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Abstract: Online video is anticipated to be the largest fraction of all mobile network traffic aside from
the huge processing tasks imposed on networks by the billions of IoT devices, causing unprecedented
challenges to the current network architecture. Edge caching has been proposed as a highly promising
technology to overcome this challenge by placing computational and data storage resources at the
network edge to reduce latency and backhaul traffic. However, the edge resources are heavily
constrained in their storage and computational capacities as large-scale deployments mean fairly
distributing resources across the network. Addressing this limitation, we propose an edge video
caching scheme that dynamically caches the first part of popularity-ranked video files on Multi-Edge
Computing Access Node (MAN) servers envisioned to achieve higher cache hit ratios, lower latencies,
and lower backhaul traffic. The concept of Regionally Organized Clouds (ROCs) with sufficient
resources for file caching and compute-intensive tasks was introduced, and a formulation of the
edge caching problem as an Integer Linear Programming (ILP) problem was made. Additionally,
this study proposes a file view-time threshold for each cached video aimed at reducing the resource
wastage caused when buffered contents are abandoned. Comparative evaluations of the proposed
show its excellent performance over FIFO, Greedy, LFRU and TLRU schemes.

Keywords: Multi-Access Edge Computing (MEC); edge caching; distributed computing; resource
allocation; edge network optimization

1. Introduction

Smartphone data traffic is projected to exceed PC data traffic in the next few years
based on the Visual Networking Index by Cisco [1]. Internet video traffic accounts for
the highest chunk of all smartphone traffic, reaching about 78 exabytes per month. The
existing cellular networks will be congested; hence, service delivery will be deplorable if
the challenges of video traffic are not addressed. Moreover, the current cloud architecture
provides an inviable solution to the problem, as the number of connected edge-hosted con-
tainers is also estimated to be over 700 million to provide business resilience networking [2].
As a result of the heterogeneity of network devices and the dynamics of the network,
video streams must be converted into multiple copies, each with different bitrates, and
stored on main cloud servers. This approach incurs huge operational expenditure, in that it
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necessitates greater storage capacities and processing power for the content housing and
transcoding. Hence, there is a pressing demand to optimize current and future networks
to facilitate the delivery of a high quality of service (QoS) and high quality of experience
(QoE) at well under the operational expenditure. Network capacity expansion can alleviate
the problem with congestion due to data surges, but it is not a feasible solution because it
requires huge capital investment.

Recently, mobile edge computing, also known as the European Telecommunications
Standards Institute (ETSI) Multi-Access Edge Computing (MEC), has been proposed as a
promising solution and has been applied in many works in the literature [3–7]. The advent
of this technology ushers in new ways of delivering better services to mobile users. The
main challenge of the content delivery problem is that multimedia data is in data centers,
while consumers are ubiquitous. The goal of every content delivery network (CDN) is
to bring content closer to users via the best output performance considerations. Data
centers are mostly located far from urban users. To realize a near-seamless QoE, in-network
caching at the edge has gained great research momentum. ETSI MEC offers a network
setting and cloud-computing abilities at the mobile network edge, empowering application,
and content creators to launch new services, such as intelligent video acceleration, with low
latency and high bandwidth. The closeness of storage and computing resources to users
has been proven to lessen the burden on the core networks [7,8]. Caching popular and
frequently accessed content within the network also reduces the transit service payments
to Internet Service Providers (ISP), thereby reducing the total operational cost of the
cellular network and achieving high QoE through fast content delivery by avoiding long-
distance transmission [9]. MEC servers, however, are limited in two ways: (a) the caches
in edge servers have scarcely constrained storage capacities; and (b) wireless network
instability conditions lead to users requesting different bitrates of the same video, making
the transcoding computationally resource expensive.

Further, caching all the multiple versions of the same video at the network edge poses
a greater problem with the cache capacity. Hence, collaborative caching and processing
have been introduced. The MEC server caches a higher bitrate version of a video which can
be later transcoded into multiple lower versions to meet the demand of users. Clustered
MEC servers collaborate to assist each other to deliver from their cache or help transcode
the desired bitrate [10,11]. Some caching strategies, including first-in-first-out (FIFO), least-
frequently used (LFU), and least-recently used (LRU) are basic, and their implementations
are simple. However, their performance on cache hit ratio and latency is poor when consid-
ered in mobile edge caching for media content [12]. Other research-based strategies present
solutions to gain efficient management of cache storage and short file delivery time for a
less traffic communication [13]. Although proactive caching has been proposed to further
reduce the file delivery time under constrained backhaul resources, it is strongly efficient
when users have similar request patterns requiring accurate predictions of users’ content
demands with advanced learning algorithms [14]. In [15], rate-distortion characteristics of
videos, video popularity, client’s initial delay, and the transmission capacity for the base
station and the MEC server were considered for each cache server to store only the best
video presentations in an attempt to improve the clients’ QoE.

To overcome the problems of video content management at mobile edge caching
networks coupled with low-latency guaranteed transmissions, this study proposes a new
distributed part of media (DPoM) caching approach that dynamically caches the first part
of a video on a MEC Access Node (MAN). The edge cache placement problem to objectively
maximize cache hit rate subject to storage and power constraints is modeled as an Integer
Linear Programming (ILP) problem [16]. It is infeasible to obtain the optimum solution to
the ILP for each user request in a time slot in real-time because it requires significant time
due to its NP-completeness. Hence, a heuristic approach is designed to maximize the cache
hit rate of the MAN servers in the likeness of a multiple knapsack problem [17], having the
cache size of the MAN servers in a cluster to be the total capacity of each knapsack, the
probability of a file being requested as the profit of the item, and the size of each file as the
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weight of the item. The main idea of the proposed scheme is to cache all or most of the files
at a regionally organized cloud (ROC). At the MEC access node (MAN), the cache storage
is duo-partitioned: main cache and transient cache. The main cache stores the first part of
the most popular files a content provider is serving at a period. Relative to the total length
of a file, the first part of a file for caching can be 25% to 50% of the whole file since most
users engage the video for a few minutes before abandoning the streaming session if they
lose interest or experience long rebuffering sessions. The remaining parts of an ongoing
streaming activity are fetched into the transient cache when a view-time threshold on the
playing file is reached. This threshold is placed on a video to restrict the network to only
delivering the remaining parts of a playing file once the threshold is reached, to curtail
the high number of session abandonments caused by many factors such as longer startup
delays, the negative role of unsteady bitrate changes, the negative role of the number of
rebufferings, lack of sufficient interest in the content, etc. [18]. In this direction step, the
transient cache is not unnecessarily filled with parts of files whose sessions have been
abandoned. The fetched files in the transient cache are stored for a while to serve other
users with similar requests before the whole cache is cleared during cache replacement to
make room for other file parts in future streaming sessions. Cache update frequency policy
of the main cache storage depends on users’ preferences dynamism. Thus, our scheme
does not only allow for more cached content at the MAN servers, but also improves the
cache hit ratio, the latency associated with content fetching, and the overall backhaul traffic.
The main contributions of this paper are as follows.

(1) This study introduces a resource-sufficient regionally organized cloud which supplies
and organizes clusters of neighbor MAN cells.

(2) This study gives a formulation of the edge network caching problem as an Integer
Linear Programming-based optimization problem objectively to maximize the cache
hit ratio.

(3) This study sets a file view-time threshold on each file to minimize the backhaul traffic
incurred when ongoing streaming sessions are abandoned.

(4) In this study, a design of heuristic algorithms to optimally place video contents
dynamically in the clustered edge servers is computed.

The rest of the paper is sectioned as follows: We present related works in Section 2. In
Section 3, we explain the caching system framework and formulate the caching problem.
The proposed solution entailing the heuristic algorithms is detailed in Section 4. Section 5
presents the results and analyses based on extensive simulations. We conclude the paper in
Section 6 with the final considerations and the future work.

2. Related Works

Recent video presentations with increasing user requests and the advancement of
mobile technology have paved the way for new video applications and services. However,
the resultant data traffic and network congestions define the limitations of current networks
in massive data processing and handling. Mobile Edge Computing (MEC), particularly
Edge caching, has been proposed to minimize network congestion and ensure low latency
communication [19]. MEC is an approach to deploy micro cloud services at the edge of the
network by offering storage and computation capabilities [20]. With the increasing demand
for video streaming, several solutions have been proposed to cache the data at the network
level closest to users [21–24]. However, MEC storage and computation resources are
limited, as large-scale global deployment will seek a fair distribution of resources to output
good overall system performance, meaning the resources should be utilized efficiently.
Data offloading (caching) and task offloading (transcoding) have been the main hurdle
addressed by the existing literature. In [25], Kumar et al. designed a RAN-aware adaptive
video caching scheme that utilizes radio network information to select appropriate bit-rates
for video caching considering video popularity distribution and estimated video request
bit-rates from cached videos in a collaborative and replication-avoidable MEC network.
Tran et al. [11] proposed a joint collaborative caching and processing framework that
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supports adaptive bitrate video streaming. In [26], Dehghan et al. proposed a utility-driven
in-network caching where contents are associated with a utility function corresponding
to content’s related hit probability in order to maximize the profits of caching. To ensure
the effectiveness of the massively distributed but small-sized RAN caches, Ahlehagh et al.
in [27] introduced RAN-aware reactive and proactive caching policies that utilize User
Preference Profiles (UPPs) of all active users in a cell. Similarly, to offset the disadvantages
of limited cache storage at the network edge, several learning approaches, incorporating
content popularity prediction based on user preferences, clustering users based on similar
content interests, and optimizing cache placement and replacement techniques have been
proposed [7,28–30].

A combination of proactive prediction and replacement collaboration (PCR) among
MECs to effectively manage the cache storage is proposed in [31]. To achieve high cache hit
ratios, the authors in [32] proposed layered video caching for multiple social groups formed
by mobile users based on their requests. A Stackelberg game model was developed to
study the collaboration among multiple social groups and the cache node as users (players)
compete with each other for the number of layers they request to cache. In [33], the authors
proposed a lightweight, agile caching with a PID controller to efficiently control the rate
for streaming high-quality data. The proposed algorithm minimizes the operations at the
edge nodes to avoid overloading the highly constrained edge nodes. In [34], cooperative
caching among MEC servers was considered and the video cache hit ratio was improved
by caching multiple presentations of videos and transcoding the videos in real-time. The
downside of this approach is that caching multiple versions of complete videos reduces the
efficient utilization of the MEC cache space. To further improve the efficiency of the cache
management, a Multi-Agent Reinforcement Learning (MARL)-based cooperative content
caching policy has been proposed in [35], exploiting only the historical content demands of
users when users’ preferences are unknown.

Most of the aforementioned proposals either end up overburdening the edge servers
with transcoding and machine learning tasks or use up cache storage quickly. In this
situation, the responsiveness of the edge servers to guarantee seamless video streaming
performance might be very poor in that the original purpose of the MEC is to ensure swift
data processing of IoT data to provide low latency responses to devices. Video is massive
data requiring reliable and high bandwidth connection for its delivery from servers to
users. To reap the full benefits of MEC, content caching policies must efficiently cache and
offload lightweight tasks to the edge servers. A more suitable solution involves clustering
and cooperation among MEC servers, with at least one resource-sufficient node able to take
heavy tasks on behalf of the other nodes [36,37]. Edge caching policies with effective edge
resource allocation are key to maintaining a fine balance in computation and storage in
the IoT Edge system. The following works [38–43] establish the edge caching problem as a
resource-constrained optimization problem, decomposed into subproblems, and solved
mostly with heuristic algorithms. The solutions are not always optimal, but evaluations
show improvements over state-of-the-art caching policies considered in the works.

Worldwide attention has been drawn to the global carbon emission contribution
of the information-communication technology (ICT) industry. Today, the Internet is the
most needed and desired entity, connecting every facet of life and every sector of major
economies, whose absence or malfunction causes heavy losses of monetary capital. The core
and backhaul networks are often congested with ceaseless data traffic. Edge computing
promises to reduce the over-dependence on the core and backhaul networks. Several studies
have proposed edge caching policies that also capture techniques of further reducing the
backhaul traffic [44–46]. However, the proposed schemes have not analyzed unused
buffered content data during streaming session abandonments.

The existing approaches tackle the edge caching problem centrally, with content
transcoding tasks offloaded to designated computing units without real-time balance in
available computing resources in a dynamic and unpredictable wireless streaming en-
vironment. Additionally, no consideration has been given to the wastage of computing
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and communication resources on unused content parts whenever streaming sessions are
abandoned. Our proposed scheme addresses the problems of inefficient cache storage
management and backhaul resource wastage, due to streaming session abandonments,
exploiting a new method of content caching with strict file view duration threshold as-
signment, systematically designed to achieve higher cache hit ratios through the dynamic
placement of more contents at the edge, and fewer content transmissions via the backhaul
network.

3. System Framework

In this section, we present the framework for the proposed edge caching scheme.
Figure 1 depicts the architecture of the proposed framework, comprised of several entities
at different levels, where MAN servers are deployed in clusters, providing computation
and storage resources to enable caching at the network edge. A MAN server can process
requests directly from its local cache, neighbor MANs, ROC, or the central cloud.

Figure 1. Edge caching scenario.

3.1. Entities for the Framework Design

1. Central Cloud: The central cloud connects to Regionally Organized Clouds via the
core network. The facility houses all the media files of a content provider. It also
serves data upon regional requests. When new content is published, the central cloud
updates all cache catalogues on the regional clouds.

2. Regionally Organized Cloud (ROC): A ROC connects to MEC access nodes via
wireless or fiber backhaul. ROCs function as central clouds, but with fewer computing
and storage capacities. A ROC caches content the region needs. It also computes
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the popularity of content based on consumption data reports from the Edge Cache
Manager. It correspondingly transcodes and serves the remaining parts of media
content in the regional cache once an edge cluster manager requests for them. At the
regional level of a cache network, users have similar preferences compared to those at
a global level. The advantage realized is that a ROC can efficiently serve its region’s
needs, whiles following the region’s data protection and rights requirements. Content
providers can upload directly onto their ROCs to better serve their regional users.

3. Edge Cluster Manager: The edge cluster manager resides on a cluster’s head MEC
access node server at the edge of the network. Its primary function is to perform cache
management locally. Users are served directly from the cache at a MEC access node if
the requested file is in the cache. If the desired file is not in the cache, the edge cluster
manager sends a cache search request to neighbor MEC edge nodes. It also directs
user requests to ROCs directly for users to be served when files are not found in any
of the clustered MANs.

4. MEC Access Node (MAN): The MAN is the physical access point of the system. The
user equipment (UE) connects to the entire network via a wireless or wired medium.
Aside from functioning as connection media between user devices and the core
network, MEC access nodes are equipped with both compute and storage capabilities.
These are in the form of edge servers—transcoding servers and streaming servers. A
transcoding server converts mostly higher resolutions and bitrates of video files to
acceptable bitrates commensurate with users’ network quality to realize jitter-free and
shorter buffering times. A streaming server, however, fetches requested videos from
the cache and serves them to users. If the video is not available at the MEC cache,
the edge cluster manager redirects the streaming server to serve video streams from
either neighbor MEC access nodes or ROCs. The MAN is also responsible for the
provision of the wireless resource allocation strategy.

5. User equipment: Different users have different devices which are capable of stream-
ing content over a wireless or wired network. Most users stream wirelessly via mobile
devices such as smartphones, tablets, laptops. A small fraction of users still prefers
wired connection streaming on devices such as desktop computers, laptops, smart
TVs, and other smart home devices with screens.

3.2. Caching Strategy

We consider a multiple-layer caching network to deliver content from both the MANs
and ROCs, which are equipped with cache storage capacities SM and SR respectively. We
consider geographic regional locations with relating characteristics to be served by a ROC.
For simplicity, a ROC has quite sufficient computing and storage resources (SR � ∑ Fmaxγ).
Local content providers can upload directly to the regional platforms for users’ consump-
tion. Several MANs are directly linked to the ROC. We define a set of N MAN servers
directly linked to a ROC as M = {m1, . . . mn, . . . mN} having main cache storage sizes
SM = {sm1 , . . . , smn , . . . smN} and utilized cache storage sizes SMU =

{
su

m1
, . . . , su

mn , . . . su
mN

}
.

A set of K users with streaming equipment is defined as U = {u1, u2, . . . , uK}, and follows
a two-dimensional Poisson distribution. A catalog of the V most popular video files dy-
namically cached at mn is given by F = { f1, f2, . . . , fV}, where the popularity of a file is
represented by the probability Pv that file fv is requested by a user (ruk ), following Zipf

distribution [47], i.e., Pv( fv) =
Ω
fvα , where Ω =

(
∑F

v=1 v−α
)−1

. The variable α characterizes
the distribution. A higher α value indicates that a fraction of the content is more popular
than the rest in the catalog, while a lower α value describes more consistent popularity
among different fractions of the contents. Offline caching [22], in which content replacement
sessions are carried out at off-peak times, is considered. Having fixed and insufficient cache
storage sizes at the MANs, efficient content placement at the base stations is a determinant
of the performance of the scheme. The wide variance of users’ preferences requires caching
many distinct files with similar requesting frequencies to realize a good caching scheme
performance, i.e., record high cache hit ratios (Hc).
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A more gainful technique is to cache only the first parts of the content files at the MAN
servers, as depicted in Figure 2. The remaining parts are stored on the ROC server with a
delivery initialization condition: when the view-time threshold λv of a file is reached. A user
uk requests for video fv of size s fv (small file SF ≤ A MB; medium file A MB < MF ≤ B GB;
large file LF > C GB, where A, B, and C are file sizes determined by the content provider
such that A < B < C) with quality q fv at MAN server mn. The variable c

q f v
mn ∈ {0, 1}:

n ∈ N, v ∈ V indicates if a video file fv with quality q is cached on a MAN server n. If the
sought-after file is in the cache, c

q f v
mn = 1, otherwise c

q f v
mn = 0. To determine if a request is

served from the local MAN server, any neighbor MAN server in the cluster, or a ROC, with
or without transcoding, we define ternary variables ϕ, ψ, and γ. If a user’s video request for
fv in quality q is served by the local MAN, then ϕ

q fv
mn = 1, and 0 otherwise. If the file is not

cached locally but it can be served by any of the neighbor cells then ]ϕ
q fv
mk = 1, and ϕ

q fv
mk = 0

indicates that the file is not in any neighbor MAN’s cache storage. In this case, the file
must be served from the ROC’s cache, γ

q fv
mn = 1. Since ROCs have sufficiently high cache

capacities and computational resources, we overlook the rare situation where a requested

file is unavailable on the ROC server (γ = 0). We denote ψ
q̂ fv
mn = 1 for a local MAN server

transcoding video fv from quality Q→ q̂ . Likewise, if any k-th MAN server in the cluster
of neighbor cells transcodes a video fv from quality Q→ q̂ which satisfies a user’s request,

then ψ
q̂ fv
mk = 1. Consequently, let W

q fv
mn =

(
ϕ

q fv
mn + ψ

q̂ fv
mn

)
and W

q fv
mk = ∑n 6=k(ϕ

q fv
mk + ψ

q̂ fv
mk ),

where W
q fv
mn is the state that a user’s request is served by the local MAN server and W

q fv
mk

is the state that a user’s request is served by any of the MAN servers in the cluster other
than the local MAN server of the user. The cache network satisfies the request of a user by
following one of the three stated cases, which results in (1).

W
q fv
mn + W

q fv
mk + γ

q fv
mn = 1; ∀n, k ∈ N, f ∈ F (1)

Figure 2. Cache content management.
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We intend to serve all or most of the users’ requests from the local or neighbor MAN
servers to maximize the Hc. A request served by a ROC is regarded as a cache miss
considering the constraint of user QoE which can be low for high latencies between the
MAN servers and the ROC. The cache hit (HC) formulation is given as

HC = ∑
n∈N

∑
q fv∈Rn

(W
q fv
mn + W

q fv
mk ) (2)

3.3. Problem Formulation

In this section, the formulation of the video caching problem as a cache hit rate
maximization under the cache size of the multiple MAN servers and their processing
power constraints is presented.

3.3.1. Problem 1

The objective function in (3) represents the total number of cache hits of the edge cache
network. In (4) and (5), the decision variables (c

q f v
mn and c

q f v
mk ) are constrained to 1 only if

fv is cached on the MAN server n or k respectively. The constraints in (6) and (7) set ψ
q̂ fv
mn

and ψ
q̂ fv
mk to one when the file fv is cached in a higher bitrate presentation q̂ which requires

transcoding to the requested bitrate presentation q. The constraint in (8) allows content to
be fetched from only one place at a time. In (9), a cache capacity violation constraint is set
for the system. An upper bound on the consumed processing power needed to transcode a
video from a higher presentation to a requested one is set in (10).

Maximize HC = ∑
n∈N

∑
q fv∈Rn

(W
q fv
mn + W

q fv
mk ) (3)

Subject to ϕ
q fv
mn ≤ c

q f v
mn , ∀n ∈ N, f ∈ F, q ∈ Q (4)

ϕ
q fv
mk ≤ c

q f v
mk , ∀k ∈ N, f ∈ F, q ∈ Q (5)

ψ
q̂ fv
mn ≤ min

(
1,

Q

∑
q̂=q+1

c
q f v
mn

)
, ∀n ∈ N, f ∈ F, q ∈ Q (6)

ψ
q̂ fv
mk ≤ min

(
1,

Q

∑
q̂=q+1

c
q f v
mk

)
, ∀k ∈ N, f ∈ F, q ∈ Q (7)

W
q fv
mn + W

q fv
mk + γ

q fv
mn = 1, ∀n ∈ N, n 6= k, f ∈ F, q ∈ Q (8)

∑
q fv∈Rn

s fv c
q f v
mn ≤ smn , ∀n ∈ N, f ∈ F, q ∈ Q (9)

∑
q fv∈Rn

Pq̂→q

(
ψ

q̂ fv
mn + ∑

k 6=n
ψ

q̂ fv
mk

)
≤ Pu

n , ∀n ∈ N, n 6= k, f ∈ F, q ∈ Q, u ∈ U (10)

3.3.2. Problem 2

Further, we find an appropriate file consumption threshold λv for each video file. The
file consumption threshold parameter allows the cache manager to specify a content view
duration threshold fWTv ≥ λv which initializes the fetching of the remaining parts of a
file from the ROC server and temporarily caches on the transient cache of the local MAN
server. Hence, to ensure smooth uninterrupted streaming, the necessary condition is for
a user to continuously engage with the selected video until the set duration threshold is
reached. We propose this approach to reduce the wastage of the backhaul bandwidth and
the MAN cache storage scenarios of streaming session abandonments by users. The variable
d

q f v
mn ∈ {0, 1} indicates whether the remaining parts of the requested video fv in quality q
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and cached at MAN server n should be transmitted. The condition of reaching the threshold,
i.e., fWTv ≥ λv gives d

q f v
mn = 1, whereas unsatisfied threshold condition ( fWTv < λv) gives

d
q f v
mn = 0. Assuming the backhaul bandwidth is divided into β subcarriers and each

subcarrier is shared by multiple users in a time-division manner, then the transmission rate
R for the k-th user in the n-th cell on the m-th subchannel is given by Equation (11), where
αm

k,n denotes the time-sharing factor of user k in the MAN cell n on subcarrier m, χm
k,n is the

channel access indicator (the decision variable). If the n-th MAN server serves the k-th user,
χm

k,n = 1, and zero otherwise.
Minimize

Rm
k,n = ∑M

m=1 αm
k,n

B
N

log2

(
1 +

χm
k,n·SINRm

k,n

αm
k,n

B
N

)
(11)

Subject to
fWTv ≥ λv, ∀ f ∈ F (12)

∑
k∈K, n∈N

χm
k,n = 1, ∀n ∈ N, n 6= k (13)

The second optimization objective is to maximize the efficient utilization of the back-
haul resources by minimizing the content transmission rate when the view threshold is not
reached. In (11), the objective function is to minimize a user’s channel utility. The constraint
in (12) controls the decision variable d

q f v
mn , which instantiates the final channel access indica-

tor variable χm
k,n. The constraint in (13) sets all channel access indicators to one when all the

view-time thresholds are met. The formulated problems are NP-complete ILP problems,
hence obtaining an optimal solution in polynomial time is infeasible for the reason that in a
clustered cooperative environment, knowledge of all the possible video requests is required
to solve the ILP and that is unattainable. Therefore, to achieve our objective of maximizing
the cache hit rate of the edge caching network, we design a distributed part of media
(DPoM) caching method which follows a multiple knapsack optimization, considering
the MAN servers in a cluster as knapsacks with capacities equivalent to the cache sizes
of the MAN servers, the profit of caching, i.e., users served from the edge, as the item’s
value, and the cache size requirements for each content file as the weights of the items.
Heuristically, the method randomizes the selection of cacheable contents from the entire
catalog by dynamically caching the first parts of contents having maximum popularity at
every content drawing.

4. Proposed Solution
4.1. Distributed Part of Media (DPoM) Management

Content placement and caching at the network edge are carried out intelligently using
a dynamic and distributive technique. The first part of the solution to the edge caching
problem is presented in Algorithm 1, which depicts the steps for file splitting and placement.
Firstly, DPoM performs content popularity comparison for any two randomly drawn files
for all cacheable contents, then checks the size suitability for caching. For a file in SF
range, there is no need for file splitting, so the entire file is placed in the main cache of
a MAN server. For a file of size in the MF range, the splitter outputs two parts with the
first part placed in the main cache. Similarly, a file in the LF range is split into multiple
parts and the first part is cached. All remaining parts of split files are stored on the ROC
for faster retrieval to the transient caches when users continuously engage their requested
contents from the MAN servers. The MAN servers are represented as a set of knapsacks
M = {1, . . . , m} with capacities SM = {sm1 , . . . , smn , . . . smN}, and the video contents as
the set of n items, each having both profit of caching which is the request probability and
weight (cost) which is the size of the item. Each item has a size which is divisible. The
problem is to find the number of items to be put in each knapsack such that: (a) the total
value of the assigned items is maximum; (b) the total size of items assigned does not exceed
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the capacity of the knapsack; and (c) the total number of the assigned items does not exceed
the upper bound. Hence, the complexity of the proposed algorithm is O

(
n2 + nm

)
.

Algorithm 1 DPoM File Splitting and Placement Algorithm

Input : New videos F = { f1, f2, . . . , fV}
Output: Optimal content placement on clustered MAN servers
1 : Initialize Caches on MAN servers SM = {sm1 , . . . , smn , . . . smN}
2 : while su

mn
≤ smn draw files for popularity comparator

3 : for fv.popularity() == fv+1.popularity()?
4 : if fv.popularity() > fv+1.popularity() do
5: switch(expression)
6: begin
7 : case s fv ≤ SF then
8 : No file splitting required : Cache fv on MAN server n
9: break
10 : case SF < s fv ≤ MF then
11 : Split fv into f 1

v and f 2
v . Cache only f 1

v on MAN server n
12: break
13 : case MF < s fv ≤ LF then
14 : Split fv into h parts for each h ≥ X GB. Cache only f 1

v in
quality q on MAN server n

15: break
16: end
17: end if
18: end for
19: end while

4.2. DPoM File Fetching Algorithm

The process of responding to user content requests is detailed in Algorithm 2. The
algorithm initializes the MAN servers for content fetching and processing power for
transcoding. At the request for a video content file fv in quality q by user uk, DPoM first
checks if the file is on the local MAN server n and serves uk if it is available (c

q f v
mn = 1). If

the desired video is not in cache at the local MAN server, the edge cache manager searches
cooperatively with the other MAN servers and serves the user uk if the file fv is cached on
any k-th neighbor MAN server (c

q f v
mk =1; k 6= n). To efficiently utilize the limited processing

power of the MAN servers, if the requested quality q is within the cluster, there is no
need for transcoding. However, if there exists fv in a higher quality q̂ in the local n-th or
alternate k-th MAN server, the file is transcoded to the desired quality and served to the

user (ψ
q̂ fv
mn = 1; ψ

q̂ fv
mk = 1). If the video is not on any of the servers clustered as neighbors,

the algorithm presents a search request to the ROC.
Since the ROC has a sufficiently large storage capacity, there is a higher probability that

the file will ultimately be served from its server (γ
q fv
mn = 1). However, the central cloud is the

last resort if the desired file is unavailable on the ROC server. The ROC always transcodes
the requested file to the desired quality before forwarding it to the MAN server. Once a
user uk reaches the view-time threshold of the file fv, the remaining parts are transcoded
by the ROC and sent to the transient cache of the user’s local MAN server ( fWTv ≥ λv).
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Algorithm 2 DPoM Fetching Algorithm

Input : File request ( fv) by a user uk.
Output : Cache Hit Rate (HC ), Latency (LT ), and Backhaul Traffic (TB )
1 : Initialize : Available processing power Pu

n
2 : Initialize : Cache on MAN servers sm1 , . . . , smN

3 : for n ∈ 1, . . . , N do
4 : for each request ruk do
5 : if c

q f v
mn == 1 then

6 : Serve uk from MAN server n
7 : else if c

q f v
mk == 1; k 6= j then

8 : Fetch fv from MAN server k and serve uk
9: switch (expression)
10: begin
11 : case γ

q fv
mn == 1 then

12 : Transcode from q̂ to q and send fv from the ROC
server to the MAN server n

13: break
14 : case ψ

q̂ fv
mn == 1 and Pq̂→q ≤ Pu

n ; q̂ > q then
15 : Transcode fv from q̂ to q on MAN server n
16: break
17 : case ψ

q̂ fv
mk == 1 and Pq̂→q ≤ Pu

k ; k 6= j then
18 : Fetch fv after transcoding from q̂ to q on MAN server k
19: break
20: end
21 : if s fv ≤ SF then
21: Complete fetching. Record Requested.(Amount) = 1; HC = 1
22 : else if SF < s fv ≤ MF and fWTv ≥ λv then
23 : Send f 2

v . Complete fetching. Record Requested.(Amount) = 1; HC = 1
24 : else if MF < s fv ≤ LF and fWTv ≥ λv then
25 : Fetch remaining parts of fv. Complete fetching.

Record Requested.(Amount) = 1; HC = 1
26: end if
27: end for
28: end for

5. Experimental Evaluation
5.1. Experimental Setup

The efficiency of the proposed edge caching scheme has been raptly evaluated using
the Java-based simulator [48] under benchmarked simulation parameters as presented in
Table 1. We created a cluster of five MEC access nodes with cell coverage size of 200 m. Each
MEC access node has 20 channels with a channel bandwidth of 20 MHz and a transmitting
power of 40 W. Xender is one of the world’s leading applications for file transfers and
sharing with the convenience to transfer files of different types and sizes without cellular
internet connection, or cables. We use Xender’s captured video tracking for the month of
August in 2016 as recorded in [29], with 153,482 video deliveries out of 271,785,952 video
requests from 450,786 mobile users [49]. Most of the video contents are small files under
200 MB and the tracking can be fitted with the Mandelbrot-Zipf (MZipf) distribution of
platform factor −0.88 and skewness factor of 0.35. The MZipf value gives an open relation
of content popularity; however, this can be easily adjusted to realize a closer popularity
among contents during simulation setup. When the Zipf distribution is set low, the cached
contents are closely ranked in popularity making every one of them highly probable to be
requested.
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Table 1. Simulation parameters.

Parameter Value

No. of clustered MAN servers 5
Cell coverage size 200 m

No. of content files ( fV) 10,000
MAN to MAN delay 20 ms
ROC to MAN delay 100 ms
Zipf’s parameter (α) 0.55

Request rate 0.4~1.0
No. of active users 100~300

Processing Power (Pu
n ) 1

Transmission power 46 dBm
Channel bandwidth 20 MHz

Noise power −95 dBm
Cache size 1~20 GB

Number of iterations 100

To determine the superiority of the proposed caching scheme, different set of experi-
ments have been performed. The first experiment is carried out by keeping all parameters
constant and varying only the cache size of the MAN servers. A hundred iterations are
run, and the results are averaged. The relationship between the varying cache sizes and
key performance metrics are drawn with conclusions in the results and discussion section.
Similarly, for the second to the fifth experiments, the file request rates, the number of users,
the Zipf distribution, and the number of files are respectively varied while keeping all the
other parameters set at the constant values depicted in Table 1. We evaluated the proposed
scheme in comparison with four other baseline schemes with every experiment scenario
set to run at a hundred iterations and averaging the results. With an exception to the LFRU
and TLRU, the rest of the baseline algorithms have been natively implemented as part of
the simulator. The LFRU and TLRU are modified versions of the LFU and LRU algorithms
which have also been natively designed.

Running a scenario begins with the simulator initializing the size and popularity of
all contents. Time slices were created to balance cache replacements, file request arrivals,
and results logging. After each complete run of a time slice, the selected algorithm adjusts
the cache in the MAN servers. The requests in each time slice arrive and the cache hit rate,
latency, and backhaul traffic are recorded.

5.2. Performance Metrics

Performance measurements for analytical evaluations of the schemes involve cache
hit rate, latency (delay), and network backhaul traffic. Key parameters like the cache size
of the MAN servers, number of active users, number of video requests, and transmission
power are varied to observe the correlation of the edge cache network performance and
varying parameters.

5.2.1. Cache Hit Rate

The cache hit ratio is the total number of content requests which are successfully
served by the local MAN server or a neighbor MAN server in a streaming period. We
intend to serve user requests from the MAN servers. Any request which is unserved by the
clustered servers is deemed a cache miss. Equation (2) can be simplified as

Cache Hit Rate =
Total Hit Count in a time slice

Total Request in a time slice
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5.2.2. Latency

Latency, also known as the network delay in fetching content, is the time taken for a
user request to be served. MAN to MAN latency is set to 20 ms to test the efficiency of the
schemes in worse scenarios.

Latency =
Total Cache Miss× 10

Queue size o f all users in time stream

5.2.3. Backhaul Traffic

The backhaul traffic is the total size of all transmitted contents plus the total requested
contents that could not be served by the clustered MAN servers. If a content request
scenario necessitates content transfers from neighbor MAN servers or the ROC, the size of
the data transferred is also recorded as the backhaul traffic.

Backhaul Tra f f ic = Total size o f data transmitted

5.3. Baseline Schemes

• Greedy Caching: This approach adopts a greedy approach that considers cache hit
rate maximization at each caching level by making caching decisions based on cache
miss stream from downstream caches [50]. There are several variations, but the main
objective is to replace the cached content with the lowest cache utility. The motivation
of the greedy algorithm is to use caching cost to determine which of the same-size
contents should be cached. When a cached content is fetched, a value is assigned to it,
i.e., the cost of bringing the content to the cache-store. The eviction policy replaces
the content with the minimum value and then all the cached contents reduce their
assigned values by the minimum value. The time complexity for this implementation
is O((n− 1)× log(n)).

• First In, First Out (FIFO): Without regard for the recency or frequency of accessibility
of contents, the FIFO scheme evicts the contents in the order they were added. The first
contents added during cache replacement are evicted first. In a FIFO queue, cached
contents are placed in the tail of the queue. During cache replacement, cached contents
are moved from the head until there is enough space for new contents. The time
complexity of the FIFO algorithm is O(1).

• Time-aware Least Recently Used (TLRU) [51]: TLRU is a variant of LRU and most
suitable for information-centric networking (ICN), content delivery networks (CDNs),
and distributed networks in general. A time to use (TTU) term is introduced to time-
stamp every cached content, which stipulates the usability time for the contents based
on the locality of the content and content provider notice. TLRU guarantees that less
popular and low lifetime content should be replaced with the incoming content. TLRU
has a time complexity of O(1).

• Least Recently Used (LFRU) [52]: The benefits of LFU and LRU schemes are realized in
this combination of caching schemes. It is also suitable for ICN and CDNs. To address
the drawback of the Least Frequently Used (LFU) policy where multiple contents are
at par on their frequency of file requests, the LFRU is more suitable to distinguish
contents on a more elaborate scale, using both frequency and recency of the content
requests. Each cacheable content is assigned a Combined Recency and Frequency
(CRF) value. The content with the lowest CRF value during cache replacement is
evicted. Each file request of a cached content increases its CRF. The time complexity of
implementing LFRU ranges from O(1) to O(log2 n).

5.4. Results and Discussion
5.4.1. Performance Evaluation under Cache Size

The relationship of the cache size variation on cache hit rate, latency, and backhaul
traffic is depicted in Figure 3. The cache hit ratio significantly increases with increasing
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cache size for all schemes. The proposed scheme outperforms the other schemes by small
margin gains. This shows that an increase in the cache size of MAN servers improves the
cache hit ratio of all caching schemes.

Figure 3. Performance of cache size variation on hit rate, latency, and backhaul traffic.

The second sub-figure in Figure 3 depicts the latency performance relationship with
increasing cache size. Similar to the hit rate performance, the proposed is the best scheme
in this comparison. However, the performance of the LFRU and Greedy schemes comes
close to that of the proposed scheme. The increase of the cache size had a significant impact
on the network latency, as larger cache storages allow for the placement of many content
files thereby decreasing the file fetching time.

An increase in cache size also increases the backhaul traffic, as depicted in the third sub-
figure of Figure 3. In this performance comparison, DPoM shows an average performance,
better than the LFRU, at par with Greedy, and lagging behind TLRU and FIFO. Since DPoM
parts the files into several parts, with most files in the small files range, the view duration
thresholds of many files are easily reached, and hence there are more file transmissions
over the backhaul network.

5.4.2. Performance Evaluation under Request Rates

The request rate indicates the frequency at which content files are requested by users.
This parameter is essential in measuring the cache network’s responsiveness in serving all
user requests. In this evaluation, depicted in the first sub-figure of Figure 4, the proposed
scheme shows a steady performance with increasing request rates. It performs better than
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all the baseline schemes. Conclusively, an increase in the request rates has no negative
impact on the scheme’s ability to achieve good hit rates.

Figure 4. Performance of request rate variation on hit rate, latency, and backhaul traffic.

Latency performance on varying request rates shows a steady performance for all
simulated caching schemes. The figure illustrates the good performance of the proposed
scheme. The LFRU is outperformed by FIFO in this latency comparison. A reason for this
is that the more requests the MAN servers receive, the better the chances of knowing and
caching popular contents during cache replacement periods.

Increasing the request rates decreases the backhaul traffic of the edge caching network.
More requests mean learning more about users’ preferences. The learned user preferences
are well exploited to inform the next cache decisions. Popularity tables of contents are
updated when specific contents receive more requests than other files. In this way, caching
files that are more likely to be requested reduces the traffic of transferring requested files
from the ROC that have not been cached at the network edges.

5.4.3. Performance Evaluation under the Number of Users

In Figure 5, the performance of the caching schemes when the number of active users
is varied is observed. The LFRU scheme dropped the initial good performance to average
performance in this assessment. The best scheme for ensuring high hit rates with increasing
number of active users is the proposed DPoM caching scheme. The FIFO and TLRU are the
worst-performing schemes in this analysis.
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Figure 5. Performance of the number of users variation on hit rate, latency, and backhaul traffic.

The latency assessment realizes good performances from the proposed, LFRU and the
Greedy schemes. The sharp decrease in latency, which is an advantage, is not realized here.
In a cooperative device-to-device caching network, an increase in the number of active
devices would have caused a decline in latency. Device-to-device caching is not considered
in this work, as the underlying security features required to ensure fully functional device-
to-device cooperative caching are not foundationally built. The issue of transmission power
of the devices, bandwidth consumption among others further pushes the realization of this
technology to a more distant future.

The third sub-figure of Figure 5 depicts that the backhaul traffic is directly proportional
to the number of active users for all the caching schemes. The TLRU and FIFO are the
best-performing schemes in this comparison. This can be attributed to the fact that these
schemes transmit less data because of their caching policies, which do not involve content
popularity considerations or fractional caching. Rather, entire files are cached and only
replaced during cache replacements.

5.4.4. Performance Evaluation under Zipf Distribution of Content Files

The Zipfian distribution shows the closeness of the request probability of contents. A
lower Zipf parameter indicates that only a few contents are likely to be requested many
times while a higher Zipf parameter shows many content files having relatively same
request probabilities, making all of the content files highly probable in the event of content
requesting. Figure 6 presents the hit rate, latency, and backhaul traffic performances under
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the varying Zipfian parameter. The cache hit rate plot shows a very close performance by
the proposed, Greedy, and LFRU, but the best among them is the proposed. A lower Zipf
parameter is good for the edge network because only a few contents are regularly requested.
The most requested files can be comfortably cached to service users. On the other hand,
if the parameter is high, the edge network needs to cache as many of the probable files to
meet users’ requests.

Figure 6. Performance of Zipf distribution on hit rate, latency, and backhaul traffic.

The latency and backhaul traffic records steady progressions of all the schemes with the
increasing Zipf parameter. From the latency sub-figure of Figure 6, it can be deduced that
DPoM outperforms the baseline schemes. However, the backhaul traffic performance show
FIFO and the TLRU schemes outperforming the proposed, Greedy, and LFRU schemes.

5.4.5. Performance Evaluation under the Number of Files

Figure 7 illustrates cache hit rate, latency, and backhaul traffic performances when the
number of cacheable contents is varied.
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Figure 7. Performance of varying number of files on hit rate, latency, and backhaul traffic.

Similar to all hit rate comparisons, DPoM shows significant performance gains over
the rest of the caching schemes. It utilizes the file splitting technique to store as many files
as possible. An increase in the number of files does not cause any damaging impact on the
proposed scheme.

The proposed scheme outperforms the baseline schemes in the latency comparison
shown in the second sub-figure of Figure 7. The increase in the number of files had little
effect on the caching schemes. It is observed that the increase in the number of files slowly
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decreased the latency, which might not be thoroughly experienced during streaming since
the change is not drastic.

The backhaul traffic comparison depicts the same observations as seen in previous
comparisons. The proposed scheme is an average-performing scheme when backhaul
traffic is considered. The amount of data transferred by DPoM is massive. This led to the
recording of high backhaul traffic in the analyses.

6. Conclusions

In this paper, we proposed a part of media caching for edge caching networks aimed at
increasing the number of contents cached at the network edge to achieve high cache hit rates
and low latency video streaming services. To this end, we first defined the entities of our
proposed caching scheme and formulated the edge caching problem as an Integer Linear
Programming problem. Additionally, we proposed a file view-time threshold for each
cached video to save backhaul and core network resources that is wasted when streaming
sessions are abandoned leading to the discarding of the buffered content. We designed and
employed heuristic algorithms to find and optimally place cacheable content in clustered
cooperative MAN servers. Numerical results revealed the effectiveness of our proposed
caching scheme over several state-of-the-art schemes, such as FIFO, Greedy, LFRU, and
TLRU in achieving high hit rates, lower latencies, and average backhaul traffic. The reason
behind the performance gains achieved by our method in comparison to existing considered
baselines is caching only the first parts of the most popular contents, and delivering the
remaining parts when the view-time threshold set on each requested file is reached.

As future work, we aim to extend the approach to caching new video applications
and presentations intelligently at the network edge by exploiting the data characteristics
of these new and immerging media. With the advancement of new video technologies
and applications like 3D hologram, 3D and 360-degree video, and extended reality, the
transmission of massive video data can cause bottlenecks for current and future networks.
The purpose is to design and test caching and transmission schemes that can efficiently
manage the data formats of new video services considering edge network heterogeneity
and device compatibility for low latency retrieval. Federated learning approaches will be
investigated to enhance the proposed approach for advanced functionality design.
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