
Citation: Su, X.; Lu, J.; Chen, C.; Yu,

J.; Ji, W. Dynamic Bottleneck

Identification of Manufacturing

Resources in Complex

Manufacturing System. Appl. Sci.

2022, 12, 4195. https://doi.org/

10.3390/app12094195

Academic Editors: Arkadiusz Gola,

Izabela Nielsen and Patrik Grznár

Received: 8 March 2022

Accepted: 18 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Dynamic Bottleneck Identification of Manufacturing Resources
in Complex Manufacturing System
Xuan Su 1, Jingyu Lu 1, Chen Chen 1, Junjie Yu 1 and Weixi Ji 1,2,*

1 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; susannsu@outlook.com (X.S.);
7200832004@stu.jiangnan.edu.cn (J.L.); 7190832003@stu.jiangnan.edu.cn (C.C.); yjj112395@outlook.com (J.Y.)

2 Key Laboratory of Advanced Manufacturing Equipment Technology, School of Mechanical Engineering,
Jiangnan University, Wuxi 214122, China

* Correspondence: weixiji_jiangnan@outlook.com

Abstract: Bottleneck identification is of great interest in discrete manufacturing fields, as they limit
the system’s throughput. However, the bottlenecks are difficult to accurately identify due to the
instability and complexity of discrete manufacturing systems. This paper proposes a dynamic
bottleneck identification method (DBI-BS) that is based on effective buffers and fine-grained machine
states to identify bottlenecks accurately. First, the complex manufacturing system (CMS) with strong
coupling between elements is decoupled into several independent parts under the guidance of the
effective buffer theory. Then, the machine activity duration method is improved through further
fine-grained division, and the machine states are described by the timing flow model. The method to
quantify the degree of bottleneck that restricts the system throughput (TH) is proposed on the basis
of the turning point theory, and the one-to-one mapping relationship between the simulated and
authentic complex manufacturing systems is also studied. Simulation results show that the DBI-BS
can effectively identify dynamic bottlenecks in complex manufacturing processes, and the decoupling
of complex systems can effectively improve the accuracy of dynamic bottleneck identification.

Keywords: complex manufacturing system; effective buffers; fine-grained states; dynamic bottlenecks;
Industry 4.0; discrete simulation

1. Introduction

The fusion of multiple technologies (manufacturing IoT [1], digital twins [2], big
data [3], neural networks [4], etc.) has brought great opportunities and challenges to the
transformation of manufacturing [5]. The new industrial revolution, commonly known
as Industry 4.0, originated in Germany has arrived [6]. Increasing productivity is one of
the explicit goals set forth by Industry 4.0 originated in Germany [7]. In addition, the
deteriorating new crown epidemic has dramatically damaged the production capacity
of the global manufacturing industry, so there is an urgent need to increase the output
of the current manufacturing system. Higher productivity is ranked as the number one
technology investment priority for manufacturing companies for the next decade [7].

The change in manufacturing mode and the need to improve manufacturing capa-
bilities have significantly increased the complexity of manufacturing, which has brought
considerable challenges to the production management of the workshop [8]. In this situa-
tion, the CMS has been widely used in manufacturing enterprises [7]. CMS allows a rapid
response to fluctuations inside and outside the workshop and comprehensive utilization
of existing manufacturing resources to increase system productivity. A typical CMS is a
hybrid process workshop (HFS) consisting of several serial stages with parallel machines.
The job must be processed at every stage on one machine.

According to the theory of constraints (TOC) [9], there is a stage that limits the entire
production capacity or significantly limits the throughput of the workshop, which is called
the bottleneck stage [3]. The bottleneck is defined as the equipment that has the most
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significant impact on the overall performance of the production system. In the case of
limited resources, priority is given to improving the production of bottleneck equipment or
allocating resources. For example, defining the maintenance of bottleneck equipment as
the highest priority can effectively improve the overall performance of the CMS.

However, there are many challenges in effectively identifying bottlenecks in complex
systems. First, the strongly coupled elements of the CMS [10] can increase the difficulty of
bottleneck identification. Second, disturbances in the production process lead to a constant
drift of bottlenecks [8]. Third, the lack of accurate bottleneck quantification methods makes
it difficult to determine the degree of different bottlenecks restricting the system [11]. To
deal with the above problems, this paper proposes a simulation and data hybrid-driven
method (DBI-BS) to identify the dynamic bottlenecks in CMS. In addition, the DBI-BS
method proposed in this paper is verified in a discrete simulation system of authentic CMS
processes. The contributions of this paper are summarized as:

(1) The effective buffers are used to decouple CMS to avoid the coupling between the
system’s various elements, causing bottleneck misjudgments. The definition and
identification method of the effective buffer zone are also given.

(2) The data-driven method is used to identify the dynamic bottleneck, and a data-driven
dynamic bottleneck model is established. The equipment operating state is further
divided into fine-grained divisions to improve identification accuracy, and it is judged
whether the state is effective.

(3) Using the actual production data of the workshop to guide the simulation model, the
production logic relationship between the manufacturing entity and the simulation
agent is clarified, and the simulation model is closer to the actual production.

The rest of this paper is organized as follows. Section 2 reviews the literature of
bottleneck identification. Section 3 introduces the CMS and its decoupling methods, and
the proposed dynamic bottleneck identification method (DBI-BS) is also presented in this
section. The simulation verifications in AnyLogic using a real discrete manufacturing
workshop are conducted in Section 4, which also discusses in detail the contribution of the
proposed method to bottleneck identification methods and industrial practice. Section 5
summarizes the main contributions and future research.

2. Related Works

In the past decades, bottlenecks, as one of the critical characteristics of the production
system, have attracted the attention of many researchers, as shown in Table 1. However,
most bottleneck studies were combined with other studies, such as balancing production
lines based on bottleneck predictions [10], bottleneck-based shop scheduling [11], shifting
bottleneck heuristics to re-optimize scheduled machines [12], a future bottleneck-based
dispatching method [13], and a parallel gated recurrent units (P-GRUs) network and a
data-driven prediction algorithm (using active period bottleneck analysis theory) [14] were
developed for shifting bottleneck prediction [15]. These studies focus on the work after
identifying the bottleneck and pay less attention to the research of the bottleneck itself.
This leads to a lack of in-depth analysis into the bottleneck and its impact on the entire
production system. It is worth noting that the accurate identification of bottlenecks is the
key to improving the system’s bottleneck stage and overall performance [16]. Rapid and ac-
curate identification of bottleneck locations helps leverage limited manufacturing resources
to increase productivity during the bottleneck phase, increasing system throughput and
minimizing total production costs [17].

Previous studies on bottleneck identification can be divided into three categories:
analytics-based, simulation-based, and data-driven methods. The analytics-based methods
must make a series of assumptions and approximations, and the results are calculated by
mathematical formulas [18], such as using the Bernoulli model [19]. However, analytical
methods have many limitations in complex system analysis [19] and are limited to long-
term steady-state bottleneck detection [20]. Many disturbances [21] and uncertainties [22]
make the analytics-based methods less effective in identifying bottlenecks. In addition,
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analytics-based methods employ stochastic models and static statistics, lack flexibility, and
cannot respond to system dynamics in a timely manner [16]. Therefore, the reliability of
the bottleneck obtained using the analysis method needs to be further improved. The data-
driven approach can respond to system dynamics [23]. Therefore, some scholars proposed
some data-driven methods to overcome the shortcomings of analytics-based methods
and identify the bottlenecks in dynamic systems timely and accurately. For instance,
using real-time machine data provided by MES [24], a shifting bottleneck-driven heuristic
algorithm [25], a turning point method [17], and its improvement [7] were proposed, which
used machine states (blockage and starvation) and buffered content records to identify
bottlenecks. The turning point method can detect the slowest machine in the system [26]
and inspire maintenance strategies [27]. However, this method is dramatically impacted by
buffering and easily misjudges bottlenecks, and it is unsuitable for a production system
without buffering [24]. The simulation-based method can also make up for the deficiency
of the analytics-based method [28]. The simulation model is closer to the actual production
because the production states of equipment can influence each other, and static data
can be changed into dynamic data by using some empirical distribution [29], such as
downtime following the exponential distribution [30]. It can detect CMS bottlenecks
and efficiently perform sensitivity-based analysis [31]. The simulation-based methods
identify bottlenecks mainly by external characteristics (queue length [32], waiting time [33],
output [34], blocking and starvation time [17], machine utilization [35], capacity to load
ratio [36], buffer level [37], etc.) in the production line. These methods only consider
workstations independently and ignore the workstation’s impact on the whole system.
These methods can only be used for fixed bottleneck identification and cannot identify a
shifting bottleneck after the system has changed dynamically.

Table 1. Summary of bottleneck identification.

References
Keywords

Data Sources Year
1 2 3 4 5

[7]
√ √ √ √

Automotive powertrain assembly line 2021
[8]

√ √
Base case benchmarks 2020

[11]
√

Base case benchmarks 2016
[12]

√
OR Library 2016

[13]
√ √ √

Micro production system 2019
[14]

√ √ √
Manufacturing execution system 2019

[15]
√ √ √

Real-world and simulation 2020
[17]

√ √
Simulation 2009

[19]
√ √

Simulation 2000
[20]

√ √
Simulation 2009

[24]
√ √ √

Manufacturing execution system 2016
[26]

√ √
- 2010

[27]
√ √

Simulation 2015
[28]

√ √
Plant simulation 2016

[36]
√

Manufacturing shop 2009
[37]

√ √ √
Robert Bosch GmbH 2014

Notes: 1—Dynamic bottlenecks; 2—machine states; 3—CMS; 4—Buffers; 5—Turn points.

However, there are many disturbing factors in the mixed production model of CMS
that will make the production system change dynamically and lead to bottleneck shift.
To overcome the shortcoming of the fixed bottleneck identification method and identify
bottlenecks in dynamic systems timely and accurately, some scholars proposed a dynamic
bottleneck identification method based on active machine duration [32] and extended it
to unstable discrete manufacturing systems [38]. This method can identify the average
bottleneck and the instantaneous bottleneck from the system’s point of view [8]. It can
identify the bottleneck quickly and accurately in the system. However, there are two main
research gaps in this method. The first is the lack of in-depth study of machine states
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and that most of the data used in their research come under ideal assumptions that are
not close to the actual production. The second, is that the decoupling effect of the buffer
zone on the system is not considered, which can easily cause confusion and misjudgment
of bottlenecks.

A simulation and data hybrid-driven bottleneck identification method is proposed
based on a fine-grained machine state and effective buffer (DBI-BS) to bridge these gaps.
First, this method forms a fine-grained state of manufacturing resources by dividing the
machine’s active duration [39] in more detail and building a time series flow model of
the manufacturing process to record the fine-grained state transition. Then, an improved
bottleneck quantification model is proposed based on the turning point theory. Finally,
it establishes a simulation model whose output can serve the DBI-BS according to the
actual workshop to verify the proposed method. In addition, effective buffers are used to
decouple the CMS to avoid misjudgments of system bottlenecks.

3. Material and Methods

To present how the DBI-BS method is applied to detect bottlenecks, the workflow is
illustrated as the following steps, as shown in Figure 1.
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Figure 1. DBI-BS method flowchart.

(1) Acquire the current buffer content records-related data and machine fine-grained
state-related data of period T. Here, t denotes the current time point. Go to decouple
prediction line process and turn to step 2.
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(2) Judge whether the buffer in the system is effective or ineffective in this period. If
the buffer is effective, turn to step 3, otherwise, turn to step 4. The method to find
effective buffers is discussed in Section 3.1.

(3) Decouple the production line into n + 1 stages according to the effective buffers in the
system, then turn to step 4. The n is the number of effective buffers in the system. The
method of decoupling the complex production line is discussed in Section 3.1.

(4) Depending on the result of decoupling, the machines contained in the different stages
are stored in the set Mi of machines for the i-th stage, and the fine-grained machine
states are stored in the set Si of machine state for the i-th stage. Go to the bottleneck
detection process, then turn to step 5.

(5) Judge whether any machine in the system is in a valid state at time t. If there are
machines in the system in a valid state, turn to step 6, otherwise, turn to the end.

(6) Judge whether more than one machine in the system is in a valid state at time t. If
more than one machine in the system is in a valid state, turn step 7, otherwise, turn to
step 8.

(7) Store the machines whose fine-grained states are valid at time t to the row correspond-
ing to multiple bottleneck matrix βi, then turn to step 9.

(8) Store the machine whose fine-grained state is valid at time t to the row corresponding
to sole bottleneck matrix αi, then turn to step 9.

(9) Output multiple bottleneck matrix βi and sole bottleneck matrix αi.

3.1. Complex Manufacturing System and Its Decoupling
3.1.1. Time Series Flow Modelling of CMS

CMS is an organizational system that is constructed to achieve a predetermined
manufacturing purpose. It is an organic whole with specific functions composed of manu-
facturing processes, hardware, software, and related personnel. The CMS can be described
as the workshop arranging to process j parts with a total of Nj. The complex system must
complete the processing of the workpiece within the delivery period. For the convenience
of discussion, the description of the symbols involved in the model are shown in Table 2.

Table 2. Summary of bottleneck identification.

Symbol Description

j, i, k sequence numbers of workpiece, process, and machine
Nj, Ni, m number of workpieces, processes, and machines

Sij, Cij the start and completion time of the i-th process of the j-th workpiece
tqs, tqe the processing start time and end time of the active state

Pijh the processing time of the i-th process of the j-th workpiece on the machine h
Sul the processing start time of the l-th process of the u-th workpiece;
xijk the decision variable for the machine selection of the process

yijhkl the decision variable is selected for the procedure
gij the shifting bottleneck degree of station i in time window j

v(anm) the value of the m-th attribute under scene c at time n
ctn the scene at time n

The manufacturing process needs to meet the following constraints:
(1) Each process needs to be processed in order, according to the requirements of the

process route of the workpiece;

Cij ≤ Si(j+1), ∀i ∈ [1, Ni], ∀j ∈ [1, Nj − 1] (1)

(2) A workpiece can only be processed on one machine at the same time;

m

∑
k=1

xijk = 1, ∀i ∈ [1, Ni], ∀j ∈ [1, Nj], ∀k ∈ [1, m] (2)
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where xijk is one when the process Oij selects the machine Mk and xijk is zero when the
process Oij does not select the machine Mk.

(3) One machine can only process one workpiece at the same time;

Sij + Pijh ≤ Sul + L(1− yijhul) (3)

Cij ≤ Sj(i+1) + L(1− yhjul(i+1)) (4)

where sj(i+1) represents the processing completion time of the i procedure of the j-th work-
piece, and it is also the processing start time of the i + 1-th procedure of the j-th workpiece;
L presents a sufficiently large positive number.

In addition, there is a buffer with a specific capacity in front of each piece of equipment,
and the equipment is unreliable. The processing time of the equipment to the workpiece
is variable.

Assume the total time in an effective state of machine i can be expressed as:

Ti =
n

∑
q=1

(
tqe − tqs

)
(5)

Assume the set of bottleneck machines can be denoted as:

B =
{

m|max(gi1, gi2 · · · gij), m ∈ (M1, M2 · · ·Mn)
}

(6)

Abstractly represent the production activities involved in the manufacturing process
as a manufacturing process time series flow model (MP-DataModel). MP-DataModel
consists of multiple object data models (Ob-DataModel), and its description method is
as follows:

Ob-DataModel = {Object, DSet} (7)

where object represents the manufacturing process object and DSet represents the collected
data generated by the object during the manufacturing process. DSet is time-series data,
and its description method is:

DSet = {< v(a1 · · · a1m), ct1 >,< v(a2 · · · a2m), ct2 >, · · ·,< v(an1 · · · anm), ctn >} (8)

3.1.2. Decoupling the CMS

Setting up buffers on the production line can improve system stability and output [40].
However, the decoupling effect of the buffer, taking the production line with the buffer as a
whole to analyze the bottleneck, tends to cause confusion and misjudgment of the bottlenecks.

It should be noted that only effective buffers have the decoupling effect on the pro-
duction system, so we must first find all effective buffer locations in the system. We define
the effective buffer as the buffer that continues to act on the production system within the
project time window [17]. Because when the buffer content reaches the limit value, the
buffer loses its elasticity and cannot reduce the impact of the disturbance on the system. We
define the buffers that arrive at the limit value within the project time window as invalid
buffers. This article only considers the limited buffer, which shows that the buffer’s capacity
is not unlimited.

Definition 1. Effective buffer is a buffer that will never be full or empty within the project
time window.

Assume the set of each buffer content records in different times for the manufacturing
system can be denoted as:

Vj =
{

v1,j, v2,j, · · · vm,j
}

(9)
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Assume the matrix of buffers’ content records for the manufacturing system can be
denoted as:

Vi,j =


v1,1 v1,2 · · · v1,N
v2,1 v2,2 · · · v2,N

...
...

. . .
...

vM,1 vM,2 · · · vM,N

 (10)

where m represents the number of time instances, n represents the number of buffers, and
V represents the buffer matrix (10) of size m × n;

Definition 2. Buffer j is the effective buffer in a system with n machines and m buffers during a
period if :

∀vij ∈ Vj
0 < vij < Cmax, i = 1, 2, · · · , m

(11)

Only the finite buffer is considered in this paper, which means the buffer capacity
cannot be infinite. The effective buffering determination algorithm is proposed to find out
the effective buffers of the system, as shown in Figures 2 and 3. Then, the bottleneck state
of each part should be identified by analyzing the fine-grained machine state of each part
after decoupling. The overall bottleneck state of the production system should be obtained
without confusion.
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To explain the effective buffer, we present an example of a six-machine-five-buffer
(6M5B) tandem line during one shift (shown in Figure 4). The buffer content information
over the time interval is shown in Figure 5.

According to the buffer content information combined with the definition of an effec-
tive buffer, it can be known that B2 and B4, which never reached their limit, are the effective
buffers of the system. The system is decoupled into three stages as shown in Figure 4: M1
and M2; M3 and M4; and M5 and M6, and each stage has its bottleneck state.
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Assume the set of effective buffers for the manufacturing system can be denoted as:

B = {bi1, bi2, · · · , bin} (12)

In addition, assume the set of machines for the i-th stage can be denoted as:

Mi = {Mi1, Mi2, · · ·Min} (13)
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3.2. Fine-Grained States of Manufacturing Resources

The current definition of manufacturing resources is not refined enough to meet the
needs of dynamic bottleneck identification. This article summarizes nine fine-grained
states that can be summarized into effective and ineffective states (shown in Figure 6) of
manufacturing resources in manufacturing processing through the observation and analysis
of the manufacturing process and inquiries to experienced operators. The effective state is
when the machine aims to improve the system throughput, including the maintenance and
service states. For example, a specific machine’s ongoing tasks may cause subsequent idle
machines to wait, or the machine being repaired may block the previous machine.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 21 
 

{ }1 2, ,i i inM M M= iM  
(13)

3.2. Fine-Grained States of Manufacturing Resources 
The current definition of manufacturing resources is not refined enough to meet the 

needs of dynamic bottleneck identification. This article summarizes nine fine-grained 
states that can be summarized into effective and ineffective states (shown in Figure 6) of 
manufacturing resources in manufacturing processing through the observation and anal-
ysis of the manufacturing process and inquiries to experienced operators. The effective 
state is when the machine aims to improve the system throughput, including the mainte-
nance and service states. For example, a specific machine’s ongoing tasks may cause sub-
sequent idle machines to wait, or the machine being repaired may block the previous ma-
chine. 

 
Figure 6. Effective states and ineffective states of the machine. 

The effect of the equipment status can be judged by whether the equipment status 
produces value. Table 3 explains the definition in detail and gives a classification of each 
state. All machines are in one of the nine given states at a given time. 

Table 3. Fine-grained states of manufacturing resources. 

 State Definition Categories 
1 Producing The machine is processing products. 

Effective  
machine  

states 

2 Set up 
Preparing a machine for its next run after it has completed producing 

the last part of the previous run 
3 Tool change Replacing the required tooling for the equipment 

4 Repair 
basic maintenance tasks, such as checking, testing, lubricating, and 
replacing worn or damaged parts on a planned and ongoing basis. 

5 Breakdown 
The period during which equipment or machine is not functional or 

cannot work 
Ineffective  
machine  

states 

6 Waiting for Repair Waiting time between machine breakdown and maintenance 

7 Stop Waiting beyond starvation and blockages that cannot increase 
system output, such as employee absenteeism 

8 Blockage The machine is idle because it cannot transport WIP downstream. 
9 Starvation The machine is idle due to a lack of WIP from upstream. 

Assume the set of effective states can be denoted as: 

{ }1 2, , , nD d d L d=  (14)

Assume the set of ineffective states can be denoted as: 

{ }1 2, , , nH h h h=   (15)

Figure 6. Effective states and ineffective states of the machine.



Appl. Sci. 2022, 12, 4195 10 of 20

The effect of the equipment status can be judged by whether the equipment status
produces value. Table 3 explains the definition in detail and gives a classification of each
state. All machines are in one of the nine given states at a given time.

Table 3. Fine-grained states of manufacturing resources.

State Definition Categories

1 Producing The machine is processing products.

Effective
machine

states

2 Set up Preparing a machine for its next run after it has completed producing the last
part of the previous run

3 Tool change Replacing the required tooling for the equipment

4 Repair basic maintenance tasks, such as checking, testing, lubricating, and replacing
worn or damaged parts on a planned and ongoing basis.

5 Breakdown The period during which equipment or machine is not functional or cannot work

Ineffective
machine

states

6 Waiting for Repair Waiting time between machine breakdown and maintenance

7 Stop Waiting beyond starvation and blockages that cannot increase system output,
such as employee absenteeism

8 Blockage The machine is idle because it cannot transport WIP downstream.

9 Starvation The machine is idle due to a lack of WIP from upstream.

Assume the set of effective states can be denoted as:

D = {d1, d2, L, dn} (14)

Assume the set of ineffective states can be denoted as:

H = {h1, h2, · · · , hn} (15)

Regarding several effective states that are adjacent in time as the effective continuous
state, as shown in Figure 6, the duration of the total effective state is the sum of the duration
of the individual effective states.

3.3. Dynamic Bottleneck Identification Method

The dynamic bottleneck identification method includes two parts: subsystem bot-
tleneck identification and system-wide bottleneck identification. First, by analyzing the
fine-grained state of the machines at each stage in the decoupled system, the bottleneck state
of each subsystem is obtained. Then, the bottleneck of each subsystem is compared through
the bottleneck quantification method to obtain the overall bottleneck of the production
system.

3.3.1. Subsystem Bottleneck Identification

The bottleneck status of the system can be obtained by analyzing the fine-grained status
of different machines over a period of time. A dynamic bottleneck detection algorithm is
proposed to identify the bottleneck, as shown in Figures 7 and 8.

Figure 9 shows an example of the bottleneck status of a subsystem over a period of
time. During t1–t3, machine 4 is the bottleneck of the system; during t3–t5, machine 1 is the
bottleneck of the system; and during t5–t7, machine 4 is the bottleneck of the system again.
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3.3.2. System-Wide Bottleneck Identification

The bottleneck detection algorithm can identify the bottleneck of the subsystem in
the CMS, but it cannot obtain the overall bottleneck status of the system. The system-wide
bottleneck is critical to production management, so a multi-index real-time bottleneck
degree calculation method (CFBI) is proposed to calculate the system bottleneck, as shown
in formula (16). This method not only considers the independent characteristics of the
machine (workload and capacity) but also considers the interaction between the machines
(congestion and starvation caused by upstream and downstream machines) and improves
it based on Lai et al. [7].

gij = ω1 f1(t) + (1−ω1) f2(t) (16)

where gij represents the shifting bottleneck degree of station i in stage j, f 1(t) represents
the effective working time function, f 2(t) represents the machine state function, and ω1
represents the system influence weight coefficient.

f1(t) =
ai

amin
(17)

where ai represents the duration of the effective state in station i and amin represents the
minimum value of the duration of the effective state of all machines in a particular stage.

ai =
n

∑
j=1

lij+
n

∑
j=1

Pij+Ri + Mi (18)

where lij represents the preparing time of the task(part) j on station i, Pij represents the
processing time of the task(part) j on station i, Ri represents the downtime of station i, and
Mi represents the time to replace the required tooling for station i.

Assume the set of effective working times for all machines can be denoted as:

A = {a1, a2, a3, · · ·, an} (19)

amin = min{a1, a2, a3, · · ·, an} (20)

f2(t) =
(Bi−1 − Bi) + (Si+1 − Si)

Zi
(21)

where Bi represents the blockage time of station i, Bi−1 represents the blockage time of the
adjacent upstream station, Si represents the starvation time of station i, Si+1 represents the
starvation time of the adjacent downstream station i + 1, and Zi represents the length of the
current time window.

Assume the set of shifting bottleneck degrees for the ith machine can be denoted as:

Gi = {gi1, gi2, gi3, · · ·, gin} (22)
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The DBI-BS method is validated in a complex system composed of a simulated discrete
manufacturing shop. The workshop is equipped with a cyber-physical system (CPS) that
can collect real-time production data and uses the simulation software AnyLogic to build a
one-to-one simulation model according to the structure of the physical workshop.

4. Results

This part includes four summaries: the simulation environment, CMS cases of a job
shop, experimental study, and discussion. Using AnyLogic to build a simulation experiment
environment for CMS is introduced in Section 4.1. This section explains how to generate
shop floor agents and the logical relationship and illustrates the connection between the
simulation model and the shop floor entities. Section 4.2 introduces a case of the CMS
consisting of discrete manufacturing workshops equipped with a CPS that can collect real-
time data of the production process. Section 4.3 is the results of the simulation experiments.
These simulation experiments proved that the DBI-BS method could accurately identify the
bottleneck in the CMS and the bottleneck movement phenomenon occurred. Section 4.4
discusses in detail the contribution of the proposed method to bottleneck identification
methods and industrial practice.

4.1. Simulated Environment

AnyLogic enables users to provide the specific internals, process time, attributes,
and resources required to complete each activity mentioned. A simulation model was
constructed based on the structure of the physical workshop (deployed for three years with
the same layout, the same number of workstations, and the same buffer area) to verify the
performance of the DBI-BS method. As shown in Figure 10, the job shop case consists of six
workstations, which can be simplified into a six-machine-five-buffer model (6M5B). The
layout of the workshop and the simulation 3D model is shown in Figure 10. The detailed
information of the workshop is detailed in Section 4.2.
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The data required for model operation are obtained by analyzing the historical data
of the actual workshop. In addition, some mathematical distributions commonly used in
discrete simulation models are considered. MTTF\MTBF and machine breakdown obey
the exponential distribution, and the processing time obeys the lognormal distribution.
Queue simulates the queue (cache) where the entity is waiting for the next object to enter
the storage area. The machine represents the manufacturing resource, and its fine-grained
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state can be expressed by related functions, such as the use of “maintenance ()” to define
its maintenance status. The sink, usually at the end of the flow graph, is used to discard
entities, representing the end of the processing process. The input of parts is in minutes.
The analogue clock starts to work when the parts enter the system, and the input items are
not restricted. The detailed expression of each agent is shown in Table 4.

Table 4. Created Module Parameters.

Object Name Entity Type Agent Name Attributes

Part Source sourcePart Agent (); Advanced (); Actions ()

Process Service ServiceP1
Resource sets (); Delay time ();

Advanced (); Actions ();
Maximum queue capacity ();

End of process Sink sinkPart Action (); Advanced ()

Machine Resource Pool rpStation Shifts (); Breaks (); Failures ();
Maintenance (); Advanced (); Actions ()

Event Timeout eventUtiPerHr Actions ()

WIP Parameter pWIPPart Value editor (); Advanced ()

Production Plan Schedule schedulepart Data (); Action (); Exceptions ();
Preview (); Advanced ()

The logical relationship between the agents is shown in Figure 11. Among them,
the part agent and the machine agent are related through production tasks, and the parts
and work-in-progress are related through the availability of parts. The parts processing
on the machine and the parts to be processed in front of the machine reflect the WIP on
the production line. In addition, the seven fine-grained states of manufacturing resources
(fine-grained states 1–7) are related to the resource pool, and the remaining two fine-grained
states (fine-grained state 8 and fine-grained state 9) are associated with the service queue.
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4.2. CMS Case of Job Shop

The discrete manufacturing workshop, in this case, can process 13 kinds of parts. A
real-time data collection scheme based on CPS is designed to realize a real-time collection
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of manufacturing process data. The acquisition equipment and its main parameters are
shown in Table 5. The operating parameters of the CNC, spindle load, and other data are
transmitted to the intelligent terminal through the ethernet port, the sensor is connected to
the serial server through the RS485 cable in series, and the RFID reader is connected to the
serial server through serial communication.

Table 5. Data collection equipment and main parameters.

Machine Collection Object Technical Parameter

Sensor
(PCB356A03) Vibration signal The sampling upper limit frequency is 36 KHz.

Data acquisition card
(NI9234)

Acoustic signal
Vibration signal

The sampling upper limit frequency is 51.2 KHz.
The dynamic range is 102 DB.

Machining Center Processing parameters,
Spindle load, etc.

XYZ axis maximum stroke, main motor power, spindle
speed, positioning accuracy

High-frequency reader
(ALR-F800) RFID Label IP64 level waterproof/dustproof

ALR-8696 antenna RFID Label Working range 865 HZ–960 HZ

This experiment includes five processing parts: the brake disc, output shaft, traction
wheel, coupling, and brake arm. The involved processing equipment includes the drilling
and milling center (TC-R2B), precision machine tool (BNC427C), CNC lathe (L200E-M),
facing turning center (LT2000EX), machining center (LJ-650), etc. The exact processing time
of the workpiece is shown in Table 6.

Table 6. Parts processing information.

Workpiece Category
Planned Processing Time (s)

M1 M2 M3 M4 M5 M6

Brake disc 18 - 24 - 42 -
Output shaft - 18 - 18 - 84

Traction wheel 48 - 24 - - 98
Coupling - 30 24 - 78 -
Brake arm 36 - 42 - - -

4.3. Experimental Study

The test computer’s CPU frequency is 1.90GHz and 2.11 GHz, memory is 16GB, and
the running environment is the Windows 10 operating system. By running the simulation
system, the production process data of the CMS are obtained. This article selects a time
window with a period of 300 min to analyze the bottleneck of the complex system after one
week of simulation warm-up. Table 7 shows the buffer content data. It can be seen from
the table that only buffer 4 is not full or empty during the simulation operation. According
to the definition of an effective buffer, buffer 4 is effective, decoupling the system into
two parts. The first part of the system comprises equipment 1, equipment 2, equipment 3,
and equipment 4, and the second part is composed of equipment 5 and 6. Therefore, we
first analyze the fine-grained status of the two subsystems and then analyze the overall
bottleneck situation of the system through CFBI.

After processing the simulation data, the dynamic bottleneck state of the CMS is
obtained, as shown in the Figure 12. Take Subsystem 1 as an example to explain the
dynamic bottleneck phenomenon in the production process. First, the fine-grained state
of the equipment is analyzed and the effective state is extracted. The yellow area in
Figure 12a(1) is the effective fine-grained state of the extracted machine. Then, the overall
bottleneck status of the subsystem according to the effective status is obtained, as shown in
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Figure 12a(2), where the blue area is a single bottleneck stage, and the red zone is a multi-
bottleneck stage. Different bottleneck stages divide the time window into several segments.
For each segment, the CFBI is used to calculate the comprehensive bottleneck of the
equipment. The calculation results are shown in Table 8. The bold parts in the table are the
system bottlenecks in the corresponding period. The calculation results of the bottleneck
degree are consistent with the results of the dynamic bottleneck identification method
shown in Figure 12, proving that the proposed method is effective. In the same period, the
comprehensive bottleneck degree of different machines is different, which indicates that
different machines have different degrees of restriction on the system. Therefore, system
resources should be allocated according to the bottleneck to maximize system benefits.
In addition, it can be seen that the bottleneck machines are different in different periods,
which indicates that the bottleneck has moved.

Table 7. Buffer capacity change table.

Time (min) Buffer1 Buffer2 Buffer3 Buffer4 Buffer5

1 6 2 10 2 3
2 7 0 10 2 0
3 7 0 7 6 0
4 8 3 5 7 2
5 10 5 5 6 5
6 10 5 5 2 6
7 7 3 5 2 6
··· ··· ··· ··· ··· ···

188 5 10 5 7 5
189 5 10 6 7 5
190 3 0 6 6 10
191 0 0 6 6 10
··· ··· ··· ··· ··· ···

299 5 8 5 7 10
300 4 10 6 5 10
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Table 8. Data of subsystem bottleneck.

Machine i Li Pi Ri Mi Bi Si CFBI

t0–t1

M1 0 32 0 28 0 0 0.6033
M2 0 0 0 0 0 26 0.0467
M3 60 0 0 0 0 30 0.3233
M4 0 0 0 0 0 32 0

t1–t2

M1 73 0 0 0 0 0 1.6846
M2 13 23 0 25 0 0 1.4077
M3 13 0 0 0 0 0 0.3000
M4 22 51 0 0 0 0 1.6846

t2–t3

M1 0 0 12 0 0 0 0.3000
M2 20 0 0 0 0 0 0.5000
M3 0 0 0 0 0 0 0
M4 22 0 0 0 0 0 0.5500

t3–t4

M1 26 0 24 0 34 0 0.6295
M2 40 0 0 0 0 32 0.3159
M3 78 10 0 0 0 0 0.6600
M4 88 0 0 0 0 0 0.6600

t4–t5

M1 0 0 0 0 41 0 0.0982
M2 52 0 0 0 0 8 0.7053
M3 39 19 0 0 0 0 1.0346
M4 0 0 0 0 0 57 0

The ultimate goal of identifying bottlenecks is to improve the production capacity
of complex manufacturing systems, and OEE is an effective indicator to evaluate the
system’s production capacity. The elevator parts manufacturing enterprise guides the
optimization of the production process according to the results of the dynamic bottleneck
identification, such as improving the capacity of the bottleneck machine by optimizing the
buffer configuration, enhancing the priority of maintenance, and dynamically allocating
manufacturing resources, and the OEE of the system has been steadily improved. The
target level has been reached, about 85% per day. Figure 13 shows the OEE screen of the
workshop, and Figure 14 shows the weekly average daily OEE of the production line in the
past two months.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 21 
 

Repair Starvation Blockage 
Set up

Toolchange
Waiting for repair StopBreakdown

Sole bottleneck stage Multiple bottleneck stage

Processing

t6 t7 t8

M6 

M5

Machine i 

Time t
t1 t2 t3 t4 t5

t1 t2 t3 t4 t5

(2) Subsystem dynamic bottleneck

(1) Equipment fine-grained  
                            

Time t

Time t

Machine i

M2  

M1

M3

M4

M2  

M1

M3

M4

Effective state  

t6 t7 t8

Time t

M6  

M5

(2) Subsystem dynamic bottleneck

(1) Equipment fine-grained  
                            state and effective state extractionstate and effective state extraction

(a) (b)

Machine i Machine i

 
Figure 12. Complex system dynamic bottleneck identification. (a) Subsystem 1 dynamic bottleneck 
identification; (b) Subsystem 2 dynamic bottleneck identification. 

The ultimate goal of identifying bottlenecks is to improve the production capacity of 
complex manufacturing systems, and OEE is an effective indicator to evaluate the sys-
tem’s production capacity. The elevator parts manufacturing enterprise guides the opti-
mization of the production process according to the results of the dynamic bottleneck 
identification, such as improving the capacity of the bottleneck machine by optimizing the 
buffer configuration, enhancing the priority of maintenance, and dynamically allocating 
manufacturing resources, and the OEE of the system has been steadily improved. The 
target level has been reached, about 85% per day. Figure 13 shows the OEE screen of the 
workshop, and Figure 14 shows the weekly average daily OEE of the production line in 
the past two months. 

Figure 13. The OEE screen of the workshop. 

OEE process states

energyquality

Figure 13. The OEE screen of the workshop.



Appl. Sci. 2022, 12, 4195 18 of 20Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 21 
 

 
Figure 14. The weekly average daily OEE. 

4.4. Discussion 
This paper proposes a dynamic bottleneck identification framework that is driven by 

simulation data, including effective buffer identification, global and subsystem bottleneck 
identification, and comprehensive bottleneck degree calculation. The method can 
dynamically identify bottlenecks in complex manufacturing systems and improve system 
output to target levels. 

Most identification methods consider bottlenecks independently, and there are few 
studies on identification from a system perspective. Considering the strong coupling 
between the elements in CMS, this paper proposes a method of decoupling CMS through 
effective buffering and studies the identification method of effective buffering. The active 
state duration is used to define the bottleneck for the problem of inaccurate state division, 
nine fine-grained states that can be classified into two categories are given in combination 
with the actual production situation, and detailed definitions are given. In addition, a time 
series flow model of the manufacturing states is established to process state data for 
dynamic bottleneck identification, and a comprehensive bottleneck degree model is 
proposed to quantify different bottlenecks of system resources. 

Compared with the existing simulation-based identification methods, a real-time 
data acquisition scheme based on CPS is designed to realize the real-time acquisition of 
manufacturing process data and use them as the data source of the simulation model. By 
studying the one-to-one mapping relationship between workshop entities and simulation 
agents, a CMS simulation model closer to the actual production situation is established. 
Time-varying production data collected through the manufacturing IoT can help in 
understanding the dynamic operations of the shop floor without relying on ideal 
mathematical distributions. 

The dynamic bottleneck identification method proposed in this paper has the follow-
ing advantages. First, the process can be completed automatically, with high analysis ef-
ficiency and objective results; second, by dividing the CMS into different stages and fur-
ther subdividing the equipment status to reduce the coupling of the system reduces the 
probability of misjudging bottlenecks. In addition, the sole-bottleneck and multi-bottle-
neck stages of the system can be seen through the duration of the fine-grained state of the 
machine, and the process of bottleneck movement can be presented. Finally, accurate pro-
duction data and simulation models can cost-effectively guide the actual production pro-
cess. Managers can identify the bottlenecks limiting system output based on historical 
production data. The idea of a hybrid drive can provide a valuable reference for digital 
twin technology in Industry 4.0. 

week0 week1 week2 week3 week4 week5 week6 week7 week8
60%

65%

70%

75%

80%

85%

O
EE

Time

Figure 14. The weekly average daily OEE.

4.4. Discussion

This paper proposes a dynamic bottleneck identification framework that is driven by
simulation data, including effective buffer identification, global and subsystem bottleneck
identification, and comprehensive bottleneck degree calculation. The method can dynami-
cally identify bottlenecks in complex manufacturing systems and improve system output
to target levels.

Most identification methods consider bottlenecks independently, and there are few
studies on identification from a system perspective. Considering the strong coupling
between the elements in CMS, this paper proposes a method of decoupling CMS through
effective buffering and studies the identification method of effective buffering. The active
state duration is used to define the bottleneck for the problem of inaccurate state division,
nine fine-grained states that can be classified into two categories are given in combination
with the actual production situation, and detailed definitions are given. In addition, a
time series flow model of the manufacturing states is established to process state data
for dynamic bottleneck identification, and a comprehensive bottleneck degree model is
proposed to quantify different bottlenecks of system resources.

Compared with the existing simulation-based identification methods, a real-time data
acquisition scheme based on CPS is designed to realize the real-time acquisition of manufac-
turing process data and use them as the data source of the simulation model. By studying
the one-to-one mapping relationship between workshop entities and simulation agents, a
CMS simulation model closer to the actual production situation is established. Time-varying
production data collected through the manufacturing IoT can help in understanding the
dynamic operations of the shop floor without relying on ideal mathematical distributions.

The dynamic bottleneck identification method proposed in this paper has the fol-
lowing advantages. First, the process can be completed automatically, with high analysis
efficiency and objective results; second, by dividing the CMS into different stages and
further subdividing the equipment status to reduce the coupling of the system reduces the
probability of misjudging bottlenecks. In addition, the sole-bottleneck and multi-bottleneck
stages of the system can be seen through the duration of the fine-grained state of the
machine, and the process of bottleneck movement can be presented. Finally, accurate
production data and simulation models can cost-effectively guide the actual production
process. Managers can identify the bottlenecks limiting system output based on historical
production data. The idea of a hybrid drive can provide a valuable reference for digital
twin technology in Industry 4.0.
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5. Conclusions

This paper introduces a dynamic bottleneck identification method based on the fine-
grained state of manufacturing resources. It combines the decoupling method of complex
systems to improve the accuracy of bottleneck identification. In addition, because the
bottleneck between the subsystems cannot be compared, a comprehensive mobile bottle-
neck degree CFBI method is proposed to calculate the bottleneck degree of the bottleneck
equipment of the subsystem and then obtain the overall bottleneck situation the system.
The main contributions of this article include:

(1) The decoupling effect of the buffer on the production line is clarified, and a method to
use an effective buffer to decouple the CMS is proposed.

(2) Based on the active time method, the state of manufacturing resources is further
divided into a fine-grained granularity. A dynamic bottleneck identification method
is proposed based on the fine-grained state of equipment.

(3) Aiming at the problem that the bottlenecks between different subsystems cannot be
directly compared, comprehensively considering the operating status of the system
and the mutual influence between each device, a comprehensive bottleneck degree
index is constructed to evaluate the overall bottleneck status of the system.

The DBI-BS method establishes the connection between the real-time data of the
manufacturing process and the system bottleneck. Future research work will be carried
out in predicting the bottleneck by the machine learning method and to further explore the
impact of system bottlenecks on the total output of the production system.
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