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Abstract: Due to the lack of a reasonable mechanism explanation for the data model used in the
process of quality-related fault diagnosis, the diagnosis model has insufficient ability to identify faults,
resulting in the phenomenon of failure detection or false positive. Therefore, this paper adopted the
method of mechanism and data model fusion to solve the problem of insufficient interpretation of the
influence of existing diagnosis methods on rolling process variables. Firstly, the KPLS achieves strip
quality-related fault detection for nonlinear processes. In order to find out the abnormal variables,
a nonlinear contribution plot was introduced to calculate the contribution value of each variable
to the monitoring index. Secondly, based on the bounce equation of the rolling process, the static
comprehensive analysis of the steady rolling process was carried out to reveal the influence of
various variables on strip thickness. Thirdly, based on the above analysis of the steady rolling process
mechanism, the influence weight method and kernel function method were used to reconstruct and
map the original input matrix. A kernel partial least squares method based on influence weight W
optimization (W-KPLS) was proposed for quality-related fault monitoring and diagnosis. Finally,
the model was applied in the cold rolling process of an aluminum alloy sheet, and the validity of
the model was further verified by practical industrial data. The results show that the new method
improves the fault detection rate by more than 20% compared with the traditional monitoring method,
and the proportion of data points reaching the early warning limit was increased to more than 95%.

Keywords: cold-rolled strip; influence weight; thickness-related fault diagnosis; W-KPLS

1. Introduction

For complex modern industrial processes, quality-related fault process monitoring
is of great significance [1]. Due to the increasing demand for stable product performance,
better quality and lower product rejection rates, modern industrial processes become more
and more complicated by integrating various functions and interacting control loops [2].
Accordingly, in order to ensure the stability of product quality, it is necessary to monitor
the fluctuation of quality-related variables, which have recently attracted more attention
both in academia and engineering domains. For such purposes, quality-related process
monitoring and diagnosis methods have been deeply studied, and a lot of fruitful results
have been achieved [3–6]. However, the analytical models are difficult to develop in
nonlinear, dynamic and strong coupling complex industrial systems, such as steel rolling,
chemical industry and so on. In contrast, data-based methods are popular because of their
simple form and low requirements for design and engineering work [1,7]. At present, in
the multi-process strip production process, thickness is one of the most important quality
indexes in the process of strip production. However, it is difficult to effectively monitor
the fluctuation of thickness and other related variables in the actual production process.
With the development of data technology, the data-driven process monitoring algorithm is
gradually applied to the monitoring process of the complex industry. The establishment
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of information monitoring, behavior characteristic modeling and diagnosis system for
quality-related variables in the rolling process has become an urgent demand in strip
production [8,9].

Data-driven methods are applied to monitor and diagnose complex industrial pro-
cesses. In the research of multivariate statistical monitoring, the partial least squares (PLS)
monitoring model can retain the information of key quality variables [10–12]. Therefore,
PLS and its extended model become one of the most suitable methods for quality-related
process monitoring research [13,14]. A novel quality-driven kernel projection to latent
structure (QKPLS) modeling scheme was proposed for concurrent quality-related and
process-fault detection for nonlinear processes by Jiang QC [15]. In the extended model,
Zhou et al. [16] decomposed the principal components and residual into four subspaces,
and a model of total projection to latent structures for process monitoring was constructed.
This method reduces the missed detection rate. Because the T-PLS algorithm cannot mon-
itor the unpredictable quality changes, Qin et al. [17] further decomposed the predicted
quality space by singular value decomposition (SVD) and principal component analy-
sis (PCA); then the latent structure parallel projection (C-PLS) algorithm was proposed.
Zhang et al. [18] proposed a decentralized fault diagnosis method based on multi-block ker-
nel partial least squares (MBKPLS), which extends MBPLS to monitor large-scale nonlinear
processes. Consequently, the model can capture more useful information within and be-
tween blocks, which is applied to the process monitoring of a continuous annealing process.
According to the multi-scale and time-varying characteristics of the system, Liu et al. [19]
introduced the self-adaptive model updating method into the MKPLS method and pro-
posed a self-adaptive multi-scale kernel partial least squares regression (SMKPLS) model.
Qiu T et al. [20] proposed a novel data-driven process monitoring method named Fisher dis-
criminant global–local preserving projection (FDGLPP). The method preserves the global
manifold structure and local neighborhood structure of the data set and reduces false posi-
tives and detection delay. Zhang CF et al. [21] studied the connections between different
types of strip-steel products instead of conventional multimode methods. A quality-related
process monitoring method based on parametric t-distributed stochastic neighbor embed-
ding (P-t-SNE) and the modified minimum error minimax probability machine (MMEMPM)
was proposed, which is applied to the hot strip production process. Jiang Qingchao [22]
proposed a hierarchical fault detection method based on local–global correlation character-
istics for a multi-process industrial process, which improved the accuracy and reliability of
process monitoring. Odiowei P [23] proposed a new monitoring technique using the CVA
with UCLs derived from the estimated probability density function through kernel density
estimations (KDEs). This method significantly improves the monitoring performance of
the system. Pilario K [24] proposed a hybrid kernel CVDA method for early fault detection
of nonlinear dynamic processes. Due to the use of mixed kernels, the detection sensitivity
is improved. The kernel mapping is a popular method for designing nonlinear process
monitoring techniques. However, the order of the nonlinear relationship between process
variables in an industrial process system is often limited by many physical constraints. This
kind of infinite order mapping may be redundant and inefficient. Therefore, Yu H [25] pro-
posed a nonlinear mapping method by constructing polynomial mapping (CPM) instead of
a radial basis kernel function, which avoided too much modeling redundancy. Chuanfang
Zhang [26] proposed a novel nonlinear full-condition process monitoring model to monitor
the idle condition. In addition, the nonlinear cointegration analysis (NCA) is used to reveal
the long-term dynamic relationship of non-stationary components. Jianfang Jiao [27] used
a transfer entropy algorithm to analyze the causal relationship between the candidate fault
variables and find the exact root of the fault.

The above data-driven process monitoring methods in the algorithm expansion re-
search are constantly moving to a higher level. Its algorithm model has been effectively
verified through simulation. However, the excessive attention to the advanced nature of the
algorithm has deviated from the basic metallurgical production background and process.
Therefore, in order to ensure that the monitoring model is more suitable for the actual
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rolling conditions, the research of a data-driven and mechanism fusion model has become
a hot direction in the field of process monitoring [28,29]. Tian Wende [30] analyzed the
mechanism correlation between variables in the chemical process and obtained a causal
relationship between variables. Combined with the causal relationship between variables,
the Bayesian network monitoring model was constructed. Yang Lipo [31] combined a
shape control mechanism with a DE-ELM neural network. A shape control mechanism and
intelligent collaborative control model was established to improve the efficiency and preci-
sion of shape control. Li Weigang [32] integrated industrial big data and a metallurgical
mechanism and explored the interaction between influencing factors. A global additive hot
strip performance prediction model was proposed.

Motivated by the above introduction, it is considered that the data model has insuf-
ficient ability to explain some variables in the monitoring process [33]. In the complex
strip rolling process, the traditional quality-related fault diagnosis methods only rely on
the correlation between mining data to identify quality anomalies. In data processing,
normalization eliminates the influence of dimension and ignores the influence of various
variables on the quality of the strip production process. Therefore, a fault diagnosis method
for strip quality-related faults considering mechanism and data fusion was proposed. In
this paper, the thickness control mechanism model of the rolling process was used to
optimize the data model. A kernel partial least squares monitoring method based on
influence weight optimization (W-KPLS) was proposed. The rest of this paper is structured
as follows. The process monitoring model based on KPLS is first introduced in Section 2.
In Section 3, the production technology and thickness control mechanism are introduced,
and the influencing factors of rolling thickness are analyzed by the static comprehensive
analysis method. In Section 4, the kernel partial least squares monitoring method based
on influence weight optimization (W-KPLS) is proposed. Finally, the model is verified by
the actual production data of the aluminum alloy cold rolling process in Section 5, and the
concluding remarks are summarized in Section 6.

2. Monitoring Model Based on Statistical Process Control
2.1. Offline Modeling Based on K-PLS Algorithm

In the process of multivariate statistical monitoring, the data are standardized first.
Process variables and quality variables are represented by X = Rn×m and Y = Rn×l , where
n represents the number of sampling points, and m and l represent the number of variables.
The mean and variance of statistical data are used to normalize the original data to eliminate
the influence of dimension on the monitoring process. After standardizing the data, the
mean value of each vector is 0, and the variance is 1.

The variables were processed by PLS to form the latent score matrix. The latent score
vectors of process variables and quality variables are represented by ti and ui, where i
represents the number of latent variables (also called principal components, i = 1, 2, . . . , A).
In order to realize the algorithm idea of PLS, it is required to maximize the covariance of ti
and ui.

max{Cov(ti, ui)} = maxXi−1wi, Yi−1ci (1)

The Lagrange multiplier method is used to solve the equation as follows:{
XT

i−1Yi−1YT
i−1Xi−1 = λiwi

YT
i−1Xi−1XT

i−1Yi−1 = λici
(2)

where wi is the unit eigenvector of the input matrix, ||wi||= 1 . ci is the unit eigenvector of
the output matrix, ||ci||= 1 . λi is the eigenvalue of the vector.

The training process is as follows:

(1) Collect and standardize training sample data X and Y, initialize ui and set i = 1.
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(2) The projection direction wi of the process variable is calculated according to the given
score vector of the quality matrix; the latent score vector ti is obtained; then invert the
latent score vector ui of the quality matrix and iterate until the score vector converges.

(3) Calculate the residual matrix of the process variable and quality variable.{
Xi = Xi−1 − tipT

i
Yi = Yi−1 − uiqT

i
(3)

where pi is the input load vector, pi =
XT

i−1ti

||ti||2 . qi is the output load vector, qi =
YT

i−1ti

||ti||2 .

(4) The residual matrix is used to extract the next set of latent score vectors until the preset
number of principal components is met: i = A. The final linear data relationship
model is as follows: {

X = TPT + E
Y = UQT + F

(4)

where T is the latent score matrix of the process variables, U is the latent score matrix of
the quality variables, P is the load matrix of process variables, and Q is the load matrix of
quality variables.

The monitoring model based on the PLS algorithm is essentially constructed according
to the linear relationship between process variables and quality variables [10–12,19]. How-
ever, in the actual production process, there is correlation and nonlinearity between the
relevant variables. Therefore, KPLS is introduced to explain the nonlinear relationship be-
tween process and quality variables. As shown in Figure 1, the original nonlinear separable
data are mapped to a high-dimensional linear feature space through a kernel function. The
original spatial two classes of data require ellipses to separate them. The high-dimensional
feature space transforms the original data into a linearly separable problem, and data
differentiation can be achieved through the linear classification surface.
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Figure 1. The original data space is mapped to the feature space H.

According to the principle of kernel function, first, suppose there is a finite subset
containing n sample points as follows:

X = [x1, x2, . . . , xn]
T ∈ Rk (5)

φ : x→ φ(x) is the mapping from the original matrix X to the high-dimensional
feature space H; then obtain a new finite subset as follows:

φ(X) = [φ(x1), φ(x2), . . . , φ(xn)]
T ∈ Rk (6)

where k is the new matrix dimensions, k > m.
The mapping function is unknown; a kernel function can be introduced to calculate

the inner product of the mapping points, thereby describing the relationship between the
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mapping points. Let φ(xi), φ
(
xj
)

be the inner product of φ(xi) and φ
(
xj
)
, then the kernel

function expression is as follows:

k
(
xi, xj

)
=
〈
φ(xi), φ

(
xj
)〉

= kij (7)

where i = 1, 2, . . . , n, j = 1, 2, . . . , n.
After calculating the inner product of all mapping points, the kernel matrix can be

constructed according to the order of subscripts as follows:

K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (8)

As can be seen from the structure of the kernel matrix, it contains the inner product of
all the mapping points in the feature space and is the set of mapping information. The data
information of the original space can be completely retained through the kernel function;
thus the selection of the kernel function is crucial to the construction of the model.

After the kernel matrix K is obtained, the central processing is first as follows:

K = K− InK−KIn + InKIn (9)

where In = 1
n

 1 . . . 1
...

. . .
...

1 . . . 1

 ∈ Rn×n.

The offline training steps of the monitoring model based on the KPLS algorithm are
as follows:

(1) Initialize ui as any column of mass matrix Y and initialize i = 1.

(2) The mapped input score is converted to an inner product by the kernel function:

ti = φ(X) · φ(X)Tui = Kui (10)

(3) Normalization processing: ti =
ti
||ti ||

.

(4) Find the latent variable of the output variable: ci = YTti, ui = Yci.

(5) Normalization processing: ui =
ui
||ui ||

.

(6) Repeat steps (2)~(5) until ui converges.

(7) Calculate the residual matrix:

{
K =

(
I− titT

i
)
K
(
I− titT

i
)

Y = Y− titT
i Y

(11)

(8) Return to Step (2) and continue to extract the latent score vector until: i = A.

Based on the above process, the KPLS kernel principal component matrix T and load
matrix Q of the process data matrix X, the principal component matrix U and the regression
coefficient matrix C of the quality matrix Y can be obtained, which provide data support
for the online monitoring model.

2.2. Online Monitoring and Diagnosis

After training, the monitoring model can be used for online monitoring. For the
newly input variable sample xnew ∈ R1×m, the data standardization processing should be
unified with the training model at first. When the PLS algorithm is used for monitoring, a
projection direction matrix R (R = [r1, r2, . . . , rA]) of data matrix X should be introduced
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into the basis of the training model, T = XR. Therefore, we can directly find the matrix of
the principal components.

Measurement sample scores and residuals:{
tnew = xnewR
x̃new = xnew

(
1− PRT) (12)

Describing the fluctuation of the system and residual by T2 and SPE statistics.{
T2 = tT

newΛ−1tnew
SPE = x̃new

2 (13)

where Λ is the covariance matrix of the training model sample scores, Λ = TTT
n−1 .

The control limits of the two statistics are calculated as follows.{
T2

ucl(α) =
A(n2−1)
n(n−A)

FA,n−A,α

SPE2
ucl(α) = gχ2

h,α

(14)

where g = S
2µ , h = 2µ2

S , µ is the mean of the SPE statistic, and S is the variance.
KPLS algorithm is used for online monitoring. Firstly, the kernel matrix of samples is

constructed as follows:

Knew = [k(x1, xnew), k(x2, xnew), · · · , k(xn, xnew)] ∈ R1×n (15)

The new kernel matrix is centralized as follows:

Knew = Knew − INK−KnewIn + INKIn (16)

where IN = 1
n [1 · · · 1] ∈ R1×n.

The score matrix of the sample to be tested is calculated as follows:

tnew = KnewU
(

TTKU
)−1

(17)

The calculation of T2 statistic, control limit of the KPLS online monitoring model and
control limit of SPE is the same as PLS. The SPE statistic is calculated by a simple method
as follows:

SPE =
n

∑
i=1

t2
i −

A

∑
i=1

t2
i (18)

In engineering application, when the two indexes are within the allowable range, the
process runs normally. When both indexes exceed the standard, it is judged that the current
process is uncontrollable. Only a certain statistical index exceeds the standard, and an early
warning appears.

2.3. Fault Diagnosis Based on Nonlinear Contribution Plot

In this paper, the contribution plot method was used to diagnose and analyze the
statistical data. The total contribution of the i-th sample to the j-th variable is calculated
as follows:

contrSPE
ij =

(
xij − x̂ij

)2 (19)

where xij is the monitored value of the j variable at the i sample point, and x̂ij is the
predicted value of the j variable at the i sample point.
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In order to make the relative contribution graph more effective in dealing with a
complex production process, the expectation factor is added to the traditional contribution
graph, as follows:

RcontrSPE
ij =

contrSPE
ij

E
[
contrSPE

ij

] (20)

The nonlinear contribution plot calculates the contribution of each variable of each
sample point to the monitoring index so as to find out the main fault variables and complete
the diagnosis of abnormal sample points in the monitoring process. The new input sample
xnew,r ∈ R1×m (r = 1, 2, . . . , m. used to distinguish different process variables) and the
Gaussian radial basis kernel function are used in this paper; then the partial derivative of
the kernel matrix Knew of the new input point with respect to each variable is as follows:

K′new,i = −
1
σ
(xnew,r − xi,r)

2k(xnew, xi) (21)

where xi,r is the i element of the r variable in the training sample, i = 1, 2, . . . , n. σ
is constant.

The partial derivative of the centralized kernel matrix Knew with respect to each
variable is as follows:

K′new,i = K′new,i −K′new,iIn (22)

Using the latent variable matrix and kernel matrix calculated in the training model
and monitoring model, the SPE contribution value of each variable is calculated as follows:

contSPE
r = |− 2

n

n

∑
i=1

K′new,i −K′new

(
2TtT

new −UTTKTtT
new

)
+ tnewTTKTUTK′Tnew| (23)

where K′new is the partial derivative kernel matrix composed of partial derivative vec-
tor K′new,i.

3. Thickness Control and Static Comprehensive Analysis of Rolling Process
3.1. Mechanism Analysis of Aluminum Alloy Strip Rolling Process

Strip production is a complex industrial process with multi-process cooperation. In this
process, melting, casting, rolling and other processes are concentrated in one production
line as shown in Figure 2. The strip rolling stage is composed of multiple stand units, and
the rolling at this stage requires the coordination of multiple stands. The process unit of
each working procedure in the production process is complex. The strip quality is inherited
among the working procedures. In this paper, the rolling process is taken as the research
object, and the quality monitoring model is established to achieve the goal of strip thickness
monitoring.
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Figure 2. Production process of aluminum alloy plate and strip.

In the rolling stage, the metals undergo elastic-plastic deformation under the action
of the force between the rolls. As a result of elastic deformation, the actual reduction of
the roll is reduced, and the exit thickness of the rolled piece is greater than the value of
the no-load roll gap as shown in Figure 3. Therefore, strip thickness and elastic flattening
constitute the basis of strip thickness control.
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In order to optimize the mechanism of the strip thickness quality monitoring data
model, this part analyzes the strip thickness control mechanism. Based on the change prin-
ciple of the elastic-plastic curve, the related control factors of strip thickness are analyzed.
Under the actual rolling conditions, the roll gap is closely related to the thickness. In order
to describe the relationship between the total elastic deformation of the rolling mill and
rolling pressure, the spring equation of the rolling mill is established [34]. According to the
elastic curve, the thickness of the rolled exit strip is shown in the following formula.

h = s0 + ∆s = s0 +
P
K

(24)

K = P/(h− s0) (25)

where s0 is the empty roll gap, ∆s is the deformation of stand under rolling force, P is the
rolling pressure, and K is the stiffness coefficient of the rolling mill.

For the longitudinal thickness of the strip, the longitudinal stiffness of the rolling mill
is mainly considered. In addition to the influence of the state of the incoming rolled piece,
the longitudinal thickness of the strip will change as long as the rolling pressure fluctuation
is involved in the rolling process. In order to eliminate the thickness deviation caused
by disturbance factors, the intersection point of two characteristic curves is returned to
the preset point. This section briefly introduces the corresponding plate thickness control
means [35].

When the thickness of incoming material fluctuates greatly, the original rolling con-
ditions cannot meet the requirement of rolling out thickness. At this time, changing the
size of the reduction offsets the rolling factor or the thickness deviation caused by rolling
pressure fluctuation due to the interference of the rolling mill system.

As shown in Figure 4 the expected rolling thickness is h0. Other conditions of the rolled
piece remain unchanged; thus the slope of the plastic curve B remains the same. However,
the increase in blank thickness makes the curve shift to B′ to the right, intersects with
the original rolling mill elastic curve A to h1, which leads to the corresponding thickness
deviation of (h1 − h0). At this time, the thickness control system of the rolling mill reacts by
increasing the reduction and reducing the roll gap, and thus the elastic curve of the rolling
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mill shifts to the position A′. The abscissa of the intersection point comes to h0 again so as
to eliminate the thickness deviation.
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On the other hand, when the thickness of the incoming material is normal, there are
some problems such as uneven temperature and fluctuation of hardness or microstructure.
When the deformation resistance of the rolled piece is affected, the slope of the plastic curve
of the rolled piece will change as shown in Figure 5. At this time, the deformation resistance
of the rolled piece increases, and thus the slope of the original plastic curve increases from B
to B′, and the rolling thickness obtained by intersecting with the original elastic curve A of
the rolling mill increases from h0 to h1. At this time, the rolling mill increases the reduction
and adjusts the elastic curve A to the position of A′, and thus the rolling thickness returns
to the expected value.
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By adjusting the tension to change the slope of the plastic curve of the rolled piece, the
intersection of the plastic curve and the elastic curve of the rolling mill can be adjusted to
offset the influence of other factors on the rolling thickness. The front and back tension of
the rolling mill reduce the positive pressure on the roll, resulting in the reduction in rolling
force. The relationship between tension and rolling force is as follows.

Pq = P[1− 1
K
(m1q1 + m2q2)] (26)

where m1 and m2 are the influence factor of tension at the entrance and exit of the rolling
mill, and q1 and q2 are the strip tension at the inlet and outlet of the mill, respectively. Pq
is the rolling pressure with tension, P is the rolling pressure without tension, and K is the
deformation resistance.

As shown in Figure 6, with the increase in tension, the plastic curve of the rolled
piece can be adjusted from B to B′ (slope increases). Thus, the abscissa of the intersection
point with the elastic curve A is adjusted from h1 to h2. The purpose of plate thickness
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adjustment can be achieved without changing the size of the roll gap. From the practical
application, the tension adjustment method has the characteristics of fast response and
good effect. It is widely used in cold-rolled strips. The adjustment of rolling speed also
affects the thickness of the plate at the outlet. The main influence is that the change in
speed causes the fluctuation of the variables such as tension, friction coefficient, rolling
temperature and bearing oil film thickness so that the rolling pressure can also be changed.
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Through the analysis of the above thickness control principle, it is known that the
strip rolling system is a complex system with multivariable coupling, and there is a close
relationship between process variables and equipment variables [36]. In order to optimize
the mechanism of the data model, the plate thickness of the stable rolling process was
analyzed based on the static comprehensive analysis theory.

3.2. Static Synthesis Analysis of Steady-State Rolling

Taking the longitudinal plate thickness as an example, the differential of rolling mill
bounce is as follows:

δh = δS +
δP
Km

+
δF
KF

(27)

where Km is the total stiffness of the rolling mill, KF is the longitudinal stiffness of the roll
system corresponding to the bending force of the roll, P is measured rolling force, S is the
initial roll gap value, and F is roll bending force.

The rolling force is regarded as a function of incoming thickness H, rolled thickness h,
deformation resistance K, and front and rear tensile stress q f , qb, ignoring the rolling speed
fluctuation and strip width variation, as follows:

δP = f
(

H, h, K, q f , qb

)
(28)

The incremental form of rolling force is as follows:

δP =
∂P
∂H

δH +
∂P
∂h

δh +
∂P
∂K

δK +
∂P
∂q f

δq f +
∂P
∂qb

δqb (29)

The mathematical model of incremental thickness is as follows:

δh = (CHδH + CKδK) + (CSδS + CFδF) +
(

Cq f δq f + Cqb δqb

)
(30)

The influence coefficients of each variable are shown in Table 1.
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Table 1. Influence coefficients of some variables.

Index CH CK CS CF Cq Cq

Expression 1
Km+Q

∂P
∂h0

1
Km+Q

∂P
∂K

Km
Km+Q

Km
(Km+Q)KF

1
Km+Q

∂P
∂q f

1
Km+Q

∂P
∂qb

Note: Q = − ∂P
∂h is the plastic stiffness coefficient of rolled piece and is called the slope value of rolled piece

plastic curve.

4. Monitoring Method Based on Influence Weight Optimization
4.1. Influence Coefficient Calculation of Data Set

In this paper, the influence coefficient obtained from the static characteristic analysis
is used to interpret the input variables of the data model from the perspective of the
rolling process mechanism model so that the monitoring model can achieve higher fault
detection accuracy.

Let the sample data matrix of the rolling process be X = (X1, X2, . . . , Xm′) ∈ Rn×m′ .
The number of process variables is m′, and n is the sample size. In this section, on the basis
of a large number of historical samples, the partial differential coefficient is calculated by
means of chord tangent within a small variation range of variables.

Divide the historical data matrix X into N equal parts according to capacity:
X(1), X(2), . . . , X(N). Calculate the mean value of each variable in each equal part as follows:

X(i)
=
(

X(i)
1 , X(i)

2 , . . . , X(i)
m′

)
(31)

where X(i)
m′ is the mean of the m′ variable in the i equal fraction, i = 1, 2, . . . , N.

The mean vector X(i) was obtained. In order to illustrate the use of ∂P to refer to the
change value of rolling force, the partial differential values of the corresponding variables
of each adjacent two vectors were taken as follows:

∂X(k)
j

∂P(k)
=

X(k+1)
j − X(k)

j

∂P(k)
(32)

where k = 1, 2, . . . , N − 1; j = 1, 2, . . . , m′.
The mean value of (N − 1) partial differential values of each relevant variable is

calculated, and the partial differential coefficients are obtained as follows:

∂Xj

∂P
=

1
k

k

∑
1

∂X(k)
j

∂P(k)
(33)

Combined with the influence coefficient expression of the quality fluctuation of each
variable strip in Section 3.2 static comprehensive analysis of steady rolling, the final influ-
ence coefficient is obtained as follows:

C = (C1, C2, . . . , Cm) ∈ R1×m (34)

where m is the number of process variables.

4.2. KPLS Monitoring Method Based on Influence Weight W Optimization

Based on a data-driven algorithm, data feature is the direct information source of
the monitoring model. Traditional data preprocessing cannot adapt to specific working
conditions and cannot highlight the influence of different variables. According to the
calculation of influence coefficients in Section 4.1, the influence coefficients of some variables
obtained based on the historical data set of a certain rolling process are shown in Table 2.
It can be found that due to the different orders of magnitude of different variables, their
influence coefficient values often differ greatly. In the algorithm model, the difference in the
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order of magnitude of data becomes smaller after standardization, and thus the obtained
influence coefficient cannot be directly used to distinguish the influence of variables. In
this paper, the value of the influence coefficient is multiplied by the mean value X of the
corresponding variable, which is used as the optimization weight W of the follow-up
monitoring model.

W = CXT (35)

Table 2. An example of the influence coefficient of a course calculation.

Index Exit Velocity Back Tension Front Tension Entry Thickness

Partial differential 53,141.42 4.42 1.57 18,534.48
Influence coefficient 0.044 3.70 × 10−6 1.31 × 10−6 0.02

Mean value 5.78 18,829.54 15,846.74 0.28
Influence weight 0.254 0.070 0.021 0.004

The overall optimization strategy is shown in Figure 7, and the training process of the
monitoring model is shown on the left side of the figure. Firstly, input variable matrix X and
quality variable matrix Y are selected from the historical sample database and standardized
for use, respectively. A small section of variable samples and the corresponding rolling
force were selected from the database to construct the influence weight W. Then, the
normalized input matrix is reconstructed as XW through matrix dot product calculation.
Finally, the monitoring model is trained by using the above input and output matrices
according to the corresponding KPLS algorithm steps.
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In the figure above, the online monitoring process of the optimization model is shown
on the right. The input sample xnew of real-time monitoring should correspond to the
input sample of the training model after preprocessing. Firstly, the new input samples
are standardized according to the data characteristics of the input matrix in the training
process. Then the influence weight matrix is used to reconstruct the new input samples to
obtain x′new. Finally, the sample is kernel-mapped and centralized according to the online
monitoring steps of the KPLS model. The trained monitoring model is used to complete
the verification monitoring.
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5. Results and Discussion

In order to illustrate our point of view further, we use the simulation data that come
from the rolling production data of a 2800 mm cold rolling mill. The process variables
included: roll gap value, roll bending force, entry speed, exit speed, incoming material
thickness, front tension and back tension. Mass variable is the pass exit thickness of
the strip.

A total of 1200 sets of production data samples were collected, among which 800 sets
of normal operation data were used for training the offline model. The other 400 sets of
data were used for the online monitoring model. Monitoring sample 1 included 100 sets of
normal samples and 100 sets of fault samples, among which the default fault source was
the transmission system fluctuation of the rolling mill. Monitoring sample 2 contains 100
groups of normal samples and 100 groups of fault samples, among which the default fault
source is the uneven thickness of incoming materials.

The cumulative variance contribution rate is calculated using the sample data, as
shown in Table 3. In order to pursue calculation efficiency and take into account the
accuracy of the model, the variance contribution of nearly 90% can be obtained when the
number of principal components is set as 4.

Table 3. Calculation of cumulative variance contribution rate.

Component Number 1 2 3 4 5 6 7

Variance contribution rate % 39.02 61.87 80.67 89.93 95.69 99.38 100

The monitoring model is trained according to the modeling process of the PLS al-
gorithm. The projection direction matrix R of training is used to project each group of
monitoring samples to obtain a new principal component and residual component. Sta-
tistical index T2 and SPE are constructed, respectively. The online monitoring simulation
diagram of the monitoring model based on the PLS algorithm is finally obtained. Radial
basis function is used to carry out simulation monitoring based on the KPLS algorithm,
and cross-validation was used to determine the kernel parameter σ = 3.5.

The influence weight coefficient of strip thickness monitoring simulation based on
optimization model as shown in Table 4. W-KPLS is used for online monitoring of sample 1
and compared with other methods. The simulation results of online monitoring are shown
in the figure. As shown in Figure 8, using the traditional PLS method for monitoring,
the monitoring index of sample 1 exhibits an obvious overrun phenomenon in the fault
sample number 101–140 with a high detection rate. However, there is a lack of fault point
monitoring around 140–200. For the monitoring results of KPLS in Figure 9, the fault
detection rate of this method is significantly higher than that of PLS, but there are still a
few missing points. In order to improve the fault detection rate, the monitoring method
based on influence weight optimization is used for monitoring, and the results are shown
in Figures 10 and 11. We can see that the optimized monitoring method is better than the
traditional monitoring method.

Table 4. Simulation calculation of influence weight.

Index Entry Velocity Exit Velocity Front Tension Back Tension Roll Gap Roll Bending Force Entry
Thickness

Partial
differential 4494.08 7166.41 11.13 19.52 - - 123,513.80

Influence
coefficient 0.08 0.01 2.04 × 10−5 3.52 × 10−5 0.014 4.80 × 10−6 0.22

Mean value 10.58 13.57 15,828.13 18,820.76 0.72 146.36 0.28
Influence weight 0.85 0.14 0.32 0.66 0.01 0.007 0.06
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Online monitoring simulation for monitoring sample 2 is shown in Figures 12–15.
From the monitoring results of the following four methods for sample 2, the recognition rate
of the W-KPLS monitoring model in fault sample points is greatly improved compared with
the traditional algorithm. As shown in Figure 15, W-KPLS monitoring is used to reduce
the missing rate of sample points. The feasibility of W-KPLS is verified by monitoring two
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samples with four methods. By fusing the mechanism model, the accuracy of traditional
monitoring methods is improved.
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The detailed fault detection rate statistics of the monitoring model based on the four
algorithms for the two groups of monitoring samples are shown in Table 5. When the
monitored sample exceeds one of the T2 or SPE control lines, an early warning will be
generated. An alarm indication will be issued if it exceeds two control limits at the same
time. According to the control limit, the overall fault detection rate of the W-PLS algorithm
is improved compared with that of the PLS algorithm, but it cannot meet the monitoring
requirements. The data points of the W-KPLS algorithm whose T2 and SPE monitoring
indexes simultaneously exceed the limit account for 75% and 68%, respectively, which
are the highest among the four algorithms. At the same time, compared with the KPLS
algorithm before optimization, the detection rate of the W-KPLS algorithm is increased by
about 20 percentage points. The proportion of data points reaching the early warning limit
is also increased to over 95%.

Table 5. Statistics of fault detection rate.

Monitoring Algorithms PLS W-PLS KPLS W-KPLS

Sample 1 Early warning rate % 69 72 75 99
Alarm rate % 22 37 58 75

Sample 2 Early warning rate % 57 74 82 96
Alarm rate % 20 62 40 68

The over-limit monitoring index is analyzed using the traditional contribution plot
and relative contribution plot based on a linear algorithm and the contribution plot based
on a nonlinear algorithm. Results for the first group of monitoring samples are shown
in Figures 16–18, and results for the second group of monitoring samples are shown in
Figures 19–21.
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The fault of monitoring sample 1 is caused by rolling mill drive system fluctuation.
Both linear contribution plots show that variable 5 (roll gap value) has the largest contribu-
tion value, followed by variable 2 (exit speed). However, the contribution plot diagnosis
results of the nonlinear algorithm show that variable 2 (exit velocity) is the main fault
variable, and variable 5 (roll gap value) is the secondary fault variable.

The quality fluctuation of sample 2 was caused by the uneven thickness of incoming
material. The traditional contribution plot shows that the most contributing fault variables
are variable 2 (outlet speed) and variable 5 (roll gap value). While the relative contribution
plot shows that variable 1 (inlet speed) is the main fault variable, and the influence of
variable 7 (incoming material thickness) is the second. The contribution plot based on
the nonlinear algorithm shows that variable 7 (entry thickness) is the main influencing
variable. Data related to the quality fluctuation of actual production status were collected
and verified by the diagnostic method in this paper. By analyzing the contribution plot
above, it can be seen that the diagnosis result based on a nonlinear contribution diagram is
consistent with the on-site fault diagnosis result.
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6. Conclusions

In this study, a kernel partial least squares monitoring method based on influence
weight (W-KPLS) for quality-related monitoring was proposed for a nonlinear and dynamic
process, which can help industrial sites to achieve more accurate monitoring and diagnosis
of quality variables. This method adopts mechanism analysis and data fusion, which
makes up for the problem that the traditional data monitoring model cannot explain the
industrial process variables. Firstly, the traditional monitoring method for the complex
process industry was introduced. After that, a nonlinear contribution plot was applied to
the quality-related fault diagnosis process. Then, the mechanism model of strip thickness
control was introduced. The influence of rolling process variables was studied by static
comprehensive analysis. Finally, according to the influence coefficient, the weight matrix
was constructed. The W-KPLS model was proposed for quality-related monitoring and
diagnosis. We can see that the method works well for quality-related monitoring and
diagnosis in the aluminum alloy cold strip mill process of Nanshan aluminum. The fault
detection rate is improved by 20% compared with the traditional method. The proportion
of data points reaching the early warning limit is increased to more than 95%.
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