
Citation: Cao, B.; Li, C.; Song, Y.;

Qin, Y.; Chen, C. Network Intrusion

Detection Model Based on CNN and

GRU. Appl. Sci. 2022, 12, 4184.

https://doi.org/10.3390/app12094184

Academic Editor: Jongsub Moon

Received: 3 March 2022

Accepted: 18 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Network Intrusion Detection Model Based on CNN and GRU
Bo Cao 1, Chenghai Li 1, Yafei Song 1,* , Yueyi Qin 2 and Chen Chen 1

1 College of Air and Missile Defense, Air Force Engineering University, Xi’an 710051, China;
bobofighting2021@163.com (B.C.); lichenghai@afeu.com (C.L.); chenchen2020@163.com (C.C.)

2 College of Computer, Chang’an University, Xi’an 710061, China; qinyueyi@163.com
* Correspondence: yafei_song@163.com

Abstract: A network intrusion detection model that fuses a convolutional neural network and a
gated recurrent unit is proposed to address the problems associated with the low accuracy of existing
intrusion detection models for the multiple classification of intrusions and low accuracy of class
imbalance data detection. In this model, a hybrid sampling algorithm combining Adaptive Synthetic
Sampling (ADASYN) and Repeated Edited nearest neighbors (RENN) is used for sample processing
to solve the problem of positive and negative sample imbalance in the original dataset. The feature
selection is carried out by combining Random Forest algorithm and Pearson correlation analysis
to solve the problem of feature redundancy. Then, the spatial features are extracted by using a
convolutional neural network, and further extracted by fusing Averagepooling and Maxpooling,
using attention mechanism to assign different weights to the features, thus reducing the overhead and
improving the model performance. At the same time, a Gated Recurrent Unit (GRU) is used to extract
the long-distance dependent information features to achieve comprehensive and effective feature
learning. Finally, a softmax function is used for classification. The proposed intrusion detection model
is evaluated based on the UNSW_NB15, NSL-KDD, and CIC-IDS2017 datasets, and the experimental
results show that the classification accuracy reaches 86.25%, 99.69%, 99.65%, which are 1.95%, 0.47%
and 0.12% higher than that of the same type of CNN-GRU, and can solve the problems of low
classification accuracy and class imbalance well.

Keywords: convolutional neural network; gated recurrent unit; intrusion detection; data balancing;
feature selection

1. Introduction

Network intrusion detection is a security mechanism that has been developed in recent
years to dynamically monitor, prevent and defend against system intrusions. It specifically
refers to collect information from several nodes of a computer network or system and
analyze this information to discover whether there is an attack or a breach of security policy
in the network system. Research on intrusion detection technology has been conducted
worldwide since the 1980s, and it has now developed into an integral part of the network
security architecture [1].

Traditional machine learning methods have been widely used in network intrusion
detection systems, such as Bayesian [2–4], Support Vector Machines [5–10], Decision
Trees [11–13], Logistic Regression [14–16], etc. These methods have achieved good re-
sults. However, these methods are not suitable for massive and high-dimensional data,
and cannot solve the problem of degraded classification performance due to their own
sensitivity to outliers and noise. At the same time, due to the continuous development of
digital technology and the increasingly diverse means of cyber-attacks, traditional machine
learning methods have had difficulty in meeting the needs of users.

In recent years, deep learning techniques have been widely used in natural lan-
guage processing [17], image recognition [18] and other fields. These techniques have also
achieved good results in the field of intrusion detection by combining low-level features

Appl. Sci. 2022, 12, 4184. https://doi.org/10.3390/app12094184 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0962-0671
https://doi.org/10.3390/app12094184
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094184?type=check_update&version=2

Appl. Sci. 2022, 12, 4184 2 of 27

to form a more abstract and non-linear high-level representation, and then mining the
input–output relationships between data. The neural networks commonly used in the field
of intrusion detection mainly include convolutional neural networks (CNN), recurrent
neural networks (RNN), and deep belief networks. In the literature [19], the data traffic
is converted into individual pixel points in bytes, and then the images generated from
the traffic are fed into convolutional neural network for convolution, pooling and other
operations, and finally the classification results are obtained. The method achieves high
accuracy in binary classification and multi-classification problems. The literature [20] used
the recognized KDD99 dataset to conduct experiments. During the experiments, the Long
Short-Term Memory (LSTM) network was used to complete the selection of parameters and
achieved more satisfactory experimental results, however, the method resulted in a high
false alarm rate due to the improper selection of training parameters. The literature [21]
proposed a hierarchical intrusion detection system based on spatial-temporal features,
which first uses deep convolutional neural networks to learn low-level spatial features
of network traffic, and then uses LSTM to obtain high-level temporal features, however,
the method does not consider the problems of feature fusion and data imbalance. The
literature [22] combines the features of WaveNet and Bidirectional Gated Recurrent Unit
(BiGRU) for feature extraction, and proposes an intrusion detection method that fuses
WaveNet and BiGRU. It can achieve better detection accuracy, although it does not consider
the problem of sample imbalance.

Although intrusion detection techniques have made great progress, there are also the
following problems. First, with regard to feature redundancy, more feature dimensions
will not only increase the training time of the model, but also reduce the detection effect of
the model. The literature [23] proposed an intrusion detection method based on Principal
Component Analysis (PCA) and recurrent neural networks. The principal component
analysis method was used to reduce the dimensionality and noise of the data to find out
the subset of principal component features containing the maximum information, and then
the processed data was trained using RNN networks for classification with a high accuracy
rate. The literature [24] proposed an intrusion detection method combining the advantages
of an autoencoder and residual network, in which feature extraction was performed by
reconstructing the network with an autoencoder, after which the extracted features were
used to train the designed residual network, and the experimental results showed good
performance in terms of accuracy, true rate and false alarm rate. However, the methods
mentioned above in the literature are generally effective in solving the feature redundancy
problem. Secondly, the dataset used to evaluate the effectiveness of the model has an
unbalanced sample of positive and negative classes. The literature [25] uses an improved
local adaptive synthetic minority oversampling technique for unbalanced traffic data to
achieve traffic anomaly detection using RNN, which is more accurate for different types of
detection, although the improvement is less obvious.

To address the above-mentioned problems, this paper designs an intrusion detection
model fusing CNN and GRU. The main contributions are as follows:

(1) To address the problem of feature redundancy, this paper proposes a feature selec-
tion algorithm (RFP algorithm). First, a random forest algorithm is introduced to
calculate the importance of features, and then Pearson correlation analysis is used to
select features;

(2) To address the problem of sample imbalance, this paper proposes a hybrid sam-
pling algorithm (ADRDB algorithm) by combining the Adaptive Synthetic Sampling
(ADASYN) [26] and Repeated Edited nearest neighbors (RENN) [27] sampling meth-
ods for sampling, while using Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [28] to reject noise, and finally achieving a balanced dataset;

(3) In this paper, CNN is introduced to extract spatial features from the network data
traffic and use its weight sharing feature to improve the speed; GRU network is
introduced to extract temporal features and learn the dependency between features,
so as to avoid overfitting problems; the attention mechanism is introduced to assign

Appl. Sci. 2022, 12, 4184 3 of 27

different weights to the features, thus reducing the overhead and improving the
model performance.

2. Related Work

Network security intrusion detection is a relatively broad area of research. Existing
models used in the field of intrusion detection include Convolutional Neural Networks,
Recurrent Neural Networks, machine learning, and hybrid models. Scholars have used
a variety of different approaches to address the problems of low detection accuracy and
difficulty in detecting a few classes of samples in the field of intrusion detection. Convolu-
tional neural networks are primarily used in tasks related to image and video analysis, such
as image classification, face recognition, target recognition, image processing and so on.
Furthermore, in recent years it has also been widely used in the field of intrusion detection.
A recurrent neural network is mainly used in various tasks of connected handwriting
recognition and speech recognition. It is also commonly used in the field of intrusion
detection due to its effectiveness in processing time series data.

In terms of improving detection accuracy: Tama, B.A. et al. used a combination of
particle swarm optimization algorithms, ant colony algorithms and genetic algorithms for
feature selection to reduce the feature size of the training data, followed by a secondary
classification method to detect abnormal behavior in the network [29]. Bu, S.J. et al. com-
bined a traditional learning classifier system with a convolutional neural network for the
detection of anomalous behavior, and the proposed system has adaptive and learning
capabilities [30]. Le, T.T.H. et al. first performed feature selection via the SFSDT model,
followed by classification via recurrent neural networks, achieving better results on both
the NSL-KDD dataset and the ISCX dataset [31]. Hassan, M.M. et al. proposed an intrusion
detection system based on CNN and a weight-dropped long short-term memory network,
and achieved more satisfactory results [32].

In terms of addressing the class imbalance: Louk, M.H.L. et al. compared existing
sampling methods and found that EasyEnsemble performed better in resolving sample
imbalance [33]. Liu, L. et al. divided the dataset into hard and easy sets by ENN, and
reduced the imbalance of the original dataset by processing the samples in the hard set
through the K-Means algorithm [34]. Yan, M. et al. identified anomalous traffic with good
accuracy by an improved density peak clustering algorithm [35]. The recent work related
to network intrusion detection using optimization algorithms, deep learning algorithms,
and machine learning algorithms is given in Table 1.

Table 1. A brief description of the recent related works on network intrusion detection, using several
optimization, deep, and machine learning algorithms.

Ref. Dataset Methods Evaluation Metrics Accuracy

[36] N-BaIoT LGBA-NN precision, recall
F1-score, support Gained 90% accuracy

[37] UNSW_NB15
BOUN Ddos ML.NET precision, ROC

confusion matrix
99.8% of the generic attack
99.7% of the Ddos attack

[38] CSE-CIC-IDS2018 HRCNNIDS precision, recall
F1-score, DR, FAR Gained 97.75% accuracy

[39] NSL-KDD SSC-OCSVM recall, FAR, ROC
confusion matrix Obtained satisfactory results

[40] NSL-KDD 2015
CIDDS-001 Proposed DBN precision, recall

F1-score, accuracy Obtained satisfactory results

[41] NSL-KDD
CICIDS2017 SRRS + IIFS-MC(ALL) + CTC DR, FPR, accuracy 99.96% of NSL-KDD

99.95% of CICIDS2017

[42] CICIDS2017
UNSW-NB15 NIDS-s precision, recall

FAR, accuracy
Gained 99% accuracy of two

datasets

Appl. Sci. 2022, 12, 4184 4 of 27

Table 1. Cont.

Ref. Dataset Methods Evaluation Metrics Accuracy

[43] KDDCUP1999 CSWC-SVM precision, accuracy Obtained satisfactory results

[44] UNSW_NB15 FSL-SCNN precision, recall
F1-score, FAR Obtained satisfactory results

[45] UNSW_NB15 VLSTM precision, recall
F1-score, FAR, AUC Gained 86% accuracy

To effectively select feature subsets and hyperparameters, Abdullah Alharbi et al. [36]
proposed a local-global optimal neural network Bat algorithm (LGBA-NN). They tested
on the N-BaIoT dataset and compared with several recent advanced methods, such as
the particle swarm optimization (PSO) algorithm and Bat algorithm. The experiments
demonstrate that the LGBA-NN algorithm has a significant improvement in the detection
accuracy of multi-class botnets up to 90%.

Jevgenijus Toldinas et al. [37] first transformed the original network data into four-
channel (Red, Green, Blue, and Alpha) images, which were later divided into a training
and a testing set. The obtained images were classified based on the ResNet50 model
and evaluated on the UNSW_NB15 and BOUN_Ddos datasets. The experimental results
demonstrate that the proposed model has a high accuracy in detecting anomalous attacks.

In response to the ongoing and changing malicious threats in the current cyber en-
vironment, Muhammad Ashfaq Khan [38] proposes a hybrid intrusion detection system
based on deep learning (HRCNNIDS). The authors use convolutional neural networks to
capture regional features and temporal features through recurrent neural networks and
evaluate the proposed system based on CSE-CIC-IDS2018 dataset. The experimental results
show that the method has a high detection rate for malicious attacks.

In recent years, the number and complexity of attacks on network environments have
continued to rise, and Guo Pu et al. [39] proposed an unsupervised anomaly detection
method for network intrusion detection work. They combined subspace clustering (SSC)
and a class of support vector machines (OCSVM) to achieve better performance on the
NSL-KDD dataset.

Gia Nhu Nguyen et al. [40] introduced blockchain data transfer technology to the field
of intrusion detection to both secure data and improve detection efficiency. Their proposed
model uses sensors to collect data, after which intrusion detection is performed through
deep belief networks. In addition, the model ensures privacy and security by sharing the
created model. The authors evaluated the proposed model through NSL-KDD 2015 and
CIDDS-001 datasets and achieved better results.

To address the existing problem of imbalanced intrusion detection data samples,
Ranjit Panigrahi et al. [41] proposed a host-based intrusion detection algorithm. They
first generate balanced samples from high-level imbalanced datasets in the preprocessing
stage by an improved random sampling mechanism. Then the datasets are filtered by an
improved multi-class feature selection mechanism. Finally, a merged tree construction
algorithm based on the C4.5-based detector is built. The experimental results show that
their proposed algorithm achieves a very high detection accuracy.

In their study, MohammadNoor Injadat et al. [42] fully considered the impact of sam-
pling techniques on model performance and compared two feature selection techniques
based on information gain and correlation, and finally proposed the multi-stage optimiza-
tion of an intrusion detection system based on machine learning. In this system, they first
sample the dataset by the SMOTE algorithm, followed by feature selection, and finally
optimize the parameters of the model by the optimization algorithm. Experiments through
evaluation on the UNSW_NB15 dataset and CIC-IDS2017 dataset demonstrate that the
proposed model significantly improves the detection accuracy while reducing the training
sample size and feature set size.

Appl. Sci. 2022, 12, 4184 5 of 27

A study [43] introduces sample-weighted and class-weighted algorithms into support
vector machines to solve the problems faced by intrusion detection. Experimental results
show that the algorithm can achieve the advantages of short time consumption, high recog-
nition accuracy, low false alarm rate and high classification accuracy in different situations.

Xiaokang Zhou et al. [44] propose a few-shot learning model based on a Siamese
convolutional neural network for intrusion detection tasks. In their model, they first
construct a Siamese convolutional neural network to measure the distance based on the
optimized feature representation of the input samples, and then efficiently identify the
cyber-physical attack types. Furthermore, to improve the efficiency of the training process,
they propose a robust cost function that includes three specific losses (transformation loss
in the relative feature representation, coding loss in the encoding process, and prediction
loss based on the distance between features). The experimental results show that their
proposed method has better detection performance.

To cope with the security problems in large-scale data streams, Xiaokang Zhou et al. [45]
proposed a learning model for variational long short-term memory networks based on a
reconfigured feature representation. They first designed an encoder neural network imple-
mentation associated with a variational reparameterization scheme to represent the low-
dimensional features of the original data. Then, three loss functions are defined and quan-
tified to constrain the reconstructed hidden variables to a more explicit and meaningful
form. Experimental results show that the model can effectively deal with imbalance and
high-dimensional problems, and also achieve better detection results.

3. Network Intrusion Detection Model Based on CNN and GRU

Traditional intrusion detection models are more concerned with time series features
and ignore spatial features in the process of detecting attacks. The CNN structure is more
effective in extracting the spatial features of the data traffic, however, its ability to extract
long-distance dependent information is mediocre; the GRU structure is more effective
in extracting long-distance dependent information and can avoid forgetting during the
learning process, however, its number of parameters is large and the training time is long.
Therefore, this paper integrates the two to improve the model’s ability to learn features,
which can fully extract features from both spatial and temporal dimensions, and thus
achieve a higher classification detection accuracy.

The proposed network intrusion detection model combining convolutional neural
network and GRU, referred to as the CNN-GRU model, consists of three main stages: firstly,
the pre-processing stage, in which the original data is converted into numerical features
and normalized, and then the dataset is balanced by the ADRDB algorithm, after which
the features are extracted by the RFP algorithm and finally converted into a grey-scale
map; Secondly, the training phase, in which the pre-processed data are assigned different
weights to the features by the Convolutional Block Attention Module (CBAM) based on
residuals firstly, then the spatial features are extracted by the CNN module, and the spatial
information is further aggregated by combining Averagepooling and Maxpooling. After
that, the temporal features are extracted by multiple GRU units. Finally, the classification
is performed by the Softmax function; Thirdly, the testing phase, in which the test set is
passed into the trained model for classification. The structure of the model proposed in this
paper is shown in Figure 1.

Appl. Sci. 2022, 12, 4184 6 of 27
Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 27

Input raw traffic data

101100000110110001111100100111011101

000001010011101100111101110001001001

110001011100101001000110010110100101

000110010010011101010011110101111010

100001111010001100001110100100010111

010011100001011011101110011001101100

101010111011000110011110111011111001

C
o

n
v

e
rt n

o
n

-n
u

m
e
rica

l

fea
tu

res to
 n

u
m

er
ica

l

fea
tu

res

A
D

R
D

B
 a

lg
o
r
ith

m
 to

b
a

la
n

ce d
a

ta

R
F

P
 a

lg
o

rith
m

 to
 se

le
ct

fea
tu

re

C
o

n
v

e
rt to

 g
r
a
y

sc
a
le

Data Preprocessing

Feature Extraction
G

R
U

Normal

Exploits

Dos

Backdoor

Analysis

Fuzzers

Generic

Recon.

Shellcode

Worms

Classified

Traffic

S
o

ftm
ax

MaxPooling

AveragePooling

G
R

U

C
N

N
 m

o
d

el

R
esB

lo
ck

+
C

B
A

M

Figure 1. Network Intrusion Detection Model Based on CNN and GRU.

3.1. Data Pre-Processing

In the pre-processing stage, this paper firstly converts the non-numerical features in

the original flow data into numerical features and normalizes the features; secondly, a

hybrid sampling algorithm (ADRDB algorithm) combining ADASYN and RENN is used

for sampling; afterwards, the feature selection algorithm (RFP algorithm) is used for fea-

ture selection; finally, the resulting data is converted into a grey-scale map. The specific

process of this stage is shown in Figure 1.

3.1.1. Non-Numerical Feature Transformation and Normalization

The only way the raw data can be used as model input is if it has been cleaned, la-

belled, annotated and prepared. In this paper, the LabelEncoder function in the scikit-

learn library is used to convert the non-numeric features in the raw data traffic to numeric

features to ensure that all feature values are numeric, thus facilitating the model to learn

the data features.

When non-numeric features are converted to numeric, there is a tendency for the

clustering of sample points in the feature space to be guided by individual feature values

and less influenced by other feature values. Data normalization can reduce the variance

of the features to a certain range, thus reducing the impact of outliers. In this paper, we

Figure 1. Network Intrusion Detection Model Based on CNN and GRU.

3.1. Data Pre-Processing

In the pre-processing stage, this paper firstly converts the non-numerical features in
the original flow data into numerical features and normalizes the features; secondly, a
hybrid sampling algorithm (ADRDB algorithm) combining ADASYN and RENN is used
for sampling; afterwards, the feature selection algorithm (RFP algorithm) is used for feature
selection; finally, the resulting data is converted into a grey-scale map. The specific process
of this stage is shown in Figure 1.

3.1.1. Non-Numerical Feature Transformation and Normalization

The only way the raw data can be used as model input is if it has been cleaned,
labelled, annotated and prepared. In this paper, the LabelEncoder function in the scikit-
learn library is used to convert the non-numeric features in the raw data traffic to numeric
features to ensure that all feature values are numeric, thus facilitating the model to learn
the data features.

When non-numeric features are converted to numeric, there is a tendency for the
clustering of sample points in the feature space to be guided by individual feature values
and less influenced by other feature values. Data normalization can reduce the variance of
the features to a certain range, thus reducing the impact of outliers. In this paper, we use

Appl. Sci. 2022, 12, 4184 7 of 27

min–max normalization to normalize the feature values to between zero and one, as shown
in the formula:

hi,j =
hi,j −min(hi,j)

max(hi,j)−min(hi,j)
(1)

where hi,j represents the feature value in row i and column j of the dataset.
The normalized values are balanced by the proposed ADRDB algorithm for the major-

ity and minority class samples, respectively, to obtain the balanced dataset. After that, the
features are extracted by the RFP algorithm to obtain the pre-processed dataset.

3.1.2. Hybrid Sampling Method Combining ADASYN and RENN

The core idea of the hybrid sampling method proposed in this paper, which combines
ADASYN and RENN, is as follows: firstly, divide the original data set into a majority class
sample set and a minority class sample set; secondly, obtain a new majority class sample set
by undersampling with the RENN algorithm for the majority class sample set, and obtain
a new minority class sample set by oversampling with the ADASYN algorithm for the
minority class sample set; thirdly, the DBSCAN clustering algorithm is used to remove the
noise in the new sample set, and then the two datasets are merged to obtain the balanced
dataset. The specific steps of the hybrid sampling method combining ADASYN and RENN
are as follows. The detailed procedure is shown in Algorithm 1.

The inputs to the algorithm are the original majority class sample set N and minority
class sample set P and the number of samples contained in both, and the outputs are the
balanced majority class sample set newN and minority class sample set newP.

(1) Calculate the degree of imbalance of the dataset d.
(2) If d < dth (where dth is a pre-determined value for the maximum allowed degree of

imbalance ratio), the following operations are performed: firstly, calculate the number
of G samples that are needed to be generated for the minority class; secondly, for
each sample in N find its k1 nearest neighbors and calculate the ratio ri, where ∆i
denotes the number of samples belonging to the majority class among the k nearest
neighbors of and |X| all represent the number of samples; afterwards, normalize ri
to r̂i; finally, calculate the number of samples that need to be synthesized for each
minority class sample.

(3) For each sample in N, generate gi samples in steps to obtain a new minority sample set.
(4) For each sample in P, select k2 nearest neighbor from newN.
(5) Calculate the number of minority samples in the k2 nearest neighbors of each majority

sample and eliminate the sample if the number of samples is greater than e. (e = 1).
(6) Repeat steps (4) and (5) to generate a new majority class sample set.
(7) Remove the noise in newP and newN to get the final newN and newP.

Appl. Sci. 2022, 12, 4184 8 of 27

Algorithm 1: Hybrid sampling method combining ADASYN and RENN (ADRDB)

Input:
Minority class sample set, P.
Majority class sample set, N.

Output:
The balanced minority class sample set, newP.
The balanced majority class sample set, newN.

Process:
(1) d =|P|/|N|
(2) If d < dth

G = (|N|−|P|)× β

for each i ∈ [1, |P|] do
neighborsP = getNeighbors(P, N, k1)
ri = ∆i/k1

r̂i = ri/
mP

∑
i=1

ri

gi = r̂i × G
end for

(3) xzi = choose(xi, k1)
for each i ∈ [1, gi] do

xzi = choose(xi, k1)
si = xi + (xzi − xi)× λ

P = [P, si]
end for

(4) newP = P
(5) C =|N|−|newP|
(6) neighborsN = getNeighbors(N, newP, k2)
(7) for each j ∈ [1, |N|] do

numNeg(j) = negNum(neighborsN(i))
If numPos(i) > e

N = remove(i, N)
end for

(8) Repeat (6), (7)
(9) newN = N
(10) DBSCAN Algorithm to remove noise
(11) Return newP, newN

3.1.3. Feature Selection Algorithm

This paper proposes a new feature selection algorithm to address the problem of data
features redundancy. The algorithm first calculates the importance of sample features by
the Random Forest algorithm and ranks them in order of importance; then analyses the
correlation between features by Pearson’s index; and finally combines the two results to
select the features.

The Random Forest algorithm (RF) is an integrated learning algorithm using Decision
Trees as the base learner. In feature engineering, RF algorithms can identify important
features from a large number of sample features. The essence of the algorithm is to analyze
and calculate the contribution of each feature of the sample in the tree, and then calculate its
average value and compare the contribution between the features to identify the important
features [46]. Existing methods are usually evaluated using the Gini index or the out-of-bag
data error rate as an evaluation metric. The specific steps are as follows:

(1) For each base learner, select the corresponding out-of-bag data (some of the remaining
samples that are not selected) and calculate its error, denoted as error_a;

(2) Randomly add disturbances to the full sample of out-of-bag data and calculate its
error, noted as error_b;

(3) Assuming that the forest contains M trees, the value of Importance of a feature is
as follows:

Appl. Sci. 2022, 12, 4184 9 of 27

Importance =
error_b− error_a

M
(2)

(4) A new dataset is constructed by filtering out the features with a high level of importance.

The Pearson correlation coefficient is used to measure the correlation between two
variables X and Y. It has a value range of (−1, 1) [47]. The Pearson correlation coefficient is
obtained by calculating the covariance and standard deviation between the two eigenvalues
and quoting it by the following formula:

ρX,Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
(3)

Pearson’s correlation coefficient varies from −1 to 1. If the Pearson’s correlation co-
efficient is close to ±1, this indicates a high correlation between the two characteristics
and the relationship can be well represented by a linear equation. If the Pearson correla-
tion coefficient is close to zero, it means that there is no linear relationship between the
two features.

The pseudo code of the feature selection algorithm proposed in this paper is shown in
Algorithm 2.

Algorithm 2: Feature selection algorithm (RFP)

Input:
Original data set, D

Output:
Processed dataset, NewD

Procedure:

(1) Selecting out-of-bag data and calculating the error, noted as error_a.
(2) Randomly add disturbances to the out-of-bag data, noted as error_b.
(3) Calculating feature importance.
(4) Ranking the importance of the features.
(5) Calculating the Pearson correlation coefficient and performing a correlation analysis.
(6) Combine steps (4) and (5) for feature selection.
(7) Obtain the selected dataset, NewD.

The pre-processed dataset is obtained by converting the data after data balancing
and feature selection into a grayscale map. The converted grayscale plots for the different
categories are shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 27

Figure 2. Converted grayscale map.

3.2. Model Structure

3.2.1. Convolutional Block Attention Module

The purpose of introducing an attention mechanism in the model is mainly to im-

prove the representational power. It mainly means that we give a larger weight to im-

portant features and a smaller weight to unnecessary features. The Convolutional Block

Attention Module (CBAM) is a lightweight attention module proposed by Woo et al. in

2018, which contains of two main parts: the channel attention module and the spatial at-

tention module [48].

The specific structure of the channel attention module in CBAM is shown in Figure

3, which uses the relationship of features between channels to generate a channel attention

map to form the input. Afterwards, the spatial information is aggregated using Average-

pooling and Maxpooling, respectively, to generate two different sources of spatial infor-

mation c

avgF and max

cF . The two spatial information sources are fed into a shared network

consisting of a multi-layer perceptron and a hidden layer, which in turn generate the re-

quired channel attention graph cM , and finally output the feature vector by element sum-

mation.

1 0 1 0 max

() ((()) (()))

((()) (()))

c

c c

avg

M F MLP AvgPool F MLP MaxPool F

W W F W W F





= +

= +
 (4)

where σ represents the sigmoid function, 0W and 1W are the weights of the multilayer

perceptron, F is the input and cM is the final output.

Input Feature F

MaxPool

AvgPool
Channel Attention

Channel Attention Module

Shared MLP

sigmoid function feature concatenate

Figure 3. Channel Attention Module.

The specific structure of the spatial attention module in CBAM is shown in Figure 4,

which uses the spatial relationships between features to generate a spatial attention map

to form the input. Afterwards, two 2D feature maps s

avgF and max

sF are generated in turn

Normal Analysis Backdoor Dos Exploits

Fuzzers Generic Reconnaissance Shellcode Worms

Figure 2. Converted grayscale map.

Appl. Sci. 2022, 12, 4184 10 of 27

3.2. Model Structure
3.2.1. Convolutional Block Attention Module

The purpose of introducing an attention mechanism in the model is mainly to improve
the representational power. It mainly means that we give a larger weight to important
features and a smaller weight to unnecessary features. The Convolutional Block Atten-
tion Module (CBAM) is a lightweight attention module proposed by Woo et al. in 2018,
which contains of two main parts: the channel attention module and the spatial attention
module [48].

The specific structure of the channel attention module in CBAM is shown in Figure 3,
which uses the relationship of features between channels to generate a channel attention
map to form the input. Afterwards, the spatial information is aggregated using Aver-
agepooling and Maxpooling, respectively, to generate two different sources of spatial
information Fc

avg and Fc
max. The two spatial information sources are fed into a shared

network consisting of a multi-layer perceptron and a hidden layer, which in turn gen-
erate the required channel attention graph Mc, and finally output the feature vector by
element summation.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(4)

where σ represents the sigmoid function, W0 and W1 are the weights of the multilayer
perceptron, F is the input and Mc is the final output.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 27

Figure 2. Converted grayscale map.

3.2. Model Structure

3.2.1. Convolutional Block Attention Module

The purpose of introducing an attention mechanism in the model is mainly to im-

prove the representational power. It mainly means that we give a larger weight to im-

portant features and a smaller weight to unnecessary features. The Convolutional Block

Attention Module (CBAM) is a lightweight attention module proposed by Woo et al. in

2018, which contains of two main parts: the channel attention module and the spatial at-

tention module [48].

The specific structure of the channel attention module in CBAM is shown in Figure

3, which uses the relationship of features between channels to generate a channel attention

map to form the input. Afterwards, the spatial information is aggregated using Average-

pooling and Maxpooling, respectively, to generate two different sources of spatial infor-

mation c

avgF and max

cF . The two spatial information sources are fed into a shared network

consisting of a multi-layer perceptron and a hidden layer, which in turn generate the re-

quired channel attention graph cM , and finally output the feature vector by element sum-

mation.

1 0 1 0 max

() ((()) (()))

((()) (()))

c

c c

avg

M F MLP AvgPool F MLP MaxPool F

W W F W W F





= +

= +
 (4)

where σ represents the sigmoid function, 0W and 1W are the weights of the multilayer

perceptron, F is the input and cM is the final output.

Input Feature F

MaxPool

AvgPool
Channel Attention

Channel Attention Module

Shared MLP

sigmoid function feature concatenate

Figure 3. Channel Attention Module.

The specific structure of the spatial attention module in CBAM is shown in Figure 4,

which uses the spatial relationships between features to generate a spatial attention map

to form the input. Afterwards, two 2D feature maps s

avgF and max

sF are generated in turn

Normal Analysis Backdoor Dos Exploits

Fuzzers Generic Reconnaissance Shellcode Worms

Figure 3. Channel Attention Module.

The specific structure of the spatial attention module in CBAM is shown in Figure 4,
which uses the spatial relationships between features to generate a spatial attention map to
form the input. Afterwards, two 2D feature maps Fs

avg and Fs
max are generated in turn by

Averagepooling and Maxpooling, which effectively highlight the information region. The
two are finally fused and the desired 2D spatial attention map is generated by standard
convolution to output the feature vector.

Ms(F) = σ(f 7×7([AvgPool(F); MaxPool(F)]))
= σ(f 7×7([Fs

avg; Fs
max]))

(5)

where f 7×7 represents a convolution operation with filter size 7× 7, F is the input and Ms
is the final output.

Appl. Sci. 2022, 12, 4184 11 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 27

by Averagepooling and Maxpooling, which effectively highlight the information region.

The two are finally fused and the desired 2D spatial attention map is generated by stand-

ard convolution to output the feature vector.

7 7

7 7

max

() (([(); ()]))

(([;]))

s

s s

avg

M F f AvgPool F MaxPool F

f F F









=

=
 (5)

where 7 7f  represents a convolution operation with filter size 7 7 , F is the input and

sM is the final output.

Channel-refined

Feature
Spatial Attention

Spatial Attention Module

[MaxPool,AvgPool]

Conv layer

sigmoid function

Figure 4. Spatial attention module.

CBAM uses a channel attention module and a spatial attention module in turn, ena-

bling the model to learn the features of the channel and spatial axes respectively, as shown

in Figure 5. Given the initial feature map F as input, CBAM will generate 1D channel at-

tention feature maps cM and 2D spatial attention feature maps sM in turn. The whole

process is shown in Figure 5 and summarized as follows.

()c

s

F M F F

F M F F

 = 

  = （ ）
 (6)

where  denotes element-wise multiplication, F  is the output after the channel at-

tention module and F  is the final output.

Channel

Attention

Model

Spatial

Attention

Model

Input Feature F Refined Feature

Convolution Block Attention Module

''F
 element-wise multiplication

Figure 5. Convolutional block attention module.

3.2.2. Convolutional Neural Networks

The two main existing and more popular CNN structures are the Residual Network

(ResNet) [49] and the Inception Network [50], with ResNet proposing a concept of resid-

ual and Inception proposing a concept of split-transform-merge.

In order to improve the expressive power of CNN and to fully learn the diversity of

features in the classification process, with the idea of Inception, the data input is extracted

by multiple convolutional neural networks to ensure that they can learn simple to com-

plex feature transformations. 2D convolution has shown excellent performance in the field

Figure 4. Spatial attention module.

CBAM uses a channel attention module and a spatial attention module in turn, en-
abling the model to learn the features of the channel and spatial axes respectively, as shown
in Figure 5. Given the initial feature map F as input, CBAM will generate 1D channel
attention feature maps Mc and 2D spatial attention feature maps Ms in turn. The whole
process is shown in Figure 5 and summarized as follows.

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′

(6)

where ⊗ denotes element-wise multiplication, F′ is the output after the channel attention
module and F′′ is the final output.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 27

by Averagepooling and Maxpooling, which effectively highlight the information region.

The two are finally fused and the desired 2D spatial attention map is generated by stand-

ard convolution to output the feature vector.

7 7

7 7

max

() (([(); ()]))

(([;]))

s

s s

avg

M F f AvgPool F MaxPool F

f F F









=

=
 (5)

where 7 7f  represents a convolution operation with filter size 7 7 , F is the input and

sM is the final output.

Channel-refined

Feature
Spatial Attention

Spatial Attention Module

[MaxPool,AvgPool]

Conv layer

sigmoid function

Figure 4. Spatial attention module.

CBAM uses a channel attention module and a spatial attention module in turn, ena-

bling the model to learn the features of the channel and spatial axes respectively, as shown

in Figure 5. Given the initial feature map F as input, CBAM will generate 1D channel at-

tention feature maps cM and 2D spatial attention feature maps sM in turn. The whole

process is shown in Figure 5 and summarized as follows.

()c

s

F M F F

F M F F

 = 

  = （ ）
 (6)

where  denotes element-wise multiplication, F  is the output after the channel at-

tention module and F  is the final output.

Channel

Attention

Model

Spatial

Attention

Model

Input Feature F Refined Feature

Convolution Block Attention Module

''F
 element-wise multiplication

Figure 5. Convolutional block attention module.

3.2.2. Convolutional Neural Networks

The two main existing and more popular CNN structures are the Residual Network

(ResNet) [49] and the Inception Network [50], with ResNet proposing a concept of resid-

ual and Inception proposing a concept of split-transform-merge.

In order to improve the expressive power of CNN and to fully learn the diversity of

features in the classification process, with the idea of Inception, the data input is extracted

by multiple convolutional neural networks to ensure that they can learn simple to com-

plex feature transformations. 2D convolution has shown excellent performance in the field

Figure 5. Convolutional block attention module.

3.2.2. Convolutional Neural Networks

The two main existing and more popular CNN structures are the Residual Network
(ResNet) [49] and the Inception Network [50], with ResNet proposing a concept of residual
and Inception proposing a concept of split-transform-merge.

In order to improve the expressive power of CNN and to fully learn the diversity of
features in the classification process, with the idea of Inception, the data input is extracted
by multiple convolutional neural networks to ensure that they can learn simple to complex
feature transformations. 2D convolution has shown excellent performance in the field
of computer vision, so this paper uses 2D convolution to extract the spatial features of
the data.

The CNN module used in this paper is described as follows: firstly, the processed
grayscale maps are input to the strides as 1 × 1, 1 × 1 and 3 × 3 convolutional modules
to extract features, respectively. After that, the resulting features are fused to obtain the
processed feature maps. Its structure is shown in Figure 6.

Appl. Sci. 2022, 12, 4184 12 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 27

of computer vision, so this paper uses 2D convolution to extract the spatial features of the

data.

The CNN module used in this paper is described as follows: firstly, the processed

grayscale maps are input to the strides as 1 × 1, 1 × 1 and 3 × 3 convolutional modules to

extract features, respectively. After that, the resulting features are fused to obtain the pro-

cessed feature maps. Its structure is shown in Figure 6.

1×1 CNN

1×1 CNN

3×3 CNN

Input Feature

V

CNN Model

H

W
C

Output Feature

Vm

C

H

W

Feature concatenate

I

III

II

Figure 6. CNN structure.

3.2.3. Model Structure

The intrusion detection model proposed in this paper consists of three main parts: in

order to comprehensively and finitely learn the features of the data, the features are firstly

assigned different weights through the CBAM attention mechanism module based on re-

sidual; secondly, the spatial features are extracted through the CNN module, and the spa-

tial information is further aggregated using fused Averagepooling and Maxpooling; then

the temporal features are extracted through GRU, and finally the classification is carried

out through the Softmax function, the specific structure of which is shown in Figure 7.

(1) The grayscale map obtained after pre-processing is input to the CBAM module based

on residual, and the features are given different weights to obtain the output F.

(2) The new feature map F is input into the CNN module for feature extraction, after

which the spatial information is aggregated using Maxpooling and Averagepooling

to obtain the new feature map CF .

(3) Pass CF to the GRU unit to extract the dependencies between features and obtain

the output GF .

(4) Pass GF to the fully connected layer, which uses Softmax as the activation function

to achieve the classification of intrusion detection behavior.

Figure 6. CNN structure.

3.2.3. Model Structure

The intrusion detection model proposed in this paper consists of three main parts:
in order to comprehensively and finitely learn the features of the data, the features are
firstly assigned different weights through the CBAM attention mechanism module based
on residual; secondly, the spatial features are extracted through the CNN module, and the
spatial information is further aggregated using fused Averagepooling and Maxpooling;
then the temporal features are extracted through GRU, and finally the classification is
carried out through the Softmax function, the specific structure of which is shown in
Figure 7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 27

Model Structure

G
R

U

Normal

Exploits

Dos

Backdoor

Analysis

Fuzzers

Generic

Recon.

Shellcode

Worms

Classified

Traffic

S
o

ftm
a
x

MaxPooling

AveragePooling

G
ray

scale

im
ag

e

R
esh

a
p

e

G
R

U

Spatial

Attention

Input

Feature
Output

Feature

Conv

F Channel

Attention

C
N

N
 M

o
d

u
le

R
esB

lo
ck

+
C

B
A

M

Figure 7. Intrusion detection model structure diagram.  denotes element-wise multiplication

and  denotes feature concatenate.

4. Experimental Simulations

4.1. Experimental Setup

In order to test the performance of the proposed network intrusion detection method

fusing CNN and GRU, several sets of experiments are designed in this paper.

Experiment 1: Feature selection analysis experiment

Experiment 2: Comparison of different feature selection methods

Experiment 3: Comparison of different sampling methods

Experiment 4: Comparison of single model and hybrid model

Experiment 5: Comparison of different pooling methods

Experiment 6: Performance comparison experiment

The intrusion detection model experiments and comparison experiments presented

in this paper were conducted on a 64-bit Windows Intel(R) Core (TM) i7-7700HQ CPU

(2.80 GHz) with 16 GB RAM and a python-based Nvidia GeForce GTX 1050 GPU (4 GB),

using Python’s TensorFlow library to write the CNN and GRU models for this paper.

After several experimental validations, the parameters of the model in this paper are

specified in Table 2.

Table 2. Model parameter settings.

Model Parameters Parameter Settings

Batch size 1024

Loss function SparseCategoricalCrossentropy

Optimizer SGD

Optimizer learning rate 0.001

Epoch 200

Resblock + CBAM 64

GRU 32/64/128

Dropout 0.5

4.2. Dataset and Evaluation Criteria

Over the years, many datasets related to intrusion detection have been introduced

for research and development, including KDDCup99 [51], UNSW-NB15 [52], NSL-KDD

[53], CIC-IDS2017 [54] and LITNET-2020 [55]. In this paper, we choose to use the UNSW-

NB15, NSL-KDD and CIC-IDS2017 datasets to evaluate the proposed model. These da-

tasets are the more widely used datasets in the existing intrusion detection field. The NSL-

Figure 7. Intrusion detection model structure diagram. ⊗ denotes element-wise multiplication and
⊕ denotes feature concatenate.

(1) The grayscale map obtained after pre-processing is input to the CBAM module based
on residual, and the features are given different weights to obtain the output F.

(2) The new feature map F is input into the CNN module for feature extraction, after
which the spatial information is aggregated using Maxpooling and Averagepooling to
obtain the new feature map FC.

(3) Pass FC to the GRU unit to extract the dependencies between features and obtain the
output FG.

(4) Pass FG to the fully connected layer, which uses Softmax as the activation function to
achieve the classification of intrusion detection behavior.

Appl. Sci. 2022, 12, 4184 13 of 27

4. Experimental Simulations
4.1. Experimental Setup

In order to test the performance of the proposed network intrusion detection method
fusing CNN and GRU, several sets of experiments are designed in this paper.

Experiment 1: Feature selection analysis experiment
Experiment 2: Comparison of different feature selection methods
Experiment 3: Comparison of different sampling methods
Experiment 4: Comparison of single model and hybrid model
Experiment 5: Comparison of different pooling methods
Experiment 6: Performance comparison experiment

The intrusion detection model experiments and comparison experiments presented
in this paper were conducted on a 64-bit Windows Intel(R) Core (TM) i7-7700HQ CPU
(2.80 GHz) with 16 GB RAM and a python-based Nvidia GeForce GTX 1050 GPU (4 GB),
using Python’s TensorFlow library to write the CNN and GRU models for this paper.

After several experimental validations, the parameters of the model in this paper are
specified in Table 2.

Table 2. Model parameter settings.

Model Parameters Parameter Settings

Batch size 1024
Loss function SparseCategoricalCrossentropy

Optimizer SGD
Optimizer learning rate 0.001

Epoch 200
Resblock + CBAM 64

GRU 32/64/128
Dropout 0.5

4.2. Dataset and Evaluation Criteria

Over the years, many datasets related to intrusion detection have been introduced for
research and development, including KDDCup99 [51], UNSW-NB15 [52], NSL-KDD [53],
CIC-IDS2017 [54] and LITNET-2020 [55]. In this paper, we choose to use the UNSW-NB15,
NSL-KDD and CIC-IDS2017 datasets to evaluate the proposed model. These datasets are
the more widely used datasets in the existing intrusion detection field. The NSL-KDD
dataset is a relatively early dataset applied to the field of intrusion detection, and the related
research is more mature. UNSW_NB15 and CIC-IDS2017 are recent datasets that can better
reflect the real network environment. The specific descriptions of the three datasets are
shown below.

The NSL-KDD dataset is an improvement of the KDD99 dataset, which removes the
redundant and duplicate data from the training and testing sets on the basis of the KDD99
dataset, so that the training and testing sets are set up in a more reasonable way. It mainly
contains 41-dimensional attribute features and one-dimensional category features, covering
five types of Normal, Probe, Dos, R2L, U2R. The distribution of different categories of
attacks in the dataset is shown in Table 3.

Table 3. Distribution of different attack behaviors in the NSL-KDD dataset.

Dataset
Attack Behavior

Total
Normal Dos Probe R2L U2R

KDDTrain+ 67,343 45,927 11,656 995 52 125,973
KDDTest+ 9889 7460 2707 2421 67 22,544

Total 77,232 53,387 14,363 3416 119 148,517

Appl. Sci. 2022, 12, 4184 14 of 27

The UNSW-NB15 dataset is a new dataset generated in 2015 by the Cyber Range
Laboratory of the Australian Centre for Cyber Security (ACCS) using the IXIA PerfectStorm
tool to simulate realistic cyber environments. The dataset mainly consists of 47 attribute
features and two category features, and contains nine attack techniques: Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, Worms. In this paper, we
directly use the initial training set and testing set to test the performance of the model. The
distribution of different categories of attacks in the dataset is shown in Table 4.

Table 4. Distribution of different attack behaviors in the UNSW_NB15 dataset.

Dataset
Attack Behaviors

Total
Normal Fuzzers Analysis Backdoors DoS Exploits Generic Recon. Shellcode Worms

Train 56,000 18,174 2000 1746 12,264 33,393 40,000 10,491 1133 130 175,341
Test 37,000 6062 677 583 4089 11,132 18,871 3496 378 44 82,332
Total 93,000 24,246 2677 2329 16,353 44,525 58,871 13,987 1511 174 257,673

The CIC-IDS2017 dataset is derived from the 3–7 July 2017 Canadian Institute for
Cybersecurity (CIC) collection for cyber data, which contains benign as well as recent
common attacks in the field of cyber intrusions, filling the gap of no cyber-based attacks
in the UNSW-NB15 dataset. The dataset contains 78-dimensions of attribute features and
one-dimension of category features covering 15 attack types. In this paper, the anomalous
behaviors of a similar nature are merged, and the final dataset contains nine types of attacks:
Benign, Dos, Portscan, Ddos, Patator, Bot, Web attack, Infiltration, and Heartbleed. The
distribution of different categories of attacks in the dataset is shown in Table 5.

Table 5. Distribution of different attack behaviors in the CIC-IDS2017 dataset.

Dataset
Attack Behaviors

Total
BENIGN Dos PortScan Patator Ddos Bot Web

Attack Infiltration Heartbleed

Train 1,654,737 176,863 111,251 9685 89,619 2752 1526 25 7 2,046,465
Test 709,173 75,798 47,679 4150 38,408 1180 654 11 4 877,057
Total 2,363,910 252,661 158,930 13,835 128,027 3932 2180 36 11 2,923,522

The evaluation metrics of the network security intrusion detection model include four
main metrics: precision, accuracy, recall, and F1-score. In the specific detection results, T
(true) and F (false) represent correctly or incorrectly classified data, respectively. P (positive)
and N (negative) indicate that the predicted results of the detection system are abnormal or
normal data, respectively. All data in the dataset must be classified into four categories:
TP, TN, FP and FN. Only TP indicates that the system’s classification result consists of
abnormal attack data and the classification result is correct; TN indicates that the system’s
classification result is positive and correct; FP indicates that the system predicts the data
as abnormal attack data although the classification result is wrong; FN indicates that the
system predicts the data as normal data although the classification result is incorrect. The
classification results of the model for the data are represented by the confusion matrix, as
shown in Table 6.

Table 6. Confusion matrix.

Classification Predicted Positive Category Predicted Negative Category

Actual Positive Category TP FN
Actual Negative Category FP TN

Appl. Sci. 2022, 12, 4184 15 of 27

Accuracy describes the ratio of the number of correct samples predicted to the total
number of samples and is calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Precision describes the ratio of the number of classes predicted to be positive to the
number of classes actually predicted to be positive, calculated as follows.

Precision =
TP

TP + FP
(8)

Recall describes the ratio of the number of predicted positive classes that are actually
positive to the number of all positive classes and is calculated as follows.

Recall =
TP

TP + FN
(9)

F1− score describes the magnitude of the harmonic mean between precision and recall,
calculated as follows.

F1 − score =
2× recall × precision

recall + precision
(10)

It can be seen that F1 achieves larger values when both recall and precision have
larger values.

4.3. Experimental Results and Analysis

In order to fully verify the effectiveness of the model proposed, several sets of ex-
periments are set up in this paper: Section 4.3.1 sets up the feature selection analysis
experiment to introduce the process and results of feature selection in detail; Section 4.3.2
sets up experiments on the comparison of different feature selection methods to compare
the advantages and disadvantages of the RFP algorithm proposed in this paper, com-
pared with existing algorithms used in the field of intrusion detection; Section 4.3.3 sets
up experiments on the comparison of a single model and hybrid model to compare the
advantages and disadvantages of the ADRDB algorithm proposed in this paper compared
with other sampling methods; Section 4.3.4 sets up different sampling methods to verify
the effectiveness of the proposed method; Section 4.3.5 sets up different pooling methods’
comparison experiments to analyze the effect of using only one pooling method and mixed
pooling on the performance of the model; Section 4.3.6 sets up run-time comparison ex-
periments to evaluate the run-time performance of the proposed model; Section 4.3.7 sets
up performance analysis and comparison experiments to analyze the convergence of the
CNN-GRU model, its effectiveness in detecting different classes, and also compares it with
existing models. Section 4.3.8 sets up a statistical test to accurately evaluate the proposed
intrusion detection method.

4.3.1. Experiment on Feature Selection Analysis

In order to verify the classification performance of the CNN-GRU algorithm pro-
posed in this paper, the public dataset UNSW_NB15, NSL-KDD and CIC-IDS2017 were
selected. This section focuses on the UNSW_NB15 dataset for detailed introduction. The
detailed process of feature selection is mainly introduced for the RFP algorithm proposed
in this paper.

In this paper, the importance of each feature in the dataset UNSW_NB15 is first calcu-
lated by the Random Forest algorithm and ranked according to the degree of importance,
as shown in Figure 8. From the figure, it can be seen that the importance degree of different
features varies greatly, for example, the importance value of feature sbytes is 0.115, while
the importance value of is_ftp_login and ct_ftp_cmd is zero. The importance metrics of all
features are distributed between 0 and 0.12.

Appl. Sci. 2022, 12, 4184 16 of 27

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 27

with existing models. Section 4.3.8 sets up a statistical test to accurately evaluate the pro-

posed intrusion detection method.

4.3.1. Experiment on Feature Selection Analysis

In order to verify the classification performance of the CNN-GRU algorithm pro-

posed in this paper, the public dataset UNSW_NB15, NSL-KDD and CIC-IDS2017 were

selected. This section focuses on the UNSW_NB15 dataset for detailed introduction. The

detailed process of feature selection is mainly introduced for the RFP algorithm proposed

in this paper.

In this paper, the importance of each feature in the dataset UNSW_NB15 is first cal-

culated by the Random Forest algorithm and ranked according to the degree of im-

portance, as shown in Figure 8. From the figure, it can be seen that the importance degree

of different features varies greatly, for example, the importance value of feature sbytes is

0.115, while the importance value of is_ftp_login and ct_ftp_cmd is zero. The importance

metrics of all features are distributed between 0 and 0.12.

Figure 8. Feature importance map for the UNSW_NB15 dataset.

Feature selection based on feature importance alone is a single reference criterion and

the results obtained are not very convincing, so this paper combines feature importance

and Pearson correlation analysis for feature selection. In order to visualize the correlation

between features, a feature correlation diagram was created as shown in Figure 9. From

the figure, the degree of correlation is clear between these 42-dimensional features. In or-

der to further observe whether feature X and Y show correlation in the plane distribution,

a correlation graph with feature X as the x-axis and feature Y as the y-axis is established.

Due to the large number of data feature dimensions, this paper selects two types of fea-

tures with correlation indices greater than or equal to 0.9 or less than or equal to −0.9 for

analysis and introduction, as shown in Table 7.

sb
yt

es
sm

ea
n

ct
_s

rv
_d

st
st

tl

ct
_d

st
_s

po
rt

_l
tm

se
rv

ic
e

ct
_s

rc
_d

po
rt

_l
tm

ct
_s

rv
_s

rc

ct
_d

st
_s

rc
_l

tm ra
te

sl
oa

d
db

yt
es

ct
_s

ta
te

_t
tl

dm
ea

n
pr

ot
o

dl
oa

d
ct

_d
st

_l
tm du

r
dt

tl
tc

pr
tt

ac
kd

at
dp

kt
s

si
np

kt
sy

na
ck sj
it

ct
_s

rc
_l

tm
di

np
kt

sp
kt

s
sl

os
s

dl
os

s
dj

it
dt

cp
b

st
cp

b
st

at
e

sw
in

re
sp

on
se

_b
od

y_
le

n

ct
_f

lw
_h

tt
p_

m
th

d
tr

an
s_

de
pt

h

is
_s

m
_i

ps
_p

or
ts

dw
in

is
_f

tp
_l

og
in

ct
_f

tp
_c

m
d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Im
po
rt
an
ce

Feature

Figure 8. Feature importance map for the UNSW_NB15 dataset.

Feature selection based on feature importance alone is a single reference criterion and
the results obtained are not very convincing, so this paper combines feature importance
and Pearson correlation analysis for feature selection. In order to visualize the correlation
between features, a feature correlation diagram was created as shown in Figure 9. From the
figure, the degree of correlation is clear between these 42-dimensional features. In order
to further observe whether feature X and Y show correlation in the plane distribution, a
correlation graph with feature X as the x-axis and feature Y as the y-axis is established. Due
to the large number of data feature dimensions, this paper selects two types of features
with correlation indices greater than or equal to 0.9 or less than or equal to −0.9 for analysis
and introduction, as shown in Table 7.

Table 7. Feature Correlation Index.

Features Correlation Index Features Correlation Index

spkts sbytes 0.964 tcprtt synack 0.943
spkts sloss 0.972 tcprtt ackdat 0.920
dpkts dbytes 0.973 ct_srv_src ct_dst_src_ltm 0.954
dpkts dloss 0.980 ct_srv_src ct_srv_dst 0.949
sbytes sloss 0.996 ct_dst_ltm ct_src_dport_ltm 0.962
dbytes dloss 0.997 ct_dst_ltm ct_src_ltm 0.902
sinpkt is_sm_ips_ports 0.942 ct_src_dport_ltm ct_dst_sport_ltm 0.908
swin dwin 0.980 ct_src_dport_ltm ct_src_ltm 0.909

ct_dst_src_ltm ct_srv_dst 0.960 is_ftp_login ct_ftp_cmd 0.999

Combining Figures 8 and 9 for feature selection. For features with strong linear
correlation, the more important features are retained according to the degree of importance;
for features with weak linear correlation, the importance index of the features is analyzed,
and if it is lower than 0.001, they are eliminated; for features whose correlation index is not
within the analysis interval, their importance index is also analyzed, and those features
with an importance level below 0.0001 are excluded. Finally, the NSL-KDD dataset leaves
28-dimensional features, the UNSW_NB15 dataset leaves 28-dimensional features, and the
CIC-IDS2017 dataset leaves 52 features.

Appl. Sci. 2022, 12, 4184 17 of 27Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 27

Figure 9. Heat map of features in the UNSW_NB15 dataset.

Table 7. Feature Correlation Index.

Features Correlation Index Features Correlation Index

spkts sbytes 0.964 tcprtt synack 0.943

spkts sloss 0.972 tcprtt ackdat 0.920

dpkts dbytes 0.973 ct_srv_src ct_dst_src_ltm 0.954

dpkts dloss 0.980 ct_srv_src ct_srv_dst 0.949

sbytes sloss 0.996 ct_dst_ltm ct_src_dport_ltm 0.962

dbytes dloss 0.997 ct_dst_ltm ct_src_ltm 0.902

sinpkt is_sm_ips_ports 0.942 ct_src_dport_ltm ct_dst_sport_ltm 0.908

swin dwin 0.980 ct_src_dport_ltm ct_src_ltm 0.909

ct_dst_src_ltm ct_srv_dst 0.960 is_ftp_login ct_ftp_cmd 0.999

Combining Figures 8 and 9 for feature selection. For features with strong linear cor-

relation, the more important features are retained according to the degree of importance;

for features with weak linear correlation, the importance index of the features is analyzed,

and if it is lower than 0.001, they are eliminated; for features whose correlation index is

not within the analysis interval, their importance index is also analyzed, and those fea-

tures with an importance level below 0.0001 are excluded. Finally, the NSL-KDD dataset

leaves 28-dimensional features, the UNSW_NB15 dataset leaves 28-dimensional features,

and the CIC-IDS2017 dataset leaves 52 features.

4.3.2. Comparison Experiments of Different Feature Selection Methods

In order to verify the effectiveness and applicability of the feature selection method

proposed in this paper, a comparison experiment of different feature selection methods is

set up in this section: the feature selection method (RFP) proposed in this paper is com-

pared with existing feature selection methods such as PCA [23] and AE [24] under the

Figure 9. Heat map of features in the UNSW_NB15 dataset.

4.3.2. Comparison Experiments of Different Feature Selection Methods

In order to verify the effectiveness and applicability of the feature selection method
proposed in this paper, a comparison experiment of different feature selection methods
is set up in this section: the feature selection method (RFP) proposed in this paper is
compared with existing feature selection methods such as PCA [23] and AE [24] under
the same experimental conditions. The data obtained after pre-processing is first sampled
using the ADRDB algorithm to balance the data set, and then the features of the NSL-
KDD dataset are reduced to 28 dimensions; the features of the UNSW_NB15 dataset are
reduced to 28dimensions; and the features of the CIC-IDS2017 dataset are reduced to 52
dimensions by the above three methods, respectively. Finally, the classification experiments
are conducted by the proposed model in the paper, and the model parameters are set as
shown in Table 1. The results obtained are shown in Table 8. The bold text indicates the
evaluation indicators of the proposed model.

Table 8. Comparison of different feature selection methods.

Dataset Feature Selection Method
Evaluation Indicators (%)

Accuracy Precision Recall F1-Score

NSL-KDD
RFP 99.69 99.65 99.69 99.70
PCA 98.26 98.79 98.26 98.48
AE 97.61 97.63 97.61 97.59

UNSW_NB15
RFP 86.25 86.92 86.25 86.59
PCA 79.37 79.70 79.37 76.92
AE 81.01 80.43 81.01 80.05

CIC-IDS2017
RFP 99.65 99.63 99.65 99.64
PCA 89.64 93.02 89.64 90.60
AE 98.66 98.70 98.66 98.67

Appl. Sci. 2022, 12, 4184 18 of 27

From Table 8, it can be seen that the results obtained after using the data processed by
the RFP algorithm proposed in this paper in the model are better. Analysis of the reasons
for this shows that: the PCA method relies more on the variance when downscaling the
data, while the non-principal components with small variance may also contain important
information on the differences of the samples, and the downscaling process will have
an impact on the subsequent data processing; the AE method is more dependent on the
training data when reconstructing the feature space, thus, neither one of the above two
methods has achieved better results. The RFP algorithm proposed in this paper starts
from the data itself and selects features according to their importance and the correlation
between them, which can improve the classification accuracy of the model.

4.3.3. Experiment Comparing Single Model with Hybrid Model

In order to verify the effectiveness of the model proposed in this paper on intrusion
recognition, this section sets up performance analysis experiments on the intrusion detec-
tion model fusing CNN and GRU: under the same experimental conditions, the dataset
was processed by sampling the preprocessing methods mentioned in Section 3.1 of the text,
after which CNN, GRU and CNN-GRU were tested through the UNSW-NB15, NSL-KDD
and CIC-IDS2017 datasets to obtain their classification accuracy, precision, recall and F1-
score values as shown in Table 9. The bold text indicates the evaluation indicators of the
proposed model.

Table 9. Comparison of single and hybrid models.

Dataset Feature Selection Method
Evaluation Indicators (%)

Accuracy Precision Recall F1-Score

NSL-KDD
CNN 98.22 98.23 98.22 98.18
GRU 98.67 98.95 98.67 98.78

CNN-GRU 99.69 99.65 99.69 99.70

UNSW_NB15
CNN 84.51 84.08 84.51 84.29
GRU 83.69 83.81 83.68 83.74

CNN-GRU 86.25 86.92 86.25 86.59

CIC-IDS2017
CNN 92.94 93.24 92.94 92.04
GRU 98.15 98.36 98.15 98.16

CNN-GRU 99.65 99.63 99.65 99.64

As can be seen from the table, compared to using a single model of CNN and GRU,
the CNN-GRU model can effectively extract the features of the original data and then
effectively perform intrusion detection. The detection accuracy, recall, precision, and F1
score of dataset NSL-KDD reached 99.69%, 99.65%, 99.69%, and 99.70%, respectively; the
detection accuracy, recall, precision, and F1 score of dataset UNSW_NB15 reached 86.25%,
86.92%, 86.25%, and 85.59%, respectively; and the detection accuracy, recall, precision, and
F1 score of dataset CIC-IDS2017 reached 99.65%, 99.63%, 99.65%, and 99.64%, respectively.
The reason for this is that the CNN structure can learn spatial features effectively by
deepening the width of the network, while the GRU structure can extract temporal features
of the data better. The model in this paper fuses CNN and GRU to learn both spatial and
temporal features of the data, and introduces the attention mechanism to learn features
comprehensively and effectively, thus achieving better results.

4.3.4. Comparison Experiments of Different Sampling Methods

In order to solve the problem of unbalanced dataset, this paper adopts a hybrid
ADASYN and RENN sampling method (ADRDB algorithm) to process the dataset, in
order to verify the effectiveness of the proposed method, this section sets up a comparison
experiment of different sampling methods: under the same experimental conditions, the
model uses seven different methods, SMOTE, ADASYN, random oversampler, ENN,
RENN, random undersampler, and ADRDB, to handle the imbalanced data set. The RFP

Appl. Sci. 2022, 12, 4184 19 of 27

algorithm is then used to filter the features. Finally, the classification experiments are
conducted by the proposed model in the paper, and the model parameters are set as shown
in Table 1. The resulting detection accuracy is shown in Table 10. The bold text indicates
the evaluation indicators of the proposed model.

Table 10. Comparison of different sampling methods.

Dataset Feature Selection Method
Evaluation Indicators (%)

Accuracy Precision Recall F1-Score

NSL-KDD

Random Oversampler 92.79 95.12 92.79 93.74
Random Undersampler 84.83 93.26 84.93 87.04

SMOTE 98.97 99.03 98.97 98.99
ADASYN 98.35 98.83 98.35 98.57

ENN 98.85 98.87 98.85 98.85
RENN 98.02 98.06 98.02 98.03

ADASYN + RENN 99.69 99.65 99.69 99.70

UNSW_NB15

Random Oversampler 81.90 82.27 81.90 79.33
Random Undersampler 73.09 79.69 73.09 72.33

SMOTE 83.51 81.08 83.51 82.71
ADASYN 83.04 80.69 83.04 84.23

ENN 80.12 78.98 80.12 77.49
RENN 81.40 81.93 81.40 81.66

ADASYN + RENN 86.25 86.92 86.25 86.59

CIC-IDS2017

Random Oversampler 96.09 95.87 96.09 95.98
Random Undersampler 17.24 81.48 17.24 17.46

SMOTE 92.13 92.13 92.13 92.03
ADASYN 97.38 97.41 97.38 97.36

ENN 95.20 95.51 95.20 94.74
RENN 97.05 97.13 97.05 97.01

ADASYN + RENN 99.65 99.63 99.65 99.64

As can be seen from the table, comparing a variety of different sampling methods,
the ADRDB algorithm proposed in this paper has better processing effect for unbalanced
samples. The reasons for the analysis are that the single oversampling methods such as
Random Oversampler, SMOTE and ADASYN cannot effectively discriminate the noisy data
and are prone to generate a large amount of noisy data in the process of synthesizing new
samples, which in turn leads to the degradation of the classification effect of the model; the
single undersampling methods such as Random Undersampler, ENN and RENN are prone
to losing key information of most classes of samples, which in turn leads to the degradation
of the classification effect of the model. In this paper, the proposed hybrid sampling method
samples the majority and minority samples separately, and rejects the noisy data by the
DBSCAN algorithm, which not only avoids the loss of key information, but also reduces
the influence of noisy data on the classifier model, thus achieving better results.

4.3.5. Comparison Experiments with Different Pooling Methods

In this paper, we use a fusion of max pooling and average pooling to solve the
problem of insufficient feature extraction ability of the model. To verify the effectiveness of
the proposed method, this section sets up a comparison experiment of different pooling
methods: under the same experimental conditions, the dataset is first processed by the
preprocessing method mentioned in Section 3.1, and then the model is used to aggregate
spatial information by three different methods: average pooling, maximum pooling, and
fusion pooling, respectively. The model parameters are still used as those given in Table 1.
The resulting detection accuracy is shown in Table 11. The bold text indicates the evaluation
indicators of the proposed model.

Appl. Sci. 2022, 12, 4184 20 of 27

Table 11. Comparison of different pooling methods.

Dataset Pooling Method
Evaluation Indicators (%)

Accuracy Precision Recall F1-Score

NSL-KDD
Averagepooling 98.96 98.95 98.96 98.94

Maxpooling 98.42 98.38 98.42 98.39
Averagepooling + Maxpooling 99.69 99.65 99.69 99.70

UNSW_NB15
Averagepooling 83.13 84.97 83.13 84.03

Maxpooling 83.25 84.96 83.25 84.10
Averagepooling + Maxpooling 86.25 86.92 86.25 86.59

CIC-IDS2017
Averagepooling 98.55 98.64 98.55 96.37

Maxpooling 93.85 94.52 93.85 93.89
Averagepooling + Maxpooling 99.65 99.63 99.65 99.64

The reason for this is that Averagepooling is used to extract features by averaging
the global range of features, while Maxpooling is used to extract features by taking the
maximum value of the feature points in the domain. The experimental results show
that fusion pooling effectively improves the model’s ability to learn features, and the
classification results are greatly improved.

4.3.6. Comparison Experiments of Run-Time Performance

To evaluate the run-time performance of the proposed model, this section sets up
comparison experiments. Under the same experimental conditions, experiments are con-
ducted for each of the following five scenarios to compare their training and prediction
time and classification accuracy. These five scenarios are described as follows: (1) “Before
RFP” means that the data is only sampled using the ADRDB algorithm during the data
pre-processing stage, and then the data is converted into grayscale maps for input into the
classification model; (2) “Before RFP” means that the data is not sampled using the ADRDB
algorithm in the pre-processing stage, and the normalized data is only selected using the
RFP algorithm, and then the data is converted into a grayscale map for input into the
classification model; (3) “CNN” means that the data is preprocessed using the method de-
scribed in Section 3.1, and then converted to grayscale maps for input into the classification
model, which uses only the CNN structure; (4) “GRU” means that the data is preprocessed
using the method described in Section 3.1, and then converted to grayscale maps for input
into the classification model, which uses only the GRU structure; (5) “Proposed Model”
indicates that the data are pre-processed using the method described in Section 3.1, and
then the data are converted into grayscale maps for input into the proposed classification
model. Besides, “Train” indicates the time taken to train the model for 200 epochs. The
obtained experimental results are shown in Table 12. The bold text indicates the evaluation
indicators of the proposed model.

From Table 12, the model proposed in this paper consumes more time than “CNN”,
“GRU”, “Before ADRDB” and less time than “Before RFP”. The main reasons are as follows:
The ADRDB algorithm generates new samples after the sampling is completed, resulting
in more samples being used for training and testing, and thus takes more time. The RFP
algorithm results in a decrease in the number of features in the samples after the feature
selection is completed, and thus takes less time. When using a single CNN or GRU structure,
the number of model parameters is smaller and thus the time spent is relatively less. The
proposed model in this paper consumes relatively more time, however the model accuracy
is greatly improved.

Appl. Sci. 2022, 12, 4184 21 of 27

Table 12. Comparison of run-time performance.

Dataset
(Train/Test) Method

Evaluation Indicators

Train/s Prediction/s Total
Time/s Accuracy

NSL-KDD
(125973/22544)

Before RFP 739.6 9.51 749.11 98.71
Before ADRDB 617.2 9.53 626.73 98.59

CNN 633.2 7.31 640.51 98.22
GRU 272.4 4.89 277.29 98.67

Proposed Model 648.4 8.75 657.15 99.69

UNSW_NB15
(175341/82332)

Before RFP 1553.6 25.03 1578.6 85.69
Before ADRDB 1259 28.74 1287.7 85.56

CNN 1118 18.11 1136.1 84.51
GRU 785.6 5.63 791.23 83.69

Proposed Model 1423.6 30.87 1454.47 86.25

CIC-IDS2017
(1654737/709173)

Before RFP 23450.4 286.35 23736.75 98.73
Before ADRDB 21548.4 268.39 21816.79 98.82

CNN 16500 185.75 16685.75 92.94
GRU 4146.4 52.8 4199.2 98.15

Proposed Model 21,200.2 275.67 21475.9 99.65

4.3.7. Performance Analysis and Comparison Experiments

Figure 10 gives a graph of the classification accuracy and loss value of the intrusion
detection model CNN-GRU with the number of iteration steps. From the figure, it can be
seen that the model in this paper achieves a good convergence effect.

In order to further verify the effectiveness of the intrusion detection model proposed
in this paper, a performance comparison experiment is set up in this section: under the
same experimental conditions, common machine learning methods such as random forest,
K-mean clustering, decision tree and other recently proposed intrusion detection models
are applied to the dataset, and the performance comparison is shown in Table 13. The bold
text indicates the evaluation indicators of the proposed model.

Compared to machine learning algorithms, this model learns features through neural
networks, which can combine low-level features to form a more abstract and non-linear
high-level representation, and then explore the input–output relationship between data,
effectively improving the accuracy of intrusion detection. Compared to the S-ResNet, CNN,
CNN-GRU, CNN-LSTM, CNN-BiLSTM and CNN-GRU-attention models, the intrusion de-
tection model CNN-GRU proposed in this paper reduces the effects of feature redundancy
and class imbalance on the one hand, and can extract both spatial and temporal features of
the data on the other hand, so that the extracted feature information is more comprehensive
and thus achieves better results.

Appl. Sci. 2022, 12, 4184 22 of 27Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 27

(a)

(b)

(c)

Figure 10. Accuracy and loss value curves with iteration steps: (a) Accuracy, loss value with the

number of iteration steps curve of the NSL-KDD dataset; (b) Accuracy, loss value with the number

of iteration steps curve of the UNSW_NB15 dataset; (c) Accuracy, loss value with the number of

iteration steps curve of the CIC-IDS2017 dataset.

In order to further verify the effectiveness of the intrusion detection model proposed

in this paper, a performance comparison experiment is set up in this section: under the

same experimental conditions, common machine learning methods such as random for-

est, K-mean clustering, decision tree and other recently proposed intrusion detection

models are applied to the dataset, and the performance comparison is shown in Table 13.

The bold text indicates the evaluation indicators of the proposed model.

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Epoch

 train-acc

 val-acc

0 50 100 150 200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
o

ss

Epoch

 train-loss

 val-loss

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Epoch

 train-acc

 test-acc

0 50 100 150 200

0.0

0.5

1.0

1.5

2.0

2.5
L

o
ss

Epoch

 train-loss

 test-loss

0 50 100 150 200

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Epoch

 train-acc

 val-acc

0 50 100 150 200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
o

ss

Epoch

 train-loss

 val-loss

Figure 10. Accuracy and loss value curves with iteration steps: (a) Accuracy, loss value with the
number of iteration steps curve of the NSL-KDD dataset; (b) Accuracy, loss value with the number
of iteration steps curve of the UNSW_NB15 dataset; (c) Accuracy, loss value with the number of
iteration steps curve of the CIC-IDS2017 dataset.

Appl. Sci. 2022, 12, 4184 23 of 27

Table 13. Comparison of different models.

Dataset Feature Selection Method
Evaluation Indicators (%)

Accuracy Precision Recall F1-Score

NSL-KDD

Random Forest 75.41 84.00 75.41 77.53
K-means 79.34 78.01 79.34 76.28

Decision Tree 76.92 71.98 54.52 55.97
CNN-LSTM [21] 98.64 98.61 98.64 98.56

S-ResNet [56] 98.33 98.39 98.33 98.34
CNN [57] 97.78 97.74 97.78 97.75

CNN-GRU [58] 99.15 99.15 99.15 99.15
CNN-BiLSTM [59] 99.22 99.18 99.14 99.15

CNN-GRU [60] 98.97 99.11 98.97 99.04
CNN-GRU-attention [61] 99.26 99.23 99.26 99.24

Proposed Model 99.69 99.65 99.69 99.70

UNSW_NB15

Random Forest 75.41 84.00 75.41 77.53
K-means 70.93 82.42 70.91 76.23

Decision Tree 73.37 80.94 73.36 76.30
CNN-LSTM [21] 82.6 81.9 82.6 80.6

S-ResNet [56] 83.8 85.0 83.8 84.4
CNN [57] 82.9 82.6 82.9 82.7

CNN-GRU [58] 84.3 83.7 84.3 84.0
CNN-BiLSTM [59] 82.08 82.68 80.00 81.32

CNN-GRU [60] 84.25 84.31 84.25 84.28
CNN-GRU-attention [61] 84.36 83.78 84.36 84.07

Proposed Model 86.25 86.92 86.25 86.59

CIC-IDS2017

Random Forest 98.21 98.58 93.40 95.92
K-means 95.03 96.40 95.21 95.80

Decision Tree 96.60 97.62 96.66 97.14
CNN-LSTM [21] 96.64 96.87 96.64 96.45

S-ResNet [56] 95.94 96.10 95.94 95.41
CNN [57] 89.14 84.18 89.14 85.56

CNN-GRU [58] 99.42 99.34 99.42 99.38
CNN-BiLSTM [59] 99.43 99.39 99.42 99.40

CNN-GRU [60] 99.38 99.41 99.38 99.39
CNN-GRU-attention [61] 99.45 99.39 99.45 99.42

Proposed Model 99.65 99.63 99.65 99.64

4.3.8. Statistical Test

In order to accurately evaluate the proposed intrusion detection method, significance
tests were conducted on three datasets, UNSW_NB15, NSL-KDD, and CIC-IDS2017, with
reference to the methods used in the literature [62,63]. We used a two-tailed t-test to analyze
the significance of the indicators obtained by the proposed method and thus verify that the
obtained results were not obtained by chance. The calculation formula is as follows:

µ =
1
n∑ n

i=1ŷi (11)

σ2 =
1

n− 1∑ n
i=1(ŷi − µ)2 (12)

t =
√

n
|µ− y0|

σ
(13)

We use the UNSW_NB15 dataset as an example for detailed discussion. First, the
average accuracy value of the proposed method is calculated as 0.8625 according to
Equation (10) (where ŷi represents the i-th test accuracy value and n = 20). After that,
the standard deviation of the accuracy value is calculated as 0.01040 by Equation (11).
Finally, the critical value is X calculated by Equation (12) (where y0 is the assumed min-
imum accuracy value and y0 = 0.8438). The critical value 5.268 is greater than the 2.845

Appl. Sci. 2022, 12, 4184 24 of 27

obtained in the two-tailed t-test table. This result indicates that the tested accuracy value
of our proposed model is greater than the assumed minimum value of 0.8438, which has
a confidence degree of (1− α = 0.99). The experimental results for the three data sets are
shown in Table 14.

Table 14. Hypothesis test result.

Datasets µ y0 σ t 1 − α

NSL-KDD 0.9969 0.9929 0.00348 5.268 0.99
UNSW_NB15 0.8625 0.8438 0.01040 8.041 0.99
CIC-IDS2017 0.9965 0.9949 0.00120 5.971 0.99

From Table 14, the minimum values of our assumed accuracies are all higher than the
maximum values of the different models mentioned in the paper. Therefore, the model
proposed in the paper has a statistically significant difference compared to the single use of
the CNN model, GRU model and other existing models, and has a significant advantage
over other methods.

5. Conclusions

Traditional intrusion detection models generally suffer from incomplete feature extrac-
tion and general multi-classification effects. To address these problems, this paper proposes
an intrusion detection model that fuses convolutional neural networks and gated recursive
units. The model solves the problems of data set imbalance and feature redundancy by
using the ADRDB algorithm and the RFP algorithm, and then achieves comprehensive and
sufficient feature learning by fusing CNN and GRU, while introducing the attention module
to assign different weights to the features, thus reducing the overhead and improving the
model performance. The accuracy of the proposed model based on the NSL-KDD dataset,
UNSW_NB15 dataset and CIC-IDS2017 dataset is 99.69%, 86.25% and 99.65%, respectively.
Furthermore, the precision can reach 99.65%, 86.92% and 99.63%.

In summary, This paper demonstrates that the model has a strong feature extraction
capability, high detection accuracy and low false alarm rate when dealing with large-scale
high-dimensional network data through feature selection analysis experiments, hybrid
model versus single model comparison experiments, feature extraction method comparison
experiments, pooling method comparison experiments and performance analysis experi-
ments on the dataset, and has greatly improved the detection effect for a few classes, which
provides promising prospective real-time applications for intrusion detection systems.

However, the model proposed in this paper still has some drawbacks while improving
the detection accuracy: first, the number of parameters of the model is relatively high;
second, the running time of the model is relatively high; third, the detection accuracy of
the model for a small number of samples is improved, although the improvement effect is
not much. In the subsequent research, we will further study the model lightweighting to
further improve the accuracy of minority sample detection, further improve the overall
classification effect of the model, and further reduce the running time cost.

Author Contributions: Resources, Y.S. and Y.Q.; Visualization, C.C.; Validation, B.C.; Writing—
review and editing, B.C.; Supervision, C.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by the National Science Foundation of China (61806219, 61703426
and 61876189), by Young Talent fund of University and Association for Science and Technology in
Shaanxi, China (20190108), and by and the Innovation Capability Support Plan of Shaanxi, China
(2020KJXX-065).

Data Availability Statement: All data used in this paper can be obtained by contacting the authors
of this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 4184 25 of 27

References
1. Yang, L.; Quan, Y. Dynamic Enabling Cyberspace Defense; People’s Posts and Telecommunications Press: Beijing, China, 2018.
2. Yu, N. A Novel Selection Method of Network Intrusion Optimal Route Detection Based on Naive Bayesian. Int. J. Appl. Decis. Sci.

2018, 11, 1–17. [CrossRef]
3. Ren, X.K.; Jiao, W.B.; Zhou, D. Intrusion Detection Model of Weighted Navie Bayes Based on Particle Swarm Optimization

Algorithm. Comput. Eng. Appl. 2016, 52, 122–126.
4. Koc, L.; Mazzuchi, T.A.; Sarkani, S. A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier.

Expert Syst. Appl. 2012, 39, 13492–13500. [CrossRef]
5. Teng, L.; Teng, S.; Tang, F.; Zhu, H.; Zhang, W.; Liu, D.; Liang, L. A Collaborative and Adaptive Intrusion Detection Based on

SVMs and Decision Trees. In Proceedings of the IEEE International Conference on Data Mining Workshop, Shenzhen, China, 14
December 2014; pp. 898–905. [CrossRef]

6. Chen, S.X.; Peng, M.L.; Xiong, H.L.; Yu, X. SVM Intrusion Detection Model Based on Compressed Sampling. J. Electr. Comput.
Eng. 2016, 2016, 6. [CrossRef]

7. Reddy, R.R.; Ramadevi, Y.; Sunitha, K.V.N. Effective discriminant function for intrusion detection using SVM. In Proceedings
of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24
September 2016; pp. 1148–1153.

8. Tao, Z.; Sun, Z. An Improved Intrusion Detection Algorithm Based on GA and SVM. IEEE Access 2018, 6, 13624–13631. [CrossRef]
9. Wang, H.W.; Gu, J.; Wang, S.S. An Effective Intrusion Detection Framework Based on SVM with Feature Augmentation.

Knowl.-Based Syst. 2017, 136, 130–139. [CrossRef]
10. Sahu, S.K.; Katiyar, A.; Kumari, K.M.; Kumar, G.; Mohapatra, D.P. An SVM-Based Ensemble Approach for Intrusion Detection.

Int. J. Inf. Technol. Web Eng. 2019, 14, 66–84. [CrossRef]
11. Sahu, S.; Mehtre, B.M. Network intrusion detection system using J48 Decision Tree. In Proceedings of the International Conference

on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 10–13 August 2015; pp. 2023–2026.
[CrossRef]

12. Jiang, F.; Chun, C.P.; Zeng, H.F. Relative Decision Entropy Based Decision Tree Algorithm and Its Application in Intrusion
Detection. Comput. Sci. 2012, 39, 223–226.

13. Ahmim, A.; Maglaras, L.A.; Ferrag, M.A.; Derdour, M.; Janicke, H. A Novel Hierarchical Intrusion Detection System Based on
Decision Tree and Rules-Based Models. In Proceedings of the 15th International Conference on Distributed Computing in Sensor
Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 228–233. [CrossRef]

14. Yun, W. A Multinomial Logistic Regression Modeling Approach for Anomaly Intrusion Detection. Comput. Secur. 2005, 24,
662–674. [CrossRef]

15. Kamarudin, M.H.; Maple, C.; Watson, T.; Sofian, H. Packet Header Intrusion Detection with Binary Logistic Regression Approach
in Detecting R2L and U2R Attacks. In Proceedings of the Fourth International Conference on Cyber Security, Cyber Warfare, and
Digital Forensic (CyberSec), Jakarta, Indonesia, 29–31 October 2015; pp. 101–106. [CrossRef]

16. Ioannou, C.; Vassiliou, V. An Intrusion Detection System for Constrained WSN and IoT Nodes Based on Binary Logistic Regression.
In Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Montreal, QC, Canada, 28 October–2 November 2018; pp. 259–263. [CrossRef]

17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings

of the Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp.
1106–1114.

19. Yuqing, Z.; Ying, D.; Caiyun, L.; Kenan, L.; Hongyu, S. Situation, trends and prospects of deep learning applied to cyberspace
security. J. Comput. Res. Dev. 2018, 55, 1117–1142.

20. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system. In Proceedings of
the 9th EAI International Conference on Bio-inspired Information and Communications Technologies, New York, NY, USA, 3–5
December 2015; ACM Press: New York, NY, USA, 2016; pp. 21–26.

21. Wei, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Zhu, M. HAST-IDS: Learning Hierarchical Spatial-Temporal Features
Using Deep Neural Networks to Improve Intrusion Detection. IEEE Access 2018, 6, 1792–1806. [CrossRef]

22. Zexuan, M.; Jin, L.; Yanli, L.; Chen, C. A network intrusion detection method incorporating WaveNet and BiGRU. Syst. Eng.
Electron. Technol. 2021, 11, 1–12.

23. Liu, J.; Sun, X.; Jin, J. Intrusion detection model based on principal component analysis and cyclic neural network. Chin. J. Inf.
Technol. 2020, 34, 105–112.

24. Zhou, P.; Zhou, Z.; Wang, L.; Zhao, W. Network intrusion detection method based on autoencoder and RESNET. Comput. Appl.
Res. 2020, 37, 224–226.

25. Yan, B.H.; Han, G.D. Combinatorial Intrusion Detection Model Based on Deep Recurrent Neural Network and Improved SMOTE
Algorithm. Chin. J. Netw. Inf. Secur. 2018, 4, 48–59.

26. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of
the IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong,
China, 1–8 June 2008; pp. 1322–1328. [CrossRef]

http://doi.org/10.1504/IJADS.2018.088631
http://doi.org/10.1016/j.eswa.2012.07.009
http://doi.org/10.1109/ICDMW.2014.147
http://doi.org/10.1155/2016/3095971
http://doi.org/10.1109/ACCESS.2018.2810198
http://doi.org/10.1016/j.knosys.2017.09.014
http://doi.org/10.4018/IJITWE.2019010104
http://doi.org/10.1109/ICACCI.2015.7275914
http://doi.org/10.1109/DCOSS.2019.00059
http://doi.org/10.1016/j.cose.2005.05.003
http://doi.org/10.1109/CyberSec.2015.28
http://doi.org/10.1145/3242102.32421450
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/ACCESS.2017.2780250
http://doi.org/10.1109/IJCNN.2008.4633969

Appl. Sci. 2022, 12, 4184 26 of 27

27. Wang, L.; Han, M.; Li, X.; Zhang, N.; Cheng, H. Review of Classification Methods on Unbalanced Data Sets. IEEE Access 2021, 9,
64606–64628. [CrossRef]

28. Deng, Y.W.; Pu, H.T.; Hua, X.B.; Sun, B. Research on lane line detection based on RC-DBSCAN. J. Hunan Univ. 2021, 48, 85–92.
29. Tama, B.A.; Comuzzi, M.; Rhee, K.H. TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection

system. IEEE Access 2019, 7, 94497–94507. [CrossRef]
30. Bu, S.J.; Cho, S.B. A convolutional neural-based learning classifier system for detecting database intrusion via insider attack. Inf.

Sci. 2020, 512, 123–136. [CrossRef]
31. Le, T.-T.-H.; Kim, Y.; Kim, H. Network Intrusion Detection Based on Novel Feature Selection Model and Various Recurrent Neural

Networks. Appl. Sci. 2019, 9, 1392. [CrossRef]
32. Hassan, M.M.; Gumaei, A.; Alsanad, A.; Alrubaian, M.; Fortino, G. A hybrid deep learning model for efficient intrusion detection

in big data environment. Inf. Sci. 2020, 513, 386–396. [CrossRef]
33. Louk, M.H.L.; Tama, B.A. Exploring Ensemble-Based Class Imbalance Learners for Intrusion Detection in Industrial Control

Networks. Big Data Cogn. Comput. 2021, 5, 72. [CrossRef]
34. Liu, L.; Wang, P.; Lin, J.; Liu, L. Intrusion detection of imbalanced network traffic based on machine learning and deep learning.

IEEE Access 2021, 9, 7550–7563. [CrossRef]
35. Yan, M.; Chen, Y.; Hu, X.; Cheng, D.; Chen, Y.; Du, J. Intrusion detection based on improved density peak clustering for imbalanced

data on sensor-cloud systems. J. Syst. Archit. 2021, 118, 102212. [CrossRef]
36. Alharbi, A.; Alosaimi, W.; Alyami, H.; Rauf, H.T.; Damaševičius, R. Botnet Attack Detection Using Local Global Best Bat Algorithm

for Industrial Internet of Things. Electronics 2021, 10, 1341. [CrossRef]
37. Toldinas, J.; Venčkauskas, A.; Damaševičius, R.; Grigaliūnas, Š.; Morkevičius, N.; Baranauskas, E. A Novel Approach for Network

Intrusion Detection Using Multistage Deep Learning Image Recognition. Electronics 2021, 10, 1854. [CrossRef]
38. Khan, M.A. HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network Intrusion Detection System. Processes

2021, 9, 834. [CrossRef]
39. Pu, G.; Wang, L.; Shen, J.; Dong, F. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Sci. Technol.

2021, 26, 146–153. [CrossRef]
40. Nguyen, G.N.; Viet, N.H.L.; Elhoseny, M.; Shankar, K.; Gupta, B.B.; Abd El-Latif, A.A. Secure blockchain enabled Cyber-physical

systems in healthcare using deep belief network with ResNet model. J. Parallel Distrib. Comput. 2021, 153, 150–160. [CrossRef]
41. Panigrahi, R.; Borah, S.; Bhoi, A.K.; Ijaz, M.F.; Pramanik, M.; Kumar, Y.; Jhaveri, R.H. A Consolidated Decision Tree-Based

Intrusion Detection System for Binary and Multiclass Imbalanced Datasets. Mathematics 2021, 9, 751. [CrossRef]
42. Injadat, M.; Moubayed, A.; Nassif, A.B.; Shami, A. Multi-Stage Optimized Machine Learning Framework for Network Intrusion

Detection. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1803–1816. [CrossRef]
43. Lv, Z.; Chen, D.; Lou, R.; Song, H. Industrial Security Solution for Virtual Reality. IEEE Internet Things J. 2021, 8, 6273–6281.

[CrossRef]
44. Zhou, X.; Liang, W.; Shimizu, S.; Ma, J.; Jin, Q. Siamese Neural Network Based Few-Shot Learning for Anomaly Detection in

Industrial Cyber-Physical Systems. IEEE Trans. Ind. Inform. 2021, 17, 5790–5798. [CrossRef]
45. Zhou, X.; Hu, Y.; Liang, W.; Ma, J.; Jin, Q. Variational LSTM Enhanced Anomaly Detection for Industrial Big Data. IEEE Trans. Ind.

Inform. 2021, 17, 3469–3477. [CrossRef]
46. Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678.

[CrossRef]
47. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
48. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Computer Vision—ECCV 2018. ECCV

2018. Lecture Notes in Computer Science; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland,
2018; Volume 11211. [CrossRef]

49. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

50. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995.
[CrossRef]

51. Lippmann, R.; Haines, J.W.; Fried, D.J.; Korba, J.; Das, K. Analysis and Results of the 1999 DARPA Off-Line Intrusion Detection
Evaluation. In Recent Advances in Intrusion Detection. RAID 2000; Lecture Notes in Computer Science; Debar, H., Mé, L., Wu, S.F.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1907. [CrossRef]

52. Zhang, H.; Li, J.L.; Liu, X.M.; Dong, C. Multi-dimensional feature fusion and stacking ensemble mechanism for network intrusion
detection. Future Gener. Comput. Syst. 2021, 122, 130–143. [CrossRef]

53. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6. [CrossRef]

54. Rosay, A.; Riou, K.; Carlier, F.; Leroux, P. Multi-layer perceptron for network intrusion detection. Ann. Telecommun. 2021, 6, 1–24.
[CrossRef]

http://doi.org/10.1109/ACCESS.2021.3074243
http://doi.org/10.1109/ACCESS.2019.2928048
http://doi.org/10.1016/j.ins.2019.09.055
http://doi.org/10.3390/app9071392
http://doi.org/10.1016/j.ins.2019.10.069
http://doi.org/10.3390/bdcc5040072
http://doi.org/10.1109/ACCESS.2020.3048198
http://doi.org/10.1016/j.sysarc.2021.102212
http://doi.org/10.3390/electronics10111341
http://doi.org/10.3390/electronics10151854
http://doi.org/10.3390/pr9050834
http://doi.org/10.26599/TST.2019.9010051
http://doi.org/10.1016/j.jpdc.2021.03.011
http://doi.org/10.3390/math9070751
http://doi.org/10.1109/TNSM.2020.3014929
http://doi.org/10.1109/JIOT.2020.3004469
http://doi.org/10.1109/TII.2020.3047675
http://doi.org/10.1109/TII.2020.3022432
http://doi.org/10.1007/s11222-016-9646-1
http://doi.org/10.1109/5.726791
http://doi.org/10.1007/978-3-030-01234-2_1
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CVPR.2017.634
http://doi.org/10.1007/3-540-39945-3_11
http://doi.org/10.1016/j.future.2021.03.024
http://doi.org/10.1109/CISDA.2009.5356528
http://doi.org/10.1007/s12243-021-00852-0

Appl. Sci. 2022, 12, 4184 27 of 27

55. Damasevicius, R.; Venckauskas, A.; Grigaliunas, S.; Toldinas, J.; Morkevicius, N.; Aleliunas, T.; Smuikys, P. LITNET-2020: An
Annotated Real-World Network Flow Dataset for Network Intrusion Detection. Electronics 2020, 9, 800. [CrossRef]

56. Xiao, Y.; Xiao, X. An Intrusion Detection System Based on a Simplified Residual Network. Information 2019, 10, 356. [CrossRef]
57. Xiao, Y.; Xing, C.; Zhang, T.; Zhao, Z. An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural

Networks. IEEE Access 2019, 7, 42210–42219. [CrossRef]
58. Xie, X.; Wang, B.; Wan, T.; Tang, W. Multivariate Abnormal Detection for Industrial Control Systems Using 1D CNN and GRU.

IEEE Access 2020, 8, 88348–88359. [CrossRef]
59. Sinha, J.; Manollas, M. Efficient deep CNN-BILSTM model for network intrusion detection. In Proceedings of the 3rd International

Conference on Artificial Intelligence and Pattern Recognition, Xiamen, China, 26–28 June 2020; pp. 223–231. [CrossRef]
60. Niu, Q.; Li, X. A High-performance Web Attack Detection Method based on CNN-GRU Model. In Proceedings of the IEEE 4th

Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June
2020; pp. 804–808. [CrossRef]

61. Jiang, Y.; Jia, M.; Zhang, B.; Deng, L. Malicious Domain Name Detection Model Based on CNN-GRU-Attention. In Proceedings of
the 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 1602–1607. [CrossRef]

62. Hu, J.; Zheng, W. A deep learning model to effectively capture mutation information in multivariate time series prediction.
Knowl.-Based Syst. 2020, 203, 106139. [CrossRef]

63. Teng, F.; Guo, X.; Song, Y.; Wang, G. An Air Target Tactical Intention Recognition Model Based on Bidirectional GRU With
Attention Mechanism. IEEE Access 2021, 9, 169122–169134. [CrossRef]

http://doi.org/10.3390/electronics9050800
http://doi.org/10.3390/info10110356
http://doi.org/10.1109/ACCESS.2019.2904620
http://doi.org/10.1109/ACCESS.2020.2993335
http://doi.org/10.1145/3430199.3430224
http://doi.org/10.1109/ITNEC48623.2020.9085028
http://doi.org/10.1109/CCDC52312.2021.9602373
http://doi.org/10.1016/j.knosys.2020.106139
http://doi.org/10.1109/ACCESS.2021.3135495

	Introduction
	Related Work
	Network Intrusion Detection Model Based on CNN and GRU
	Data Pre-Processing
	Non-Numerical Feature Transformation and Normalization
	Hybrid Sampling Method Combining ADASYN and RENN
	Feature Selection Algorithm

	Model Structure
	Convolutional Block Attention Module
	Convolutional Neural Networks
	Model Structure

	Experimental Simulations
	Experimental Setup
	Dataset and Evaluation Criteria
	Experimental Results and Analysis
	Experiment on Feature Selection Analysis
	Comparison Experiments of Different Feature Selection Methods
	Experiment Comparing Single Model with Hybrid Model
	Comparison Experiments of Different Sampling Methods
	Comparison Experiments with Different Pooling Methods
	Comparison Experiments of Run-Time Performance
	Performance Analysis and Comparison Experiments
	Statistical Test

	Conclusions
	References

