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Abstract: This study takes an approach to reliability-based topology optimization (RBTO) for 3D
structures by applying an expansion of smoothing evolutionary structural optimization (SESO)
and sequential element rejection and admission (SERA) for three-dimensional optimization. In the
search for the stable optimal solution, and a more reliable structure, we present a performance index
with the ability to monitor the evolutionary optimization procedure and adopt the filtering scheme
usually applied in solid isotropic material with penalization (SIMP). The limit state functions are
the maximum displacement constraints imposed in the topology optimization procedure and a
structure’s performance control; a comparative analysis of the deterministic topology optimization
(DTO) with the RBTO models is also explored. The obtained results suggest the importance of using
the RBTO concept in 3D structures as part of the design analysis process.

Keywords: reliability-based topology optimization; ESO; SERA; SESO; evolutionary methods

1. Introduction

In the last decade, researchers related to topology optimization (TO) for 3D elastic
analysis using Matlab code have addressed evolutionary optimization methods, such as
solid isotropic microstructure with penalization (SIMP), including extensions for various
load cases, continuation strategy, the synthesis of compatible mechanisms, and heat con-
duction problems considering a compliance minimization problem, as presented by Liu
and Tovar [1], and bi-directional evolutionary structural optimization (BESO) by Xie [2]. In
addition, the 3D methodologies proposed by Zegard and Paulino [3,4] for the soil structure
and the TOPslicer tool, respectively, both developed in Matlab, generate suitable results
for additive manufacturing. In their study, Gebremedhen and Woldemicahel [5] provided
a mathematical model of stress-based topology optimization for three-dimensional opti-
mization problems using SIMP. In the approach proposed in [6], the large-scale topology
optimization for 3D elastic problem parallel computation is used in combination with
domain decomposition. The equilibrium equations are solved by a preconditioned conju-
gate gradient algorithm, and the optimization is then performed using sequential convex
programming. The TO procedure proposed in [7] presents 100-line Python code for general
3D topology optimization. It was developed for compliance minimization with a volume
constraint using the bi-directional evolutionary structural optimization (BESO) method.
The TO formulation presented in [8] includes simplified additive manufacturing (AM). The
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author demonstrated the procedure involving compliance minimization, self-frequency
maximization, and flexible mechanism design.

In the search for achieving a structure’s best performance, parametric or topological
optimization can be applied by using the deterministic or heuristic procedure. In the sense
of the first case, several works have been proposed recently, such as Refs. [9–12] which
proposed novel methodologies for parameter optimization of antennas. In the case of the
heuristic sense, evolutionary structural optimization (ESO) is a well-known procedure
that seeks, by removing or adding material in the structure domain, to satisfy the design
constraints. Thus, the search for stable, lightweight structures with low production costs
and high performance becomes an important task for the industry that seeks technological
competitiveness with little environmental impact due to the scarcity of material resources.
Therefore, structural designs present uncertain variables, such as Young’s modulus, yield
stress, allowable stress, external loads, geometry, manufacturing error, etc. Deterministic
topology optimization (DTO) cannot evaluate these uncertainties during the iterative
procedure. To achieve these conditions, reliability-based topology optimization (RBTO)
arises, which seeks the optimal topology under probabilistic constraints and has the ability
to incorporate these variables during the optimization procedure to achieve a level of
structural reliability. Researchers of Refs. [13–23] addressed RBTO using the first-order
reliability method (FORM) with two more traditional approaches, the reliability index
approach (RIA) and performance measure approach (PMA), over different methodologies,
in general using a double-loop, single-loop or hybrid procedure. The work of [9] applied the
reliability analysis for the optimization of antenna systems with the classical Monte Carlo
procedure. Ref. [16] initiated the hybrid approach, and it consists of a sequence of reliability
and deterministic optimization analyses. Initially, the chosen random variables are modified
as deterministic quantities according to the most probable point (MPP) obtained from the
reliability index and the sensitivity analysis for the objective function (OF) regarding the
random variables, which are used in the deterministic optimization procedure to obtain
the optimal topology.

The RBTO analysis for 3D structures proposed by [24] is performed using BESO and
the stochastic response surface method (SRSM) to determine the limit state functions’ ap-
proximations. In their research, Ref. [25] focused on developing RBTO on a structure that is
used to design joints and connections for building applications under uncertainty consider-
ations. The procedure is performed by integrating the TO algorithm, reliability analysis,
random vibration analysis, additive manufacturing, computer simulations, and paramet-
ric design. In addition, they proposed an investigation of the potential of topologically
optimized 3D-printed hybrid materials. López et al. [26] proposed a decoupled reliability-
based design optimization method that is implemented in an internal computational code
combined with external optimization to assess the RBTO problem. The goal is to obtain a
new structural scheme with at least the same stiffness as the optimal setting provided by the
DTO approach. Both structures undergo the same reliability-based parametric optimization
process, considering the target reliability index from the previous RBTO with the same
probabilistic information.

In more recent applications, several works can be cited on structural analysis, using the
RBTO method, such as in [27–29] wherein plane stress analysis is performed by different
approaches. Even construction process [30], dynamic or seismic aspects and effects with
structural analysis on wind farm, brick and reinforced concrete structures are evaluated in
the works [31–34] by optimization methods.

In the present study, we applied the RBTO analysis using evolutionary methods, such
as ESO, SESO, SERA and SIMP, using the approach of [16], where the design variables
are the structure’s geometry, load, elasticity module and the volume, since the latter is an
explicit function of geometry. The limit state functions are the structure’s performance
index, maximum displacement and maximum compliance. The displacement is obtained
using the Kolmogorov–Smirnov test, and it is imposed as a constraint in the optimization
procedure. In addition, we used the Jacobi preconditioned conjugate gradient (PCG)
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method to solve the linear system generated in the equilibrium equation at each iteration.
As the mechanical behavior, the stress constraints, or better, the tractions, are assumed on
the part of the boundary, and they are called Neumann-type constraints (free or prescribed
tractions). In the RBTO formulation, the sensibility analysis is evaluated by the performance
index (PI), for which it is taken into account the minimization, the compliance or the strains,
so stress constraints are not prescribed in this sense.

As known, evolutionary optimization methods present mathematical deficiencies in
guaranteeing the global optimum, but the designs achieved by the present applied methods
are viable for manufacturing, as already proved by several works. In addition, these intrin-
sic deficiencies are potentialized when integrated with reliability procedures. However, the
insertion of the PI as a limit state function aims to monitor the stable mechanical behavior
of the structure, represents a sufficient criterion for the RBTO analysis, and, associated with
displacement and volume constraints, provides good configurations that are more reliable
than deterministic topologies for the same weight. The most important novelties of this
article are the expansion of the SERA and SESO methods for the RBTO analysis of 3D elastic
structures considering the PI as the limit state function. Furthermore, an expansion of the
algorithm proposed by [16] for 3D analysis with the inclusion of seven random variables
is evaluated.

The remaining of the article is organized as follows: Section 2 presents the proposed
evolutionary methods and their formulation for the compliance minimization problem,
the hexahedral finite element filtering scheme, the sensitivity calculation, and the con-
vergence criterion. Section 3 presents the RBTO analysis, its general formulation for the
proposed methods, the failure probability, and the performance index. Sections 4–6 present,
respectively, numerical examples, discussion and the conclusion.

2. Evolutionary Methods

The ESO method, proposed by [35] and reviewed by [36], and the SESO proposed
by [37], are based on evolutionary procedures and have been used for structural opti-
mization. The concept behind these methods is the removal of inefficient material from
a structure during the iterative procedure. The SESO procedure is bidirectional because
it allows the removal and addition of elements from the structure. The elements that
meet the rejection criterion are removed from the domain of the structure, organized in
growing order and grouped. The p% of the groups with lower compliance is removed
and (1−p%) returned to the structure, smoothing the ESO procedure; its removal heuristic
is unidirectional, that is, it removes all elements that meet the removal criteria. Another
evolutionary method that this study presents is the SERA proposed by [38,39], which
also has a bidirectional nature. However, the SERA method has two separate criteria for
removing and adding domain elements, allowing to change the status from “virtual” to
“real” and vice versa. In this way, the final topology is built with all the real material present
in the structure. The optimization process of these methods involves several selections,
such as the choice of the rejection rate (RR) and the evolution rate (ER). On the other hand,
in a finite element analysis (FEA), the designer must decide on the mesh size and the type
of element used. The result of the three-dimensional elastic analysis of the DTO is the used
evolutionary methods proposed in this study for a comparative analysis with the RBTO
models. The difference between the optimal topologies suggests that the RBTO model for
3D structures be run as part of the design analysis process.

2.1. Topology Optimization Formulation

A TO problem can be defined as a binary problem in which the objective is the best
material distribution in the solution domain, achieving the given criteria, previously estab-
lished, maximizing/minimizing a predefined OF. ESO, SERA and SESO are TO methods
that seek the optimal topology, maximizing the stiffness of the structure, simultaneously
removing and/or adding elements on each iteration. Thus, TO problem to maximize the
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stiffness of a structure, i.e., minimize compliance—which minimizes the work performed
by external forces—can be written as

Minimize C(X) = UTKU
subject to X ={xi}, xi = 1 or xi = 0, ∀ i = 1, 2, . . . , N

KU = F
V(X) = ∑N

i=1 xiVi −V∗ ≤ 0

(1)

where C(X) is the OF; X is the vector of binary design variables as in a common discrete
problem; xi is the i-th design variable whose values are 1 and 0, respectively, for the solid
element and void element; N is the total number of finite elements; F and U are the global
force and generalized displacement vectors, respectively; K is the global stiffness matrix;
V(X) is the total volume of the structure with Vi being the volume of the structure in
iteration; and V∗ is the imposed value of the volume constraint. The volume constraint
and the constraint that ensures the equilibrium of the structure are defined in Equation (1).
For a complete understanding of the aforementioned methods, see [40].

2.2. Filter Scheme

The presented article by [41] studies the effect of key formulations of the TO problem
on the design performance, focusing on sensitivity analysis using the implementation of
mathematical programming techniques in MATLAB software. Basically, the mesh indepen-
dence filter works to avoid numerical instabilities, such as checkerboard, mesh dependence
and local minima [42]. To solve these problems, researchers, such as those of [43], have
proposed regularization techniques. Therefore, in mathematical terms, spatial filters are
additional constraints on the formulation of an optimization problem. With an increase in
the radius value, the gradients are restricted to smaller values, where the transition between
solid (material) and void (no material) becomes smoother, generating more elements with
intermediate compliance. The procedure’s sensitivity to the radius choice is strongly per-
ceived when it assumes a very large value, because the design variables’ gradients would
be limited to such small variance rates that the optimization problem would not have a
solution for the proposed initial condition. One of the most common approaches is the use
of density filters proposed by [44], whose function can be written as

xi =
∑N

j=1 Hijvjxj

∑N
j=1 Hijvj

(2)

where N is the number of elements neighboring the element xi with volume vi, and xi is
the weighted average of the neighboring elements to xi with Hij as its weighting factor
defined as

Hij = R− dij (3)

With the sphere’s radius R, see Figure 1, it has as its center element xi, and dij is the
distance between the elements (xi and xj centers), and it is given by

dij =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 (4)

where (xi, yi, zi) and
(
xj, yj, zj

)
are, respectively, the elements xi and xj centers’ coordinates.
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Figure 1. Spatial filter.

2.3. Sensibility Number

In general, when an element is removed, it naturally reduces the stiffness of a structure
and, correspondingly, it increases the strain energy. To achieve this goal by removing
the element, it is obviously more effective to withdraw the element that has the lowest
sensitivity value so that the increase in compliance is minimal. Thus, a sensitivity analysis is
performed as part of the optimization process to provide information on the OF’s sensitivity
to small changes in the design variables. Therefore, the filtered element is incorporated
into the optimization procedure, and the modified SIMP method’s elasticity modulus,
Equation (5), and that of the ESO, SERA, and SESO methods, Equation (6), are given:

E(xi) = Emin + (xi)
p(E0 − Emin), xi ∈ [0, 1] (5)

E(xi) = Emin + xi(E0 − Emin), xi ∈ {0, 1} (6)

Thus, it is possible to determine the sensitivity of the (filtered) element xi in the SESO,
SERA, and ESO methods, which is given by the expression

∂C(xi)

∂xi
= −uT

i (xi)[(E0 − Emin)k0
i ]ui(xi) (7)

where ui is the nodal displacement vector and k0
i is the initial stiffness matrix, both for the

i-th element. For the SIMP method,

∂C(xi)

∂xi
= −uT

i (xi)[p(xi)
p−1(E0 − Emin)k0

i ]ui(xi) (8)

2.4. Convergence Criterion

The optimization process is convergent, and the stopping criterion can be activated as
the variation of the OF the last iterations according to Equation (9), by [2].∣∣∣∣∣∑

T
t=1 C(k−t+1) −∑T

t=1 C(k−t−T+1)

∑T
t=1 c(k−t+1)

∣∣∣∣∣ ≤ ε (9)

where k is the current iteration number, and C(k) is the structural compliance in the k-th
iteration. The integer number T = 5, implying that the change in the mean compliance
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over the last 10 iterations is acceptably small. This criterion was introduced in the code,
indicated by [2], with ε = 0.001 or smaller.

3. Reliability-Based Topology Optimization

In the service life of the engineering design, variations may inevitably exist in ma-
terial properties and geometry, as well as external loads, due to the inherent uncertainty
of nature. Therefore, the DTO, without considering these input uncertainties, may not
reasonably represent the level of structural reliability. Thus, RBTO analysis can achieve
the optimal topologies with the effects of uncertain variables explicitly considered through
the reliability.

3.1. Failure Probability

The concept of structural safety is linked to the capacity of a given structure to with-
stand the various actions imposed on it during its service life, while also satisfying the
functional conditions for its construction. Thus, the safety of a structure can be defined
based on the probability that one of the failure states will occur during its service life.
For a given design rule, the basic random variables are defined by their joint probability
distribution associated with some expected parameters. The vector of random variables is
here denoted by Y. Thus, the probability of a structure failure can be written as

Pf = P[G(Y) > 0] =
∫

G(Y)>0
fY
(
y1, y2, . . . , yj

)
dy (10)

where fY
(
y1, y2, . . . , yj

)
is the joint probability density function (PDF) of the random vari-

ables, Pf is the failure probability, calculated by the probability density function’s integral
according to Equation (10), and P represents the constraints imposed on the probability. If
G(Y) > 0, this indicates the failure region, and G(Y) = 0 indicates the failure surface as a
limit state function. Figure 2 displays the probability integrations in Equation (10) for the
joint PDF for random variables y1, y2 which is the two-dimensional case. The contours are
projections of the surface of fY on the y1–y2 plane.

Figure 2. Probability Integration, adapted from [45].

Ref. [46] defines the reliability index, β, as the minimum distance from the source
surface to the failure in the space of the standard normalized distribution, and the MPP
as a point corresponding to the minimum distance. FORM is used to estimate the failure
probability by approximating the limit state function. FORM involves the process of
obtaining the MPP on the failure surface and the concept of linearizing the limit state
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function. If the curvature of the failure surface at MPP is not large, FORM can provide an
accurate reliability index. Therefore, the failure probability can be expressed as

Pf = P[G(Y) > 0] = Φ(−β) (11)

where Φ is the standard normal distribution. The reliability index β can be determined by
finding the minimum distance to the failure surface in the space of the standard normal
distribution [47]. A transformation is introduced to map the original random vector X to a
standard, uncorrelated normal vector, Figure 3.

Figure 3. Transformation T and FORM, adapted from [48].

3.2. General Formulation

RBTO analysis can be interpreted as a problem that finds an optimal topology under
probabilistic constraints so that it becomes reliable for these uncertainties. The general form
of an RBTO problem is described as follows:

Minimize f (xi)

subject to Ps(Y) = P
[
G
(
xi, Yj

)
≤ 0

]
≤ Pt

0 ≤ xi ≤ 1

i = 1, 2, . . . , N and j = 1, 2, . . . , M

(12)

where Yj is the j-th uncertain variable, Ps is the system’s probability of success, Pt is the
target probability of success, and G is the limit state function (performance function).
Design variables xi and M are the numbers of random variables. Applying the performance
measure approach (PMA) to Equation (12) for the general case leads to

Min/Max f (xi)

subject to G
(
xi, Yj

)
≥ 0

β = βt

0 ≤ xi ≤ 1

i = 1, 2, . . . , N and j = 1, 2, . . . , M

(13)

where βt is the target reliability index for success.

3.3. Performance Index and RBTO Formulation for Evolutionary Methods

The defined performance function is the structure performance index (PI) proposed
by [49], which has the ability to monitor the optimization process and is given by

PI =
C0V0

CkVk
(14)
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where C0 is the initial compliance, V0 is the structure’s initial volume, and Ck and Vk
are, respectively, the compliance and the volume at the k-th iteration. Function G can be
written as

G
(
xi, Yj

)
= 1−

C0
(
xi, Yj, u

)
V0
(
xi, Yj, u

)
Ck
(
xi, Yj, u

)
Vk
(

xi, Yj, u
) (15)

The design variables xi are the finite element dimensions of the discretization of the
structure’s domain, but the random variables Yj are the external loads and the geometric
dimensions of that structure. To control the topologies obtained by the RBTO model, the
reliability index β(u) is introduced, see [46], with a normalized vector u, which, in the case
of a normal distribution, is calculated as follows:

uj =
Yj −mYj

σYj

(16)

In general, considering the normal distribution law, the standard deviation σYj can be
related to the mean mYj using σYj = γYj mYj , where γYj is a given coefficient. Furthermore,
let us define the deterministic design variables xi as the mean value mYj of the random
variables Yj. The minimization of the reliability problem can be expressed by

Minimize β(u) =

√
n
∑

j=1
u2

j

subject to H(xi, u) ≤ 0

β(u) > βt

(17)

Equation (17) applied to the proposed RBTO model for ESO and SESO can be ex-
pressed as

Minimize C(xi) = UTKU

Subject to G
(
xi, Yj, u

)
= 1− PI

(
xi, Yj, u

)
≥ 0

β(u) = βt

K
(
xi, Yj, u

)
U
(
xi, Yj, u

)
= F

(
Yj, u

)
V
(
xi, Yj, u

)
= ∑NE

i=1 xiVi
(
xi, Yj, u

)
−V∗ ≤ 0

xi = 1 or xi = 10−9i = 1, 2, . . . , N and j = 1, 2, . . . , M

(18)

The volume V
(
xi, Yj, u

)
is consider a random variable because it depends directly

on the structure’s geometric dimensions. V∗ is the prescribed volume. The RBTO model
used for SIMP is the same as the one presented by [16]. We highlight only that the design
variables in this case are the finite element densities of the domain, and the procedure is
not discrete as in the other models presented in this study. The RBTO for the SERA that
also has the element density as design variables can be expressed by

Minimize C(xi) = UTKU

Subject to G
(
xi, Yj, u

)
= 1− PI

(
xi, Yj, u

)
≥ 0

β(u) = βt

K
(
xi, Yj, u

)
U
(
xi, Yj, u

)
= F

(
Yj, u

)
V
(
xi, Yj, u

)
= ∑N

i=1
xiVe(xi ,Yj ,u)
V0(xi ,Yj ,u)

≤ V∗

xi = 1 or xi = 10−9i = 1, 2, . . . , N and j = 1, 2, . . . , M

(19)

where ρe represents the density of each finite element.
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4. Numerical Examples
4.1. Example 1—Cantilever Beam

The ESO, SERA, SESO and SIMP methods are used to perform a RBTO analysis in
a 3D cantilever beam. This structure’s dimensions, Figure 4, are length Lx = 80, height
Ly = 50 and thickness Lz = 50. The material properties are Young’s modulus E = 1E5, and
Poisson’s ratio of ν = 0.30. The load of F = 100N is applied to the center of the free end.
The domain is discretized with 200,000 eight-node hexahedral finite elements.

Minimize C = UTKU

Subject to g = 1− PI ≤ 0

h = δ− δ ≤ 0

β(u) = βt

KU = F

V = ∑N
i=1

xiVe(xi)
V0(xi ,)

≤ V∗

xi = 1 or xi = 10−9∀ i = 1, 2, . . . , N

(20)

Figure 4. Design domain.

All random variables are considered with normal distribution and standard deviation
of 10% of the average value. The limit state functions are defined as the PI for the structure
and the difference between the allowable displacements and the prescribed displacement,
imposed as constraints in the topological analysis. The prescribed displacement is obtained
from the DTO analysis by calculating the average displacement (δ) and standard deviation
(σ) of the maximum allowed displacements using the Kolmogorov–Smirnov test. This
test’s statistics quantifies a distance between the empirical distribution function of the
sample (allowed displacements) and the cumulative distribution function of the reference
distribution. In this article, the cumulative standard normal distribution function is used.
Thus, an empirical sample is used, n = 50, of the maximum displacements from the
DTO analysis to define the displacements’ limit values. Thus, in the RBTO analysis, the
prescribed values for the average displacement as the maximum allowable displacement in
the TO procedure is used. It is noteworthy that a stopping criterion is used that compares the
difference between the allowed and prescribed displacements with the standard deviation
obtained from the Kolmogorov–Smirnov test in the RBTO procedure.

Figure 5 shows the contour graphics for a plane section, the optimal topology for the
DTO, and the surface graphics to illustrate the main differences between the presented mod-
els. The average displacement δ = 0.002957 is considered in this case. Additionally, Figure 5
shows the contour graphics, optimal topologies, and surface graphics for the 3D cantilever
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beam, using a target reliability index, βt = 3.0, which corresponds to a failure probability
of 0.135% for the RBTO analysis of the presented evolutionary procedures. Figure 6a–c
shows the optimal topologies presented, respectively, by ESO, SERA and SESO. These
configurations are similar, although the design variable in SERA is the element density,
while, in ESO and SESO, the variables are the extended fixed domain finite elements. These
results can be compared with those presented by [24], using the standard response surface
method (SRSM). The optimal topology achieved by SIMP, Figure 6d, is different from the
other formulations because convergence occurs at intermediate densities in a continuous
optimization process unlike the other formulations that have a discrete procedure.

Figure 5. DTO: contour, topology and surface: (a) ESO, (b) SERA, (c) SESO and (d) SIMP.

Figure 6. Cont.
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Figure 6. RBTO: contour, topology and surface: (a) ESO, (b) SERA, (c) SESO and (d) SIMP.

For the 3D results’ comparison, the volumes, displacements, OF, and computation
time due to each method, for the cantilever, are listed in Table 1. From the comparison of
the RBTO with the DTO of the 3D cantilever beam, note that the optimal RBTO volume is
about 15.38% smaller than the SRSM method proposed by [24].

Table 1. Reliability-based topology optimization using evolutionary methods.

Method Vol %
(mm3) OF (N·mm) Displacement

(mm)
Computational

Cost (sec)

RBTO-ESO 6.4 0.3236 0.00322 2142.51

RBTO-SESO 6.4 0.3216 0.00320 2181.61

RBTO-SERA 6.4 0.3214 0.00320 2354.01

RBTO-SIMP 6.4 0.3612 0.00360 2512.45

RBTO-SRSM 7.8 - 0.05274 -

DTO-ESO 6.8 0.3031 0.00303 2180.25

DTO-SESO 6.8 0.3031 0.00303 2166.45

DTO-SERA 6.8 0.3029 0.00303 2412.76

DTO-SIMP 6.8 0.3379 0.00338 2695.03

DTO-SRSM 6.8 - 0.059648 -

It is worth highlighting that ESO, SERA and SESO converge to the same value of
the OF in the DTO and RBTO analyses and are computationally more efficient than SIMP,
respectively, 16.3% and 11.4% on average. In the RBTO analysis, the PMA converges with
9 iterations in all cases, while the optimal topology is reached at iteration 41. In the classical
RBTO methodology, there is a total of 369 iterations until convergence.

Figure 7 shows the graphics of the structure’s performance during the optimization
procedure in each case studied. It is verified that the PI has the ability to monitor the
iterative process because a peak in the OF, probably due to the breakage of a bar in the
structure and/or the removal of many elements at once, causes a sharp drop in this
structure’s performance. Therefore, at this point, it is necessary that the designer has
a critical eye with the ability to assess whether the structure is collapsing or not. In
the example analyzed, there is a peak in the OF, but the structural performance is not
compromised because the PI value is not less than 1. It is also observed that for the peak in
the SERA, the OF is smoother than in ESO and SESO. This can be explained by observing
the material removal and addition heuristics used by SERA, that is, in the region where the
compliance is high, there is the addition of “virtual” elements, softening the OF’s behavior,
and consequently, the structure’s performance.
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Figure 7. Objective function and performance index (PI): (a) ESO, (b) SERA, (c) SESO and (d) SIMP.

4.2. Example 2—MBB Beam

We performed the RBTO analysis using ESO, SESO, SERA and SIMP evolutionary
methods for a MBB-3D beam with a minimum radius of 1.5. The dimensions shown in
Figure 8 are length Lx = 120, height Ly = 20 and thickness Lz = 20. The design domain
is discretized with 48,000 8-node hexahedral finite elements. Material properties are a
Young’s modulus of 100 E3, and a Poisson’s ratio of 0.3. The load applied at the center of
the top face is 100 N. It is worth highlighting that symmetry is not used for this problem.
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Figure 8. Design domain.

The Figure 9 shows the optimal topology obtained using the DTO based on the
evolutionary methods, presenting a side and a front view. The displacements of this
analysis are used to calculate the prescribed average displacement applied in the RBTO.
The ESO, SERA, and SESO methods have similar optimal configurations, with small
differences in their optimal topology, as can be seen in the front view in Figure 9. SIMP
proposes a different and more complex topology for manufacturing than other methods.
Furthermore, in all case studies, the SIMP model has the highest value for the OF. However,
it is worth noting that the SIMP model presents greater stability during the iterative process.
During the optimization procedure, it starts from high compliance, and the function is
always decreasing without jumps, while in the other methods, compliance presents at least
one peak during the optimization process. The answer may lie in the removal heuristics of
each method or in the fact that ESO, SERA, and SESO methods are discretized.

Figure 9. Optimal topology (DTO)—side view and front view: (a) ESO, (b) SERA, (c) SESO and
(d) SIMP.

For the RBTO model, parameters relating to geometry, load, and volume are assembled
into the averages vector given by m = {nelx, nely, nelz, V, F}. Given that the standard
deviations’ values are σi = 0.1 mi, ∀ i = 1, 2, . . . , M, the random vector Y is normally
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distributed and given by (y = m + uσ). Thus, when the reliability analysis is completed,
satisfying the constraints, the optimal values of the normalized vector u∗ are obtained,
which lead to the input random vector Y. The limit state functions are the same as defined
in Equation (20), with displacement equal to δ = 0.00695. Figure 10 illustrates the optimal
topologies for the MBB-3D beam, using the proposed RBTO analysis with βt = 3.805,
which corresponds to a failure probability of 7.2348× 10−5. In addition, it presents surface
graphics that provide greater clarity for identifying small topological differences.

Figure 10. Optimal topology (RBTO), side view and surface: (a) ESO, (b) SERA, (c) SESO and
(d) SIMP.
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The ESO, SERA and SESO methods allow the removal of elements with low compliance
to improve the structure’s performance. Thus, a characteristic performance curve for this
continuum structure is shown in Figure 11. The weight of a structure is gradually reduced
during the optimization process as the compliance increases. In this way, the characteristic
curve of a structure’s performance during the optimization process can be expressed by the
structure’s weight and its strain energy [50]. Therefore, in the RBTO analysis, the optimized
structure’s performance provides a designer with valuable information on the structural
design. It not only indicates whether the optimized design is feasible, but the optimized
design’s success for stiffness.

Figure 11. Performance characteristic curve for structures with compliance constraints: (a) ESO,
(b) SERA, (c) SESO and (d) SIMP.

When analyzing the above curves, Figure 11b, the designer should note that the
optimal structure achieved with a compliance 20% higher than the initial compliance, in
the graphic Ci

C0
= 1.20, is obtained with an approximate volume Vi

V0
= 0.48. Therefore, a

volume of less than 48%, for example, Vi
V0

= 0.35, is below the curve and therefore violates

the compliance constraint, Ci
C0

= 1.45, because it requires compliance 45% higher than the
initial one. So, this structural design is not feasible because there is a lack of material to
complete it. On the other hand, projecting the compliance ratio, Ci

C0
= 1.20, to a point above

the curve, Vi
V0

= 0.60, verified that the amount of volume is more than sufficient for the
design’s execution, that is, the design is viable but it is oversized.

Therefore, the ESO, SERA and SESO structural optimization methods can be used as a
tool to improve the performance of structures that are oversized while saving material. In
Figure 10, such structures satisfy the design conditions, which are not oversized, and have
provided a considerable material saving.

In SIMP, this process is continuous. The topology evolves by continuously changing
the elasticity modulus. Since the prescribed volume remains constant during the iterative
process, the performance’s characteristic curve is a straight line (Figure 11d). Therefore,
the design is feasible above the curve, but it is oversized because the volume used is larger
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than necessary to carry out the design (Figure 9d). On the other hand, below the curve, the
design is not feasible, and it is underestimated because there is not enough material to carry
it out. This is a SIMP advantage since its convergence meets the Karush–Kuhn–Tucker
optimality conditions during the entire iterative process.

For the RBTO-3D analysis results’ comparison, the volumes, displacements, objective
function, and computation time due to each method, for the MBB beam, are listed in Table 2.

Table 2. Reliability-based topology optimization using evolutionary methods.

Method Vol %
(mm3)

Objective Function
(N·mm)

Displacement
(mm)

Computational
Cost (Sec)

RBTO-ESO 0.202 0.5578 0.00558 1288.04

RBTO-SESO 0.202 0.6556 0.00655 1427.02

RBTO-SERA 0.202 0.6560 0.00656 859.23

RBTO-SIMP 0.202 0.7089 0.00709 2274.65

4.3. Example 3—MBB beam

Consider the MBB beam problem (Figure 8); the maximum deflection is given by

δmax =
1
48

PL3

EI
(21)

where E is the material’s elasticity modulus, I is the inertia moment, P is the applied load,
and L is the span length. The average values and standard deviations of the random
variables are given in Table 2. Thus, the failure criterion can be assumed as

δmax

L
>

1
300

(22)

The limit state in the function of L can be obtained with a substitution of Equations (21)
into (22), resulting in

G(E, I, P) = 48EI − 300PL2 (23)

Table 3 shows the mean and standard deviation values of the normally distributed
random variables used in the RBTO analysis.

Table 3. Random variables for the MBB beam.

Variable Average Standard Deviation Distribution

P (kN ) 100 10 Normal

E
(
kN/m2 ) 105 104 Normal

I
(
m4 ) 10−5 10−6 Normal

nelx (length) (mm) 120 12 Normal

nely (height) (mm) 20 2.0 Normal

nelz (width) (mm) 20 2.0 Normal

volume (mm3) 0.20 0.02 Normal

The SESO method is used to perform the MBB beam’s reliability analysis and to assess
the influence of the target reliability index and the new uncertain variables on the optimal
configuration. In particular, the DTO SESO’s optimal configuration is compared with RBTO
SESO, and the compliance and displacement values, CDTO and δ∗, respectively, resulting
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from this analysis, are defined as boundary constraints in the RBTO analysis. Thus, the
problem can be defined as

Minimize V

Subject to : C− CDTO ≤ 0

δ− δ∗ ≤ 0

P[G < 0] ≤ Pf = βu

(24)

Figure 12 displays the optimal RBTO SESO settings. It is possible to see clearly
that the optimal settings are different when compared to the DTO, see Figure 9, as they
present fewer bars. This shows that the proposed approach can produce a more reliable
structure compared to DTO when uncertainties are considered. Note also that in the MBB
beam’s design, when the βt = 3.5, that is, a failure probability Pf = 2.3262 × 10−4 it
takes only seven iterations to reach convergence in the reliability calculation. Thus, the
proposed approach only needs to evaluate the finite element analysis (FEA) 68 times, while
the traditional RBTO method needs to process FEA 476 times. Therefore, the proposed
approach is shown to have high efficiency.

Figure 12. Optimal topologies for different reliability indexes.

Figure 13 shows the graphic of the CDTO and compliance RBTO (CRBTO) variation
as a function of the target reliability index. Based on the graphic, it can state that the
design produced by the RBTO analysis is more rigid than that of the DTO, that is, as the
reliability index increases, CRBTO < CDTO. Therefore, the lower the compliance, the higher
the stiffness. In deterministic structural optimization, the designer aims to reduce the
construction cost without worrying about the effects of uncertainties in materials, geometry,
and loading. Thus, it is important for designers to consider uncertainties in the design
realization to balance minimizing costs and maximizing reliability.

4.4. Example 4—An Optimal Bridge

The optimization of a bridge-type structure with the deck at the top was studied by [51].
The dimensions of the design domain, the loading conditions, and the boundary conditions
are given in Figure 14. The material properties are considered to be = 210 GPa and υ = 0.30.
To ensure that pressure is applied over the entire top surface, a solid section of 1.5 m thick
is defined as a non-projectable layer. The design aims to maximize the stiffness subject to a
prescribed volume of Vf = 0.25.
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Figure 13. Variation of DTO and RBTO compliance as a reliability index function.

Figure 14. Design domain, loading and boundary conditions for a bridge, where the solid section
denotes the non-designable material.

From the DTO results, for each method proposed in this study, the OF’s maximum
value is obtained, which is a reciprocal measure of the stiffness and quantifies the structure’s
energy. The next step is to include the uncertainties in the geometry, loading, and volume
(structure dimensions’ function) and define the RBTO problem, whose target is to obtain a
minimum volume design as rigid as the DTO design when the uncertainties are considered.
This problem requires the assessment of probabilistic constraints, which are expressed in
terms of the boundary state function G, defined as

G = 1− 1
CDTOVf

(25)

where CDTO is the DTO’s compliance in the optimal setting, and Vf is the volume fraction.
Generally, G > 0 denotes a safe region where G < 0 corresponds to a failure region. The
probabilistic constraints induce the RBTO to obtain a structural framework at least as rigid
as the one provided by the DTO, assuming a target Pf . Consequently, the RBTO problem is
formulated as indicated by Equation (26):

Minimize V

Subject to : C− CDTO ≤ 0

δ− δ∗ ≤ 0

P[G < 0] ≤ Pf = βu

(26)

where P [·] is the probability operator.
The initial design parameters are given in Table 4, where nelx (length), nely (height),

and nelz (width) represent the structure’s geometry, P, which represents the external load
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distributed on the bridge deck, and they are considered random variables with normal
distribution, while the material properties have constant distribution.

Table 4. Parameters related to the design domain.

Distribution Parameter Distribution Type Mean (µ) Standard Deviation
(σ)

nelx (mm) Normal 140 0.1

nely (mm) Normal 20 0.1

nelz (mm) Normal 10 0.1

E(GPa) Normal 210 0.1

ν Constant 0.30 0

P (100 N/m2) Normal 100 0.1

Volume (mm3) Normal 0.25 0.1

Compliance (N·mm) Normal 21.2080 0.1

Table 5 shows the proposed approach’s efficiency by comparing the variation in the
number of iterations to achieve convergence in the reliability calculation procedure and
the number of iterations involved in the TO procedure. In addition, it shows that finite
element analysis (FEA), with this formulation, has a lower computational cost than that
used in traditional RBTO.

Table 5. Efficiency of the proposed approach for different reliability indices.

Reliability Index
(βt)

Number of Iterations
(Reliability)

Number of Iterations
(Optimization Procedure)

Number of Iterations
RBTO Method

(Classic)

1.0 2 52 104

2.0 5 53 265

3.0 8 53 424

4.0 10 52 520

5.0 13 53 689

6.0 16 53 848

Figure 15 displays the optimal topologies achieved by the proposed algorithms using
βu = 3.8. Note that the volume found in the RBTO analysis is Vf = 0.225, which means a
9% reduction compared to the DTO analysis. However, the optimal topologies found by
ESO, SESO and SERA are similar but different when compared to the optimal topology
presented by the SIMP technique.

For the 3D results’ comparison, the volumes, displacements, OF and computation time
due to each method, for the bridge, are listed in Table 6.

The RBTO formulation of [16] is adapted to the three-dimensional RBTO analysis. In
this example, two studies are performed: (1) random variables—geometry, volume and
applied force (the same as considered by the authors); and (2) random variables—geometry,
volume, force, with the inclusion of the elasticity modulus, and compliance. The first
analysis compared to the DTO design shows a decrease in structural mass. However, it
can notice an increase in the structure’s compliance. In this sense, the design obtained by
DTO is more rigid than the one proposed by RBTO analysis. Figure 16a shows the graphic
of force by the structure’s failure probability and Figure 16b illustrates the volume and
force random variables by reliability index βt. It is important to point out that βt produces
geometry effects on the structure because dimensions and volume are random variables
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with normal distribution. Therefore, increasing this index causes a reduction in volume, an
increase in strength (absolute value), and a lower failure probability.

Figure 15. Optimal topologies for DTO and RBTO: (a) ESO, (b) SERA, (c) SESO and (d) SIMP.

Table 6. Reliability-based topology optimization using evolutionary methods.

Method Vol %
(mm3)

Objective Function
(N·mm)

Displacement
(mm)

Computational
Cost (Sec)

RBTO-ESO 0.225 33.9079 0.00103 605.35

RBTO-SESO 0.225 33.9079 0.00103 599.95

RBTO-SERA 0.225 33.8961 0.00040 569.07

RBTO-SIMP 0.225 38.0150 0.00039 829.61

DTO-ESO 0.250 21.2080 0.00023 545.53

DTO-SESO 0.250 21.2082 0.00023 477.20

DTO-SERA 0.250 21.2519 0.00023 494.78

DTO-SIMP 0.250 23.6441 0.00027 700.37

Figure 16. Graphics: (a) force by failure probability and (b) volume and force by reliability index.

It is possible to affirm that the limit state function used by [16] was not based on
real failure criteria for the structure because only geometric dimensions and applied loads
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are considered as uncertainties [52]. The second analysis proposes to incorporate the
uncertainties regarding material property and structure compliance to make the analysis
more realistic. In this analysis, compared to the DTO design, a decrease in the structural
mass, volume, strength and compliance is noted (Figure 17). In this sense, the proposed
RBTO algorithm defines a more rigid design than that proposed by the DTO analysis.

Figure 17. Failure probability and random variables by reliability index.

5. Discussion

This study shows the RBTO analysis for different evolutionary optimization methods,
in particular, the implementation of SESO and SERA for this type of analysis. The numerical
examples show that the procedure has several advantages:

(1) Insertion of the preconditioner for solving the linear system provided efficiency in
computational memory, allowing large-scale problems to be solved.

(2) The probabilistic analysis loop is fully decoupled from the optimization loop for easy
code implementation, making the computational cost much lower than DTO analysis.

(3) The compliance constraints, displacement, performance index, and limit state func-
tions, when used, are inserted into the OT loop in a simple way.

To highlight the importance of the reliability analysis, that is, the insertion of uncer-
tainties into the TO procedure, the elasticity modulus and the inertia moment were inserted
into the algorithm as uncertain variables, considering them normal distributions with
standard deviation equal to 10% of the average value, taking the reliability analysis more
realistically, for which it is possible to highlight the following:

(1) The MBB beam’s DTO analysis has a reliability index, βt = 0.5, which means that
the optimal structure has a failure probability equal to 30.85%, achieved when the
displacement constraint is violated.

(2) The RBTO analysis produces optimal topologies with lower volume and more rigidity
than those proposed by DTO, as already described in this study.

(3) The results showed that a change in the target reliability index changes the optimized
topology in two ways: the division of the members and the members’ spacing in the
structure. These trends are observed when the reliability index βt > 4.5.

6. Conclusions

The proposed RBTO structure provides an efficient way for the designer to obtain
optimal design solutions that satisfy probabilistic constraints. This analysis considers a
characteristic performance curve in which the designer has the opportunity to make a
reliable and more economical structural design. The evolutionary methods ESO, SESO
and SERA proved to be efficient in the RBTO analysis, presenting robust and feasible
structures for projects. The optimal topologies presented by SIMP are quite different
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from those presented by ESO, SESO and SERA, which are similar to each other. The final
volume obtained, by using the RBTO procedure, are smaller than the final ones in the DTO
procedure. In addition, the presented performance index is able to monitor the optimization
procedure in the RBTO analysis. It is worth noting the use of a stopping criterion that
compares the difference between the allowed and prescribed displacements with the
standard deviation obtained from the Kolmogorov–Smirnov test in the RBTO procedure.
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