cyclic Adenosine Monophosphate (cAMP) Is Involved in the JYGCT-Induced Pacemaker
Potential Inhibition in the ICC

The cAMP and guanosine monophosphate (cGMP)-dependent pathway was checked
by SQ-22536, an inhibitor of adenylate cyclase, and ODQ, an inhibitor of guanylate cyclase.
In the presence of SQ-22536 (10 µM), JYGCT did not inhibit the pacemaker potential
of the ICC (Figure 4A). However, upon treatment with ODQ (10 µM), JYGCT inhibited
the pacemaker potential (Figure 4B). Additionally, in the presence of KT-5823 (a protein
kinase G (PKG) inhibitor; 1 µM), JYGCT inhibited the pacemaker potential (Figure 4C).
The frequencies of the pacemaker potential with JYGCT and SQ-22536, ODQ, or KT-5823
were 11.3 ± 1.0 cycles/min (p < 0.0001), 6.4 ± 0.5 cycles/min, or 5.9 ± 0.9 cycles/min,
respectively (Figure 4D). The amplitudes of the pacemaker potential with JYGCT and
SQ-22536, ODQ, or KT-5823 co-treatments were 24.8 ± 1.3 mV (p < 0.0001), 2.5 ± 0.7 mV,
or 2.7 ± 0.6 mV (Figure 4E). Thus, these findings indicate that cAMP mediates the JYGCT-
induced responses.
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Figure 4. Effect of SQ-22536, ODQ, KT-5823 and intracellular Ca2+ flux on the pacemaker potential
inhibition by JYGCT in the ICC. (A) Pretreatment with SQ-22536 blocked the pacemaker potential in-
hibition by JYGCT; (B,C) Pretreatment with ODQ or KT-5823 did not block the pacemaker potential in-
hibition by JYGCT; (D,E) Summary of the inhibitory frequency and amplitude effects of pretreatment
with SQ-22536, ODQ, or KT-5823; (F) Under normal conditions, [Ca2+]i oscillations were induced
and JYGCT blocked these [Ca2+]i oscillations. Bars represents the mean ± SE. **** p < 0.0001. JYGCT:
Jakyakgamcho-tang; CTRL: control; SQ: SQ-22536; ODQ: 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one.

3.5. Effect of JYGCT on Intracellular Ca2+ ([Ca2+]i) Oscillations

Spontaneous [Ca2+]i oscillations were observed in the ICC; JYGCT administration
(5 mg/mL) suppressed these spontaneous responses (Figure 4F).

3.6. Association of the TMEM16A Proteins, and MTL and SP Hormones in JYGCT-Induced
ITR Increase

The normal ITR was 51.3 ± 2.6% and JYGCT increased the ITR (53.7 ± 3.2% at
0.01 g/kg, 60.6 ± 2.9% (p < 0.001) at 0.1 g/kg, and 64.8 ± 2.0% (p < 0.0001) at 1 g/kg)
(Figure 5A). Next, we generated the GMD mouse model. AA decreased the ITR (25.9 ± 1.8%
(p < 0.0001), Figure 5B). However, JYGCT at 0.01, 0.1, and 1 g/kg restored this response to
51.3 ± 2.6% (p < 0.0001), 51.7 ± 3.9% (p < 0.0001), and 58.3 ± 1.7% (p < 0.0001), respectively
(Figure 5B). The reactions in ICC are mainly produced through non-selective cation chan-
nels, i.e., TRPM7, TMEM16A or c-Kit in the murine small intestine [15,22–24]. The effects
of JYGCT on the TMEM16A, c-Kit or TRPM7 proteins were examined in the GI tract; it was
observed that the expression of TMEM16A increased significantly after JYGCT treatment
(Figure 5C(a,b)). However, TRPM7 and c-Kit were unchanged (Figure 5C(c,d)). In addition,
the levels of MTL and SP were significantly elevated (Figure 5D(a,b)) but the levels of SS
(Figure 5D(c)), and VIP (Figure 5D(d)) showed no changes after JYGCT administration.
Thus, these results indicate that the JYGCT-induced GI motility increase depends on the
activation of the TMEM16A and MTL and SP hormones.
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Figure 5. Effects of JYGCT on protein expressions and gut hormones in ITR. (A,B) JYGCT increased
ITR; (C) The expression of TMEM16A increased but that of c-Kit or TRPM7 was unchanged; (D) Level
changes of GI hormones, (a) MTL, (b) SP, (c) SS, and (d) VIP. Bars represents the mean ± SE. * p < 0.05.
** p < 0.01. *** p < 0.001. **** p < 0.0001. JYGCT: Jakyakgamcho-tang; CTRL: control.

3.7. Effects of JYGCT on Macroscopic Score of Zymosan-Induced Colon Changes

We checked the colon length, weight, and stool status by JYGCT in the large intestine
administered with zymosan. Administration of zymosan reduced the length of the colon
compared to normal mice, and thus it can be seen that colitis was induced. However, when
the mice administered with JYGCT were compared with mice administered with zymosan,
the length of the colon was increased (Naïve: 9.45 ± 0.8 cm, CTRL: 7.55 ± 0.6 cm (p < 0.05),
JYGCT: 9.36 ± 0.7 cm (p < 0.05), Figure 6A). In addition, although the colon weight increased
compared to normal, JYGCT decreased the colon weight (Naïve: 0.25 ± 0.01 g, CTRL:
0.30 ± 0.02 g (p < 0.05), JYGCT: 0.23 ± 0.01 g (p < 0.05), Figure 6B). The feces of normal mice
are dark brown and have the form of hard lumps, but in mice administered with zymosan,
it can be seen that diarrhea is induced in light brown or yellow color with water-like mucus.
The stool score was increased by comparing the zymosan-administered mice with the
normal mice, but decreased by JYGCT (Naïve: 0.09 ± 0.03, CTRL: 2.46 ± 0.11 g (p < 0.0001),
JYGCT: 0.54 ± 0.11 (p < 0.0001), Figure 6C). Thus, these results indicate that JYGCT might
inhibit zymosan-induced colitis and diarrhea.
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4. Discussion

In this study, we investigated the effect of JYGCT on the pacemaker potential in the
ICC obtained from the murine small intestine. JYGCT inhibited the pacemaker potential
via KATP, the TRPV1, the cAMP pathway, and intracellular Ca2+ regulation, indicating
that JYGCT can affect the ICC and may be a novel prokinetic agent in the GI tract.

JYGCT is a traditional medicine for various purposes [10]. It has been applied to
treat various disease conditions; it has been used in the prevention of muscle cramps and
the inhibition of skeletal muscle contractions [7], uric acid reduction, autonomic function
regulation [9], and intestinal smooth muscle relaxation [25]. JYGCT has the function
of decreasing the neuropathy [3] and shows an anti-inflammatory effect [1]. It also has
antispasmodic effect on skeletal muscle [8], reduces the serum uric acid levels, and increases
the sympathetic activities [9]. However, although JYGCT has been used as an herbal remedy
to regulate the GI tract [11,12], its regulation of GI motility has not yet been reported. In
this study, we demonstrated that JYGCT modulated the pacemaker potential in the ICC.
Therefore, it can be suggested that JYGCT may regulate GI motility via its effects on the ICC
pacemaker potential. In a forthcoming study, we plan to investigate the effects of JYGCT’s
components, Jakyak and Gamcho, on the pacemaker potential in the ICC.

Ion channels are important in the physiological control of GI motility [26]. Among
the various ion channels, KATP channels are enriched at various locations in the GI
tissues [27,28]. KATP channels in the ICC are composed of SUR2B and Kir 6.2 in the
small intestine and SUR2B and Kir 6.1 in the colon [29]. Previous studies have shown
that KATP channels exist in cultured murine small intestinal ICC and reduce GI motility
by causing relaxation of the smooth muscles; this makes them potential candidates in
the treatment of GI motor diseases [30]. In addition, the TRPV1 channels are expressed
throughout the alimentary canal where they play important roles in GI motility through
the ICC [18]. Various studies show that the TRPV1 channels are involved in the treatment
of gastric esophageal reflux disease and GI pain hypersensitivity in the GI tract [18,31]. In
this study, JYGCT inhibited the pacemaker potential in the ICC via KATP (Figure 2) and
the TRPV1 (Figure 3). Therefore, we believe that KATP and the TRPV1 channels may get
involved in the JYGCT-induced inhibition of pacemaker potential. Next, we intend to study
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the specific processes and molecular control strategies of KATP and the TRPV1 channels in
the ICC. The intracellular regulation of Ca2+ flux has a role in the pacemaker activity in
the ICC [24,32]. Ca2+ flux regulation is important for generating the pacemaker activity
in the ICC [33]. In the present study, spontaneous [Ca2+]i responses were inhibited by
JYGCT (Figure 5). Therefore, we concluded that JYGCT inhibited the pacemaker potential
and probably regulates the pacemaker activity through intracellular Ca2+ modulations. In
addition, three cell surface proteins, TRPM7, c-Kit, and TMEM16A, are used for identifying
the ICCs activation [15,22–24]. In this study, JYGCT increased the ITR and the expression
of TMEM16A was only increased by JYGCT, but the expression of c-Kit and TRPM7 was
not (Figure 5A,B). In addition, we looked at changes in GI hormones. GI hormonal changes
can alter GI motility [34,35]. The roles of GI hormones are diverse and extensive, and
although not fully understood yet, they are known to have a significant impact on the
physiological functions of the GI tract [36]. In particular, it is known that hormones are
responsible for regulating the process of food being digested and sent down through the GI
tract [37]. These hormones are believed to regulate the functions of the GI tract as well as
the bile and pancreas [38]. GI hormones are thought to have many unexplained functions
and are attracting attention as a new research field in the future. Currently, studies on
how these GI hormones act when certain GI diseases occur are being actively conducted,
and, in particular, the use of hormones as therapeutic agents for GI motility diseases in
food digestion is being attempted. In the present study, changes in four representative
hormones MTL, SP, SS, and VIP were investigated. By JYGCT, MTL and SP hormone levels
increased, but SS and VIP hormone levels did not (Figure 5C). Therefore, it is thought
that JYGCT-induced ITR increase is induced by the increase of TMEM16A protein and
MTL and SP hormones. In this experiment, ICR mice that are good for observing the GI
tract were used for the study of ICC because they are large in size, which are generally
used for GI-related experiments. However, in the IBS-related study, C57/BL6 mice, which
are mainly used for observing biochemical changes given relatively gentle and specific
conditions, were used as black mice. We do not think that there is any particular difference,
but the experiment was conducted using commonly used animal species.

Abnormalities and reductions in ICC are often found in GI diseases [17]. A recent
study reports that JYGCT protects the ICC in the sphincter of Oddi (SO) and regulates the
movement of SO [39]. In addition, the most important IBS mechanisms are GI dysmotility,
and, therefore, ICC may be involved in the pathogenesis of IBS [40,41]. In this study, JYGCT
restored colon length, weight, and stool status to normal in zymosan-induced IBS-like
symptoms (Figure 6). However, research on the association between GI motor disease and
the ICC is still underway. Therefore, traditional medicine, which has fewer side effects due
to its naturalistic approach, is a very attractive alternative [42,43]. Currently, there is a keen
interest in treating GI tract diseases using natural medicine; accordingly, natural substances
have the potential to reveal the mechanisms of action of pacemaker potential generation in
the ICC and assist in the development of new drugs.

5. Conclusions

The present study shows that JYGCT inhibits the pacemaker potential of the ICC via
KATP, the TRPV1 channels, the cAMP pathway, and intracellular Ca2+ regulation, increases
ITR and alleviates IBS, and indicates that herbal medicine can be used for GI motor control.
This study is on the GI tract efficacy of JYGCT in mice, showing the potential for use in GI
diseases in mice. However, studies on the efficacy of JYGCT in the human GI tract have not
yet been conducted. It is thought that further studies on the efficacy of JYGCT in humans
are needed in the future.
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