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Abstract: Lasers used for space communication, lidar, and laser detection in space-air-ground
integration applications typically use a traditional 1550 nm band tunable distributed-feedback Bragg
(DFB) semiconductor laser. This has low output power, complex fabrication process, and high
fabrication cost. In this paper, we present a gain-coupled surface grating-based 1550 nm DFB
semiconductor laser that can be fabricated without the use of secondary epitaxial growth techniques
or high-precision lithography. The periodic electrical injection is used to achieve a gain coupling effect.
A tapered waveguide is added to achieve a high output power, and the use of AlGaInAs multiple
quantum wells in the active region reduces the linewidth of the laser. A continuous-wave (CW)output
power of 401.5 mW is achieved at 20 ◦C, the maximum side mode rejection ratio exceeds 55 dB, the
measured 3 dB linewidth is 18.86 MHz, and the stable single-mode output with a quasi-continuous
tuning range of 6.156 nm near 1550 nm from 10 ◦C to 50 ◦C. This simple preparation method, low cost,
excellent performance, and stable tunable laser have extremely high commercial value in applications
such as space communication, lidar, and laser detection.

Keywords: 1550 nm; tunable DFB semiconductor laser; gain-coupled; surface grating

1. Introduction

DFB semiconductor lasers have resulted in their use across a wide range of applications
in optical communication, medical, materials processing, and integrated optics [1–4]. These
include stable single-mode selection, tunable wavelength, direct modulation, and easy
monolithic integration with other devices, 1550 nm DFB semiconductor lasers are a crucial
component in laser ranging, free-space laser communication, and vehicle-mounted lidar
applications due to their strong airborne penetration abilities and small attenuation [5–7].

According to the coupled-mode theory, DFB semiconductor lasers can be divided into
two modulation modes: gain-coupled modulation or refractive index-coupled modula-
tion [8]. Both modulation methods have some shortcomings. The main issue with refractive
index-coupled DFB semiconductor lasers based on a uniform grating with periodic mod-
ulation of the refractive index is that they have two modes with the same loss and the
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smallest loss [9]. That is, there are two modes that occur simultaneously, and neither occurs
at the Bragg wavelength. The solution to this problem is to use λ/4 wavelength phase
shift gratings. However, this not only takes more time and costs more but also introduces
complex fabrication techniques such as epitaxial regrowth or fine nanoscale grating fabrica-
tion [10–12]. Another way to achieve Bragg wavelength lasing is to use gain-coupled DFB
semiconductor lasers based on a periodic modulation of gain (loss) [8]. Compared with the
index-coupled DFB semiconductor laser, the gain-coupled DFB semiconductor laser has sta-
ble dynamic single-mode characteristics [13]. Its modulation characteristics are better, and
it is less affected by facet reflection. Even if the facet is not reflective, optimal performance
can be achieved [14,15]. In addition, the gain-coupled DFB semiconductor laser has a wide
range of spectral characteristics and is the best choice for manufacturing tunable lasers [16].
However, as with the index-coupled DFB diode laser, the traditional gain-coupled DFB
diode lasers also take advantage of complex epitaxial regrowth techniques, which reduces
its advantages over the index-coupled DFB diode laser.

In our previous studies, gain-coupled DFB semiconductor lasers with wavelengths
of 795 nm, 905 nm, 990 nm, and 1045 nm were fabricated based on periodic electrodes
windows and surface grating structures [17–20]. The periodic electrical injection of the
surface p-electrode caused the quantum wells in the active region to generate periodic
gain differences to realize the gain coupling effect and enable the device to achieve stable
single longitudinal mode output [21–23]. Surface gratings can provide optical feedback
as well as modulate the spectrum, enabling wavelength tunability and improving single
longitudinal mode performance [24–26]. This method not only avoids complex epitaxial
re-growth, nano-grating, and other time-consuming processes but can be realized by using
ordinary i-line lithography technology, which reduces costs and greatly improves the
yield. In this paper, we apply periodic p-electrodes and surface gratings to a 1550 nm DFB
semiconductor laser. AlGaInAs multi-quantum wells with smaller linewidth enhancement
factor and improved temperature characteristics compared to InGaAsP equivalents are
selected, making it easier to achieve narrow linewidths [27,28]. In addition, since the output
power of the traditional 1550 nm tunable DFB laser only reaches tens of milliwatts or even
a few milliwatts [29,30], we added a tapered waveguide to increase the output power [31].
In this paper, the design of the device is described in Section 2 and the measurement results
and analysis are characterized in Section 3. Finally, the conclusion is presented in Section 4.

2. Materials and Methods

The device consists of two parts: the front part is the DFB laser, and the rear part is
the tapered waveguide as shown in Figure 1a. In the DFB laser section, the period of the
grating was 6.0 µm, and the ridge waveguide (W = 4.0 µm, L = 1.0 mm) was in the center
of the grating. Electrode windows (R = 1.5 µm) were patterned on the grating to form
periodic electrical injection channels, and there was no current injection anywhere except
at the electrode windows. The topography of the surface grating and periodic electrodes
windows can be seen by scanning electron microscopy (SEM) as shown in Figure 1b. A
tapered waveguide (L = 1.5 mm) with a 6◦ taper angle increased the output power of the
device. The width of the tapered waveguide port was 150 µm. The insulating channel
between the two parts is 250 nm to ensure that the two parts are independently connected
to electricity without affecting each other. Ti/Pt/Au metal layers are deposited as p-and n-
electrodes by magnetron sputtering. The lift-off technique is used to define the p-electrode
shape. Thermal annealing is then applied to improve metal contact and lower electrical
resistance. Then the lasers are obtained after wafer cleaving, and two cleaved facets are
coated with silicon oxide layer for anti-reflection and protection. The current that defines
the access front part is IDFB, and the rear part is ITap. The device (W = 500 µm, L = 2.5 mm)
is soldered to a heat sink with the p-side facing down to form an ohmic contact mounted
on a thermoelectric cooling (TEC) controlled stage for temperature tuning. No complex
process technology is used in the entire process, which makes the fabrication simple and
low-cost.
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The surface gratings, ridge waveguides, taper waveguides, and periodic electrodes
were all fabricated by i-line lithography, after which inductively coupled plasma (ICP)
is used to etch them. The surface grating was fabricated by inductively coupled plasma
shallow etching, which helped to reduce scattering loss. The periodic electrical injection
creates periodic gain differences in the active area, as can be seen in Figure 1c. Considering
that surface gratings cause simultaneous changes in the real and imaginary parts of the
refractive index, we have carefully designed them to avoid too many refractive index
coupling effects to prevent higher-order scattering, which can cause additional optical
losses and increase the threshold. The coupling coefficient κ is expressed as:

κ = k0Γ∆n
sin

(
lπ
Λ Lg

)
lπ

+ iΓ′
∆g
4

(1)

where k0 = 2π/λ0 is the vacuum wave number for the vacuum wavelength λ0. Γ is the
optical confinement factor of the gating in our device. ∆n is the refractive index change in
the waveguide. Lg represents the grating’s groove width. Λ is the period for the l order
grating (Λ = lπ/ne f f ) and Γ′ is the optical confinement factor of the active region. ∆g
represents the gain/loss change in the waveguide.

By analyzing the coupling coefficient κ, the influence of the refractive index coupling
on the device is reduced by decreasing ∆n and Γ in the real part, and increasing ∆g in the
imaginary part makes the gain coupling occupy the main modulation position in practical
work. It is known by calculation that the imaginary part is 4 orders of magnitude higher
than the real part. This means that the strength of the refractive index coupling is negligible,
and the device is mainly modulated by the gain coupling. The epitaxial structure of the
device was fabricated by metal-organic chemical vapor deposition (MOCVD), as shown in
Figure 1d. The active region of the device was made of AlGaInAs material, which reduced
the linewidth of the device.
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Figure 1. (a) Overview of the device; (b) SEM schematic diagram of grating and p-electrode window;
(c) schematic diagram of carrier distribution for periodic electrical injection; (d) schematic cross-
sectional view at AA’ of the overview of the device.

The 3 dB linewidth of the device was tested by the frequency-shifted non-zero delay
self-heterodyne method. As shown in Figure 2, the output signal of the DFB laser entered
coupler 1 after passing through the isolator and was then split into two paths. One path was
delayed by the fiber ring and then sent to coupler 2; the other path was sent to coupler 2
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through an acousto-optic modulator (AOM), and the two paths were mixed by the detector.
Following this, the difference frequency electrical signal was sent to the spectrum analyzer.
The fiber-optic delay line was formed of a 50 km long single-mode fiber. Couplers 1 and 2
were single-input double-output types with a split ratio of 1:1. AOM was an acousto-optic
frequency shifter with a frequency up-shift of 80 MHz.
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3. Results and Discussion

The power-current (PI) characteristics with CW operation at 20 ◦C are shown in
Figure 3. The threshold current of the DFB laser was measured to be 20 mA. Figure 3 shows
that when the IDFB was fixed, an increase in the ITap resulted in increased output power.
As the current was increased to 3.0 A, the output power reached 401.5 mW. During this
period, the curve maintained a good linear trend and did not reach the non-linear region
of saturation, so we hypothesize that the output power will be significantly improved
significantly at higher currents.
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Figure 3. Measured output power with IDFB = 700 mA as a function of ITap.

Figure 4 shows the spectra of different IDFB values (from 50 mA to 700 mA, measured
every 50 mA) at a fixed ITap value of 0.5 A at 20 ◦C (measured with AQ6370C spectrum
analyzer with a spectral resolution of 0.02 nm). As the current increased, a significant
number of carriers were injected into the device, causing the refractive index of each layer
to change. In addition, the injection of carriers caused a build-up of heat in the device,
which eventually led to the narrowing of the bandgap of the gain material in the active
region. This means that the gain peak and the corresponding lasing wavelength to the long-
wavelength cause a red shift. The wavelength redshift of Figure 4 was from 1548.44 nm to
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1550.52 nm (2.08 nm). The spectrum shows that several side peaks appeared in addition
to the main laser peak as the current increased. Although side peaks also appeared, the
SMSRs at all lasing wavelengths were still over 37 dB, indicating that the device always
displayed acceptable single-mode operating characteristics.
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Figure 4. Measured spectrum under different IDFB values where ITap = 0.5 A.

Figure 5 shows the variation curve of the central lasing wavelength obtained by
changing the IDFB at different temperatures. When the temperature was constant, the
lasing wavelength increased as the values of IDFB increased. Similarly, as the temperature
increased from 10 ◦C to 50 ◦C, the lasing wavelength also increased. It can be seen from
Figure 5 that the change in lasing wavelength for different current wavelengths at different
temperatures is almost linear. This is due to the fact that the surface Bragg grating in the
device is minimally affected when the temperature increases. However, the bandgap and
refractive index do change in a linear relationship. This also limits the rate of change of
the lasing wavelength for the DFB laser with temperature. However, this also makes the
single-mode stability of the device excellent, and no mode-hopping phenomenon occurs.
The achieved quasi-continuous tuning range is 6.156 nm (from 1547.468 nm to 1553.624 nm),
and the rate of change of lasing wavelength with temperature was 0.154 nm/◦C.
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As shown in Figure 6a, the maximum SMSR of the device exceeded 55 dB. At the same
time, the SMSR at different temperatures and different values of IDFB were also measured,
which are displayed in Figure 6b. It is clear that when the temperature and the current were
lower, and just after the laser had begun lasing, the SMSR increased proportionally with the
increase in current. As the IDFB increased slightly, a side mode appeared, causing the side
mode and the main mode to compete. This caused the SMSR to become smaller as the IDFB
increased. This situation improved as the current continued to increase. This is because,
at the high current level, the main mode dominates, which suppresses the increase in the
side mode, increasing the size of the SMSR. At high temperatures, the lasing wavelength of
the DFB laser will move to a long wavelength. This means that the mode competition will
also move to a long wavelength. However, as the performance of the device will decrease
at high temperatures, non-radiative recombination will consume more carriers, and the
carriers are mainly provided to the lasing mode. This means that the side modes will not
receive many carriers, and so the SMSR will increase with the increase in IDFB.
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Figure 6. (a) SMSR of the device with IDFB = 700 mA at 20 ◦C; (b) SMSR at different temperatures
and IDFB.

The 3 dB linewidth test results are shown in Figure 7. The measured spectral range
was 160 MHz with a resolution of 1 MHz. Figure 7a shows the 3 dB linewidth measured at
20 ◦C using a delay self-heterodyne linewidth test system. In the spectrogram, the 3 dB
linewidth represents the spectral width corresponding to the 3 dB drop from the maximum
value of the spectral line amplitude. The measured spectral lines are of the Lorentz line
type, so more accurate results can be obtained by performing a Lorentz fit on the measured
spectral lines. The measured results have been fitted by the Lorentz method, and the fitted
3 dB linewidth was 18.86 MHz. As the temperature increased, the linewidth generally
displayed a clearer trend. In theory, when the output power is not saturated, the linewidth
of the semiconductor laser is proportional to the derivative of the output power. However,
in practice, the linewidth expands twice due to the linewidth enhancement factor and
the spatial hole burning effect. Therefore, the actual measured line width is affected by
multiple factors. Increasing the differential gain and optimizing the coupling coefficient
had a beneficial impact on reducing the linewidth of the semiconductor laser. The device
maintained a stable single longitudinal mode output throughout the test period.
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different temperatures.

The performance characteristics of the DFB laser fabricated in this study were com-
pared with those of other reported DFB lasers. The results are listed in Table 1. As can be
seen from Table 1, all devices do not perform very well on all characteristic parameters.
The device fabricated in this paper is much higher than that reported in other literature in
terms of output power and can have a high SMSR while maintaining high output power. In
terms of tuning range and line width, it is not as excellent as the output power and SMSR
performance. In the following research, we will focus on how to improve the tunable range
and reduce the linewidth and then make our device more perfect.

Table 1. The parameters of the device in this paper are compared with other reported DFB lasers.

Year Pout Tunable
Range SMSR Linewidth

2012 [32] 210 mW - >45 dB 64 kHz (3 dB)
2012 [33] >15 mW >15 nm >40 dB -
2013 [34] >13 mW 5.88 nm >45 dB -
2014 [35] 6 mW 3.37 nm >52 dB <170 kHz (3 dB)
2014 [36] 7 mW <4 nm >50 dB <185 kHz (3 dB)
2014 [37] >3 mW 9 nm >42 dB 1.67 MHz (3 dB)
2015 [38] >4 mW 30 nm >40 dB -
2015 [39] >1.5 mW 25 nm >40 dB -
2018 [40] >15 mW >9 nm >35 dB -
2020 [41] >4 mW 40 nm >45 dB 0.68 nm (20 dB)
2020 [42] >25 mW 10 nm >60 dB -
2021 [43] >10 mW >3.5 nm >55 dB -

This paper 400 mW 6.156 nm >55 dB 18.86 MHz (3 dB)

4. Conclusions

In this paper, we demonstrated a high-power surface grating 1550 nm tunable DFB
laser based on the gain-coupling effect. The gain coupling effect was realized by forming
a periodic gain difference with periodic p-electrode windows. A tapered waveguide was
introduced to improve the output power, and a multiple quantum well structure formed
of AlGaInAs material was used in the active region to reduce the linewidth of the laser.
Our device achieved consistently excellent performance. This was exhibited by CW output
power of 401.5 mW at 20 ◦C, a maximum side-mode rejection ratio exceeding 55 dB, a
measured 3 dB linewidth was 18.86 MHz, and a wavelength quasi-continuous tuning range
of 6.156 nm from 10 ◦C to 50 ◦C. Our device does not use complex manufacturing techniques
such as secondary epitaxial growth and can be manufactured by i-line lithography, which
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improves yield and achieves stable working conditions. This provides a low-cost, high-
efficiency, high-yield DFB laser for use in the fields of space laser communication, lidar,
and laser ranging.
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