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Abstract: Video compression is designed to provide good subjective image quality, even at a high-
compression ratio. In addition, video quality metrics have been used to show the results can maintain
a high Peak Signal-to-Noise Ratio (PSNR), even at high compression. However, there are many
difficulties in object recognition on the decoder side due to the low image quality caused by high
compression. Accordingly, providing good image quality for the detected objects is necessary for
the given total bitrate for utilizing object detection in a video decoder. In this paper, object detection-
based video compression by the encoder and decoder is proposed that allocates lower quantization
parameters to the detected-object regions and higher quantization parameters to the background.
Therefore, better image quality is obtained for the detected objects on the decoder side. Object
detection-based video compression consists of two types: Versatile Video Coding (VVC) and object
detection. In this paper, the decoder performs the decompression process by receiving the bitstreams
in the object-detection decoder and the VVC decoder. In the proposed method, the VVC encoder
and decoder are processed based on the information obtained from object detection. In a random
access (RA) configuration, the average Bjøntegaard Delta (BD)-rates of Y, Cb, and Cr increased by
2.33%, 2.67%, and 2.78%, respectively. In an All Intra (AI) configuration, the average BD-rates of Y,
Cb, and Cr increased by 0.59%, 1.66%, and 1.42%, respectively. In an RA configuration, the averages
of ∆Y-PSNR, ∆Cb-PSNR, and ∆Cr-PSNR for the object-detected areas improved to 0.17%, 0.23%, and
0.04%, respectively. In an AI configuration, the averages of ∆Y-PSNR, ∆Cb-PSNR, and ∆Cr-PSNR for
the object-detected areas improved to 0.71%, 0.30%, and 0.30%, respectively. Subjective image quality
was also improved in the object-detected areas.

Keywords: object detection; video compression; VVC (Versatile Video Coding); video coding
application; quantization

1. Introduction

Video compression is a key technology for immersive media uses. More than 80% of
global Internet traffic consists of video contents [1]. As the video content traffic continues to
soar, higher video compression is increasingly required. The next-generation video coding
standard, Versatile Video Coding (VVC) [2], was introduced in July 2020. It was jointly
developed by the International Telecommunication Union-Telecommunication (ITU-T)
WP3/16 Video Coding Experts Group (VCEG) and the ISO/IEC JCT 1/SC 29/ WG 11
Moving Picture Expert Group (MPEG). VVC was developed based on High Efficiency
Video Coding (HEVC/H265) [3,4], which was developed in 2013, and Advanced Video
Coding (AVC/H264) [5,6], which was developed in 2003. In VVC, a picture is divided
into one or more tile rows and one or more tile columns. A tile is a sequence of coding
tree units (CTUs) that covers a rectangular region of the picture. A slice consists of an
integer number of complete tiles or an integer number of consecutive complete CTU rows
within a tile of a picture. Figure 1 shows an example of a picture partitioned into tiles and
slices [7]. The basic mechanism of the video coding standards is a block-based structure.
In VVC, CTU, which is the basic coding unit, is recursively partitioned into quad, triple,
and binary trees, and these partitioned units are called coding unit (CUs). The picture is
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divided into a sequence of CTUs. The CTU concept is same as that of HEVC [3,4]. For
a picture that has three sample arrays, a CTU consists of an N × N (height × width)
block of luma samples together with two corresponding blocks of chroma samples. The
maximum allowed size of the luma block in the CTU is specified to be 128 × 128 [7].
The CTU can be recursively partitioned to 4 × 4 CUs in terms of rate-distortion (RD)
cost. This process is called rate-distortion optimization (RDO). The RDO process is the
measurement of finding the lowest RD cost for every CU, consisting of the CTU in which
the CUs having the lowest RD cost in the CTU are the best coding units. While the CUs are
recursively partitioned, the main coding tools of VVC, such as intra prediction [8], inter
prediction [9], transform, quantization, inverse transform, and dequantization [10], are used
in the compression. After all the CTUs are coded in the picture, some of the tools, including
the deblocking filter [11], Sample Adaptive Offset (SAO) [12], and Adaptive Loop Filter
(ALF) [13], enhance the subjective quality of video sequences. Finally, Context Adaptive
Binary Arithmetic Coding (CABAC) is used to generate a bitstream in the encoder to send
to the decoder. Some of tools in VVC show dominant high coding efficiency compared with
the previous video coding standards, HEVC and AVC. The dominant coding tools are listed
as follows: diversification of block partitioning, Cross-Component Linear Model (CCLM),
affine motion model, Adaptive Motion Vector Resolution (AMVR), Multiple Transform
Selection (MTS), dependent quantization, and ALF. Through these coding tools, VVC has
about 40% greater coding efficiency than HEVC for UHD sequences in terms of BD-rate,
which is the objective quality measure [14,15].
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Figure 1. Example of a picture partitioned into tiles and slices [7].

The new-generation video coding, with its high compression rate, needs to embrace
broad areas of video contents. In the areas of object detection and recognition, deep
learning has shown a significant influence. Learning based on given features has led to
a remarkable breakthrough in this field. Object-detection tools are diversified according
to the types of networks, such as You Only Look Once (YOLO) [16], Feature Pyramid
Networks (FPNs) [17], and Regions with Convolutional Neural Networks (R-CNNs) [18].
As a result of the rapid evolution in object detection, the combination of deep learning and
video coding is now also necessary. Therefore, Video Coding for Machines (VCM), which
is founded on ISO/IEC JTC1/SC29/WG11, will standardize a bitstream format [19]. As the
features are extracted from deep learning or object-detection tools, the extracted features
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can be used in applications supporting smart cities, intelligent industries, surveillance
video, etc. Due to the rise of the Internet of Things (IoT), the aforementioned applications
will be used in many specific applications, such as traffic monitoring, density detection and
prediction, traffic flow prediction, and resource allocation.

As a result, a method that combines video coding with object detection is proposed
in this paper. The proposed method combines the VVC Test Model version 8.2 (VTM-8.2)
with YOLO version 3 (YOLOv3), which showed high-speed object detection with the same
accuracy as that of other algorithms [20]. The objects are detected from videos, and the
information from these objects is encoded and used to generate a feature bitstream. In the
proposed method, the information of objects, such as the object’s name, position, width,
and height, is contained in the feature bitstream. The extracted features are used by the
quantization parameter (QP) control in VTM-8.2 to compress the areas in which objects are
included or not; that is, the object detection-based video compression uses a low QP in the
detected objects and a high QP in the background.

This paper is organized as follows. Section 2 discusses the related works, Section 3
presents the proposed method, Section 4 presents and analyzes the experimental results,
Section 5 presents our conclusions, and Section 6 introduces future works.

2. Related Works

As a result of the evolution of IoT, object detection, and AI technologies, MPEG is
attempting to create a standard through VCM by merging those technologies with video
coding technology. Therefore, VCM architectures are being conceived through collaboration
of these technologies. In addition, experiments are conducted through calls for evidence
(CfEs) within VCM, and efforts are being made to verify the effectiveness of the technology.
In VCM, a CfE was conducted in October 2020, and a draft call for proposal (CfP) was
published in January 2022. It is expected that VCM will proceed in the form of adding new
encoding technologies based on the adopted proposal.

VCM intends to provide services to technologies such as surveillance video, intelligent
transportation, smart cities, intelligent industries, and intelligent content. Some common
requirements for these services are as follows [19,21]:

• Efficient compression of bitstreams: It should have a higher compression rate than
VVC-compressed bitstreams with similar performance.

• Varying degrees of performance should be supported: The goal is to support different
optimizations for scenarios supporting single and multiple missions.

• Both machine-only and hybrid machine and human applications should be supported.

Several VCM pipelines are shown as examples. In Figure 2, (a) shows the pipeline for
video coding, (b) shows the pipeline for feature coding, and (c) shows the pipeline for hybrid
coding. Figure 2a shows video encoding, video decoding, and then a machine analysis
process performed after the video decoding. Thus, no additional procedure is required
in the video encoder and decoder to support numerous machine-vision tasks because the
reconstructed video after the video decoding is used as input for the machine analysis.
Figure 2b shows a method to compress both the traditional video plus feature information
after the feature conversion using the video encoder, where features are obtained from
machine analysis. Since the video codec is a compression method optimized for the
characteristics of image data, it is necessary to consider whether it is an efficient method. In
Figure 2c, feature maps after machine analysis on the encoder side are compressed by the
feature encoder, and the video encoder and decoder do not utilize the feature information
in the encoding and decoding processes in order to use the existing video coding standard,
in which the machine analysis in the decoder infers object detection, object segmentation,
object tracking, event recognition, etc., from the decoded feature maps.
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which Video Encoder and Video Decoder represent the VVC encoder and decoder, respectively [22].

Along with VCM, a large number of related studies are in progress. For example,
Yang et al. [23] mentioned the need for targeting collaborative optimization of compressing
and transmitting multiple tasks in VCM. Currently, video compression is targeted only
for human vision, rather than machine vision. Therefore, joint optimization of the VVC
and feature streams is necessary. The relationship between human vision and machine
vision also requires study. Fischer et al. [24] proposed a method combining human vision
and machine vision. As the video coding achieves improved performance using the
RDO process, Fischer et al. designed a feature-based RDO to achieve better compression
performance from the machine point of view. Duan et al. [25] proposed a key module that
shows the combination of a pretrained model, learned feature extractor, neural network,
and multiple tasks. In VCM, multiple tasks need to be applied in a variety of technologies,
such as surveillance video, intelligent transportation, smart cities, intelligent industries,
and intelligent content. In addition to collaboration between human vision and machine
vision, the complexity of encoder and decoder is a significant issue that should not be
overlooked, as compared with the VVC encoder and decoder.

3. Proposed Methods
3.1. Object Detection-Based Video Compression

The current block-based video coding applies the same quantization for the whole
picture because it does not consider detected-object regions. Here, we propose object
detection-based video compression by the encoder and decoder, which allocates lower
quantization parameters to the detected-object regions and higher quantization parameters
to the background. Therefore, better image quality is obtained for the detected objects on
the decoder side compared with the existing video coding standard. The combined method
of the VVC codec and the YOLO object detection algorithm is designed to control QPs in
VVC. The decoder block diagram of the proposed object detection-based video compression
is shown in Figure 3. The object information, such as the center (x, y) coordinate of each
object, the width and height of each object, and the name of each object (object index), are
obtained from the object detection. In the Object Detection Decoder, the Feature Decoder
holds the object information and Machine Analysis module infers the results. The object
information obtained by the Feature Decoder is used in the VVC Decoder. Using the Object
Detection Decoder and VVC Decoder, an object detection-based compression method is
proposed to modify the QP of the corresponding CU by transmitting the object information
(features) in the picture. In this paper, the object information obtained by the Feature
Decoder is applied to both the VVC Decoder and Machine Analysis modules.
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Tables 1 and 2 show the object indices that are used to classify the name of objects [20],
where voc.data in Table 1 and coco.data in Table 2 have a maximum of 20 and 80 objects,
respectively. The small PSNR gain in the detected object areas is meaningful in the object
detection-based video coding using the VVC standard because any machine analysis
techniques on the decoder side can be applied to the PSNR-improved detected object areas
for further processing, such as face recognition, segmentation, and shape extraction.

Table 1. Name of objects and object index in voc.data.

Index Name of Object Index Name of Object

0 airplane 10 table
1 bicycle 11 dog
2 bird 12 horse

. . . . . . . . . . . .
4 bottle 14 person
8 chair 18 train
9 cow 19 monitor

Table 2. Name of objects and object index in coco.data.

Index Name of Object Index Name of Object

0 person 60 table
1 bicycle 61 toilet
2 car 62 monitor
3 motorbike 63 laptop

. . . . . . . . . . . .
18 sheep 78 hair drier
19 cow 79 toothbrush
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Figure 4 shows the performance of YOLO, which detects objects in the common test
condition (CTC) original sequence. The names of objects defined differently from those
in Tables 1 and 2 can be used in the proposed method. In the following subsections, the
proposed method that uses the object information to control the QP values in the coding
blocks is explained in detail.
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Figure 4. Example of the object-detected 186th picture in the 832 × 480 BQMall sequence.

3.2. CU-Based QP-Control

A CTU is the basis unit of a coding tree, and is separated into a quad tree, triple tree,
or binary tree according to the RDO process, which consists of the optimal CU partitions.
Figure 4 shows the object-detection results detected by the bounding boxes in the 186th
picture of the 832 × 480 BQMall sequence, where six people and three handbags were
detected. In the proposed CU-based QP-control method, the index, or flag, of the detected
object is embedded in each CU. When the CUs are encoded, the QP values are controlled
by whether an object is included in the CU. In this case, a lower QP value is allocated
to the detected objects, and a higher QP value is allocated to the background to improve
PSNR values of the detected objects. The CU partitioning results of the CU-based QP
control corresponding to the detected objects in the 186th picture of the BQMall sequence
are shown in Figure 5. The CUs allocating low QP values are highlighted with red color
blocks, and the CUs allocating high QP value are highlighted with white color blocks in
the BQMall sequence, where the CU is determined to be encoded with a low QP when the
CU partially includes an object. Even if an object occupies only a part of a CU, the CU is
recognized as including the object in the proposed method. As an example, the upper left
and upper right large binary CUs over the hat of the woman on the left with the handbag
are compressed by a low QP in the picture because the detected woman (object) takes up a
large area in Figure 4. In addition, when the accuracy of object recognition is low in YOLO,
it is determined that there is no object in the CUs in the proposed method. In Figures 4
and 5, the accuracy of object recognition is low for the person in the center of the image in
the bakery, so the person is determined to be part of the background in YOLO, as shown
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in Figure 5. In the proposed method, the modification of QPs are defined in Equation (1)
as follows:

i f (isObjectDetected) QPCU = QPSlice − QPO f f set; // low QP
else QPCU = QPSlice + QPO f f set; // high QP

(1)Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 18 
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In Equation (1), IsObjectDetected is a flag that defines whether an object is included or
not in the CU, where QPCU is the QP value of the CU, QPSlice is the QP value of the current
slice, and QPOffset is a constant value used to modify the QP value in the CU, in which
QPOffset is set to 4 in the experiments. In this method, the object information, including
the number of detected objects, the starting (x, y) coordinate of each object, the width and
height of each object, and the object index, is sent from the feature encoder of the proposed
object detection-based encoder that makes the feature and VVC bitstreams. Once the object
information is collected by YOLO in the object detection-based encoder, the encoder starts
to compress each CU with reference to the CU coordinates containing each object in the
picture. For the object detection-based encoder and decoder, all the CUs are encoded and
decoded while investigating whether the object contains CUs.

4. Experimental Results
4.1. Experimental Conditions

The proposed methods were implemented on top of the VVC reference software,
VTM-8.2, according to the VVC common test conditions (CTC) [26]. Table 3 shows the test
sequences where the sequences of the classes A1/A2, B, C, and D comprise the resolutions
of 4K, 1080p, 832 × 480, and 416 × 240, respectively, and the proposed method was applied
when the QP values were 22, 27, 32, and 37, respectively. In the experiments, Class D was
excluded because it is not mandatory in the RA configuration and had too-low resolution.
The AI configuration used I (Intra) picture coding for compression. The RA configuration
had hierarchical B pictures (IPBBB . . . BB), which have a group of pictures (GOP) size of 16,
where P is a predictive picture. The pictures for 5-GOP (80 frames) were compressed for the
Class A1 and A2 sequences to speed up the experiments, and the total number of pictures
was compressed for Classes B and C. An Intel Xeon(R) CPU E5-2630@2.40GHz with 64.0GB
RAM was used for the experiments. For the condition of YOLOv3, yolov3.weights and
coco.data were used.



Appl. Sci. 2022, 12, 4525 8 of 18

Table 3. Information on video sequence for each class.

Class Sequence Name Picture Size Number of Picture Frame Rate Bit Depth

A1
Tango2 3840 × 2160 294 60 10

FoodMarket4 3840 × 2160 300 60 10
Campfire 3840 × 2160 300 30 10

A2
CatRobot1 3840 × 2160 300 60 10

DaylightRoad2 3840 × 2160 300 60 10
ParkRunning3 3840 × 2160 300 50 10

B

MarketPlace 1920 × 1080 600 60 10
RitualDance 1920 × 1080 600 60 10

Cactus 1920 × 1080 500 50 8
BasketballDrive 1920 × 1080 500 50 8

BQTerrace 1920 × 1080 600 60 8

C

RaceHorses 832 × 480 300 30 8
BQMall 832 × 480 600 60 8

PartyScene 832 × 480 500 50 8
BasketballDrill 832 × 480 500 50 8

D

RaceHorses 416 × 240 300 30 8
BQSquare 416 × 240 600 60 8

BlowingBubbles 416 × 240 500 50 8
BasketballPass 416 × 240 500 50 8

4.2. Experimental Results

After applying the QP modification indicated by Equation (1) to each CU, the Peak
Signal-to-Noise Ratio (PSNR) was measured with only the object-detected areas in the AI
and RA configurations. In the proposed method, PSNR was not measured for the areas not
including objects to evaluate the accurate image quality of the proposed method for the
areas including objects. The ∆PSNR increase in each picture was calculated using Equations
(2)–(6) by the ratio of the proposed method to the anchor as follows:

∆PSNR =
(

PSNRpm − PSNRanc
)
/PSNRanc, (2)

PSNRanc = 10· log10

(
MAX2

I

MSEobj
anc

)
, MAXI =

{
255, f or 8 − bit pixel depth

1023, f or 10 − bit pixel depth
(3)

PSNRpm = 10· log10

(
MAX2

I

MSEobj
pm

)
, (4)

MSEobj
anc =

MAX_obj

∑
i

1
(exi − sxi )

(
eyi − syi

) exi

∑
k=sxi

eyi

∑
k=syi

(anc(k, l)− org(k, l))2 (5)

MSEobj
pm =

MAX_obj

∑
i

1
(exi − sxi )

(
eyi − syi

) exi

∑
k=sxi

eyi

∑
k=syi

(prop(k, l)− org(k, l))2 (6)

where MSEobj
pm is the Mean Squared Error (MSE) between the proposed method represented

by the subscript pm and the original sequence for the areas including the detected objects
represented by the superscript obj. MSEobj

anc is the MSE between the VTM-8.2 anchor
represented by the subscript anc and the original sequence for the areas including the
detected objects. In Equations (5) and (6), sxi and syi are the start (xi,yi) coordinates (left-top)
of the detected object i, exi and eyi are the end (xi,yi) coordinates (right-bottom) of the
detected object i, MAX_obj is the number of objects, and anc(k,l), prop(k,l), and org(k,l) are the
VTM-8.2 (anchor) decoded picture, the proposed object detection-based decoded picture,
and the original picture, respectively, where (k,l) represents the (x,y) coordinate of picture.
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In Equations (3) and (4), PSNR is measured using the anchor and the proposed method,
respectively. MAXI represents the max value 255 or 1023, according to the sequences that
are of 8-bit pixel depth or 10-bit pixel depth. ∆Y-PSNR, ∆Cb-PSNR, and ∆Cr-PSNR are
the PSNR increments of Y, Cb, and Cr of the proposed method compared with those of
VTM-8.2, respectively, in each picture, where Y is a luma component and Cb and Cr are
chroma components. The small PSNR gain in the detected object areas is meaningful in the
object detection-based video coding using the VVC standard because any machine analysis
techniques on the decoder side can be applied to the PSNR-improved detected object areas
for further processing, such as face recognition, segmentation, and shape extraction.

In Table 4, ∆Y-PSNR that is higher than 0% indicates that the proposed method
increases the ∆Y-PSNR value compared with the VTM-8.2 anchor for the object-detected
areas, providing better image quality of Y-PSNR in the proposed method than in the anchor.
In the RA configuration, the average ∆Y-PSNR was improved to 0.18%, but the averages of
∆Cb-PSNR and ∆Cr-PSNR were slightly decreased by 0.11% and 0.04%, respectively, for all
the test sequences in Table 4. In the AI configuration, the averages of ∆Y-PSNR, ∆Cb-PSNR,
and ∆Cr-PSNR improved to 0.71%, 0.30%, and 0.30%, respectively, for all the test sequences.
Therefore, the overall performances were improved in the object-detected Y, Cb, and Cr
areas. The sequence in which the proposed method showed the high average ∆Y-PSNR
value of 2.25% was the BQTerrace sequence in class B, where the QP value was 22 in the AI
configuration. The sequence in which the proposed method showed the lowest average
∆Y-PSNR value (−0.53%) was the MarketPlace sequence in class B, where the QP value
was 37 in the RA configuration.

Figure 6 shows the example of objects detected (226th, 235th, 240th, and 246th pictures)
in the MarketPlace sequence in class B, which show low average ∆Y-PSNR values. In the
MarketPlace sequence, the object-detection algorithm does not work well, as there are
fast-moving people, which require the camera to quickly zoom in and out. Therefore, object
detections are difficult in the MarketPlace sequence. The person standing on the far left
disappears after a few pictures in Figure 6a and the size of the square box of the object
detected in the picture changes continuously in Figure 6a–d. Because of these reasons,
the PSNR quality of the reconstructed video worsens, as confirmed by the RA data in
Table 4, which led to a decrease in the average ∆Y-PSNR value by −0.53% at the QP value
of 37. However, in the AI configuration, the average ∆Y-PSNR value increased because
the compression was I (Intra) picture coding, which does not use the P (Predictive) and B
(Bi-directional predictive) reference pictures.

Table 4. Experimental results of the average ∆Y-PSNR, the average ∆Cb-PSNR, and the average
∆Cr-PSNR for class (A1 to C) sequences.

Random Access (RA) All Intra (AI)

Class Sequence QP Average
∆-PSNR

Average
∆Cb-PSNR

Average
∆Cr-PSNR

Average
∆Y-PSNR

Average
∆Cb-PSNR

Average
∆Cr-PSNR

Class A1
4K

Tango2

22 0.05% −0.04% 0.07% 0.23% 0.04% 0.10%
27 0.03% 0.01% 0.09% 0.08% −0.02% 0.07%
32 0.08% 0.13% 0.08% 0.10% −0.03% 0.01%
37 0.12% 0.30% 0.12% 0.13% 0.02% 0.10%

FoodMarket4

22 0.54% 0.57% 0.42% 0.08% 0.08% 0.08%
27 0.61% 0.58% 0.46% 0.08% 0.10% 0.14%
32 0.70% 0.69% 0.60% 0.13% 0.10% 0.15%
37 0.79% 0.70% 0.55% 0.22% 0.17% 0.22%

Campfire

22 −1.22% 2.43% −0.65% 0.65% 0.32% 0.10%
27 −0.95% 3.78% 0.14% 0.22% 0.22% 0.12%
32 −0.18% 4.74% 0.65% 0.08% 0.15% 0.04%
37 0.80% 5.13% 0.94% 0.12% 0.06% 0.16%
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Table 4. Cont.

Random Access (RA) All Intra (AI)

Class Sequence QP Average
∆-PSNR

Average
∆Cb-PSNR

Average
∆Cr-PSNR

Average
∆Y-PSNR

Average
∆Cb-PSNR

Average
∆Cr-PSNR

Class A2
4K

CatRobot1

22 0.19% 0.11% 0.18% 0.45% 0.07% 0.19%
27 0.14% 0.09% 0.16% 0.17% 0.05% 0.17%
32 0.17% 0.07% 0.21% 0.23% 0.03% 0.10%
37 0.21% 0.01% 0.19% 0.29% 0.09% 0.18%

DaylightRoad2

22 0.23% 0.08% 0.08% 0.73% 0.07% 0.10%
27 0.08% 0.10% 0.07% 0.10% 0.06% 0.09%
32 0.09% 0.11% 0.06% 0.13% 0.04% 0.07%
37 0.09% 0.23% 0.13% 0.19% 0.06% 0.07%

ParkRunning3

22 0.68% 0.60% 0.53% 0.73% 0.51% 0.39%
27 0.51% 0.35% 0.27% 0.68% 0.43% 0.28%
32 0.37% 0.25% 0.17% 0.60% 0.26% 0.16%
37 0.26% 0.18% 0.07% 0.49% 0.17% 0.11%

Class B
1080p

MarketPlace

22 −0.45% −1.90% −1.15% 0.44% 0.14% 0.14%
27 −0.47% −1.98% −1.16% 0.36% 0.13% 0.14%
32 −0.49% −2.11% −1.16% 0.40% 0.10% 0.10%
37 −0.53% −2.39% −1.17% 0.40% 0.14% 0.15%

RitualDance

22 −0.25% −1.23% −1.01% 0.54% 0.16% 0.18%
27 −0.29% −1.29% −1.09% 0.53% 0.20% 0.21%
32 −0.35% −1.33% −1.12% 0.45% 0.19% 0.12%
37 −0.39% −1.24% −1.13% 0.39% 0.16% 0.22%

Cactus

22 0.24% 0.09% 0.10% 0.85% 0.17% 0.25%
27 0.22% 0.08% 0.09% 0.50% 0.14% 0.27%
32 0.21% 0.06% 0.10% 0.56% 0.12% 0.19%
37 0.21% 0.03% 0.00% 0.57% 0.17% 0.21%

BasketballDrive

22 0.33% 0.12% 0.22% 0.94% 0.23% 0.38%
27 0.20% 0.11% 0.21% 0.49% 0.26% 0.42%
32 0.18% 0.13% 0.18% 0.39% 0.21% 0.30%
37 0.15% 0.12% 0.14% 0.42% 0.31% 0.36%

BQTerrace

22 0.36% 0.14% 0.15% 2.25% 0.38% 0.31%
27 0.21% 0.15% 0.14% 0.97% 0.29% 0.22%
32 0.22% 0.13% 0.13% 0.79% 0.20% 0.15%
37 0.26% 0.12% 0.05% 0.71% 0.20% 0.16%

Class C
WVGA

BasketballDrill

22 0.49% 0.37% 0.47% 1.01% 0.66% 0.77%
27 0.33% 0.26% 0.28% 0.78% 0.66% 0.77%
32 0.24% 0.30% 0.27% 0.64% 0.54% 0.46%
37 0.13% 0.23% 0.14% 0.54% 0.50% 0.51%

BQMall

22 0.41% 0.25% 0.27% 1.17% 0.40% 0.43%
27 0.34% 0.18% 0.18% 0.93% 0.39% 0.43%
32 0.28% 0.24% 0.22% 0.74% 0.27% 0.27%
37 0.22% 0.25% 0.24% 0.66% 0.41% 0.37%

PartyScene

22 0.78% 0.59% 0.58% 2.37% 0.86% 0.77%
27 0.64% 0.44% 0.36% 1.72% 0.79% 0.67%
32 0.51% 0.41% 0.31% 1.16% 0.52% 0.43%
37 0.38% 0.29% 0.24% 0.75% 0.47% 0.40%

RaceHorses

22 0.57% 0.23% 0.20% 1.38% 0.72% 0.49%
27 0.34% 0.18% 0.14% 1.06% 0.59% 0.45%
32 0.29% 0.16% 0.15% 0.93% 0.37% 0.35%
37 0.23% 0.20% 0.18% 0.66% 0.44% 0.48%
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Table 4. Cont.

Random Access (RA) All Intra (AI)

Class Sequence QP Average
∆-PSNR

Average
∆Cb-PSNR

Average
∆Cr-PSNR

Average
∆Y-PSNR

Average
∆Cb-PSNR

Average
∆Cr-PSNR

Class A1 0.11% 1.58% 0.29% 0.18% 0.10% 0.11%
Class A2 0.25% 0.18% 0.18% 0.40% 0.15% 0.16%
Class B −0.02% −0.61% −0.37% 0.65% 0.20% 0.22%
Class C 0.39% 0.29% 0.26% 1.03% 0.54% 0.50%

All 0.18% −0.11% −0.02% 0.71% 0.30% 0.30%
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Figure 7 shows the example of the object-detected 501st picture in the 1920 × 1080 
BQTerrace sequence in class B. Many vehicles and people are detected in the BQTerrace 
sequence, where the vehicles and people have relatively steady and slow motion com-
pared with the MarketPlace sequence in Figure 6. As the object detection is successful, the 
prediction performance using the reference P and B pictures is also accurate, so that the 
average ΔY-PSNR improved to 2.25% at the QP value of 22. The results derived from Fig-
ures 6 and 7 confirm that the quality of reference pictures including objects that have slow 
and steady motion significantly affects the results of PSNR in the proposed method. 
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Figure 6. Example of the object-detected pictures in the 1920 × 1080 MarketPlace sequence: (a) 226th
picture, (b) 234th picture, (c) 240th picture, and (d) 246th picture. (purple colored block: person; green
colored block: truck; blue colored block: chair).

Figure 7 shows the example of the object-detected 501st picture in the 1920 × 1080
BQTerrace sequence in class B. Many vehicles and people are detected in the BQTerrace
sequence, where the vehicles and people have relatively steady and slow motion compared
with the MarketPlace sequence in Figure 6. As the object detection is successful, the
prediction performance using the reference P and B pictures is also accurate, so that the
average ∆Y-PSNR improved to 2.25% at the QP value of 22. The results derived from
Figures 6 and 7 confirm that the quality of reference pictures including objects that have
slow and steady motion significantly affects the results of PSNR in the proposed method.

Figure 8 shows the example of the object-detected 13th picture in the 3840 × 2160
DaylightRoad2 sequence of class A2, where DaylightRoad2 consists of vehicles and traffic-
related objects. Since it is a video sequence, specialized for object detection, the detection
accuracy was quite high. The width and height of object detection between pictures were
constant, which favorably affects the quality of reference pictures. Therefore, performance
improvement of the proposed method is observed in DaylightRoad2. The average ∆Y-
PSNR, 0.73% at the QP value of 22, in the AI configuration shows better performance than
the 0.23% at the QP value of 22 in the RA configuration. It can be inferred that the B- or
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P-picture in the RA configuration had a poor PSNR result due to low PSNR results on
the reference pictures. In other words, as the video compression proceeded in the RA
configuration, ∆PSNR of the image decreased due to the poor quality of reference pictures.
Moreover, the object detection (which sometimes fails to detect the objects that should
be detected) did not accurately predict all objects. Therefore, when the false-alarm object
regions are compressed with a high QP, and those regions are used as a reference picture,
the ∆PSNR result is low because of the low quality of the reference picture. In common with
the AI and RA configurations, it seems that the lower the QP, the better the performance.
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Figures 9–11 show the images of the cropped pictures in which (a) is the original
cropped image, (b) is the cropped image decompressed with the VTM-8.2 anchor, and
(c) is the cropped image decompressed with the proposed method. Referring to Table 3,
Figures 9–11 are UHD videos and have a size of 1920 × 1080. In Figures 9–11, the videos
were compressed under the RA configuration.
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Figure 10a–c shows the cropped 100th pictures of the BasketballDrive sequence, 
where the start (x, y) coordinate of the cropped image is (1525, 800) and (width, height) is 
(180, 215). The shoelace in the yellow box is clearly visible in the original cropped image 
in Figure 10a, but the shoelace is less visible in Figure 10b, which is compressed by VTM-
8.2 with the QP value of 27 in the RA configuration. It seems that a large amount of quan-
tization noise is visible in the yellow box. In Figure 10c, since the shoelace is included in 
the object-detection area, the cropped image was compressed with a QP value less than 
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Figure 9. Experimental results in the cropped 501st picture of the BQTerrace sequence, where the
start (x, y) coordinate of the cropped image is (1480, 470) and (width, height) is (140, 125): (a) original
sequence, (b) anchor (VTM-8.2) compressed with QP = 32 in the RA configuration, and (c) proposed
method in the RA configuration.
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Figure 10. Experimental results in the cropped 100th picture of the BasketballDrive sequence, where
the start (x, y) coordinate of the cropped image is (1525, 800) and (width, height) is (180, 215):
(a) original sequence, (b) anchor (VTM-8.2) compressed with QP = 27 in the RA configuration, and
(c) proposed method in the RA configuration.
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Figure 11. Experimental results in the cropped 5th picture of the BasketballDrive sequence, where the
start (x, y) coordinate of the cropped image is (1080, 400) and (width, height) is (170, 185): (a) original
sequence, (b) anchor (VTM-8.2) compressed with QP = 37 in the RA configuration, and (c) proposed
method in the RA configuration.

Figure 9a–c shows the cropped 501st pictures of the BQTerrace sequence where the
starting point (x, y) of the cropped image is (1480, 470) and (width, height) is (140, 125).
Figure 9a is the original cropped image. In Figure 9b, compressed with QP = 32 in the RA
configuration, image noise is observed around the head of the person in the yellow box.
However, in Figure 9c, when the proposed compression is performed, image quality is
improved, which reduces the noise around the head in the yellow boundary box. This is
because the proposed method provides better image quality by modifying the QP values.

Figure 10a–c shows the cropped 100th pictures of the BasketballDrive sequence, where
the start (x, y) coordinate of the cropped image is (1525, 800) and (width, height) is (180, 215).
The shoelace in the yellow box is clearly visible in the original cropped image in Figure 10a,
but the shoelace is less visible in Figure 10b, which is compressed by VTM-8.2 with the QP
value of 27 in the RA configuration. It seems that a large amount of quantization noise is
visible in the yellow box. In Figure 10c, since the shoelace is included in the object-detection
area, the cropped image was compressed with a QP value less than 27, so the shoelace is
clearly visible in Figure 10c due to less quantization noise.

Figure 11a–c shows the cropped 5th pictures of the BasketballDrive sequence, where
the start (x, y) coordinate of the cropped image is (1080, 400) and (width, height) is (170, 185).
In Figure 11b, compressed by VTM-8.2 with the QP value of 37 in the RA configuration,
blocking artifacts and ringing artifacts are visible on the basketball, compared with the
original cropped image in Figure 11a. However, in Figure 11c, blocking artifacts disappear
from the ball. Since the proposed method detects the basketball and basketball player
as objects, it was compressed with a QP value less than 37. Since the VTM-8.2 anchor
compresses the whole picture with a high QP value 37, the overall video quality is not
sufficient compared with the original picture. However, since the objects that are detected



Appl. Sci. 2022, 12, 4525 15 of 18

by the proposed method are compressed at a lower QP value, the objects in the proposed
method are shown with better quality than those in Figure 11b. In the experiments, the QP
value difference QPOffset in Equation (1) was set to 4.

The BD-rate indicates the bitrate reduction ratio over the anchor (VTM-8.2) in the same
PSNR. For example, a positive BD-rate value means that the coding efficiency is decreased.
The BD-rates for the Y, Cb, and Cr components were calculated, with “Average BD-rate”
meaning the average BD-rate for each component for all class sequences. Table 5 shows the
experimental results for BD-rate in all sequences. In the RA configuration, the BD-rates of Y,
Cb, and Cr decreased to 2.33%, 2.67%, and 2.78%, respectively. In the AI configuration, the
BD-rates of Y, Cb, and Cr decreased to 0.59%, 1.66%, and 1.42%, respectively. When object
detection-based video encoding was performed, the BD-rate of video sequences dropped
compared with the VVC standard because:

• Even if the PSNR is high in the object-detected areas, background areas that do not
include object areas usually take up more area than the detected object areas in a
picture, so the PSNR decreased due to a high QP value in the background areas, and
the bitrates increased to compensate for the distortion.

• In the case of intra prediction, the already-decoded reference samples with a high QP
value that were used to encode the current block had relatively higher quantization
errors than those samples decoded with a low QP value, so that the coding efficiency
dropped due to the high intra prediction error.

• In the case of inter prediction using the P (Predictive) and B (Bi-directional predictive)
pictures, the background areas in the previous reference pictures were decoded with a
high QP value, which was used to predict that each block in the current picture would
have relatively higher quantization errors than those areas decoded with a low QP
value; thus, the coding efficiency dropped due to the high inter prediction error, i.e.,
when the proposed object detection-based video coding was applied, the PSNRs of the
previously decoded pictures were lower than those of the previously decoded pictures
in VVC.

• The object detection algorithm, YOLOv3, sometimes fails to detect objects that should
be detected; fast motion and rapid zooming in and out of the camera are the main issues
that lower the detection accuracy. When the size and shape of objects change quickly,
the object detection algorithm has difficulty detecting objects properly. These issues
result in a false-alarm area, where the object should be accurately detected but is not.
High quantization error occurs in the false-alarm area due to the high QP value. For
this reason, high inter prediction errors occur due to the low quality of the false alarm
areas to be used as the reference picture. Therefore, the PSNR and BD-rate performance
in the RA configuration that uses inter and intra predictions are worse than those
in the AI configuration that use only intra prediction. In particular, the average Y
BD-rates decreased to 4.10%, 3.54%, and 3.74%, respectively, in the BasketballDrill,
BasketballDrive, and BQMall sequences, due to their fast object movements.

• In Table 5, the BD-rates of the DaylightRoad2 and BQMall sequences in the AI config-
uration show improvement despite the poor PSNR quality in the background areas.

Table 5. Experimental result of the BD-rate increments for class (A1 to C) sequences.

Random Access (RA) All Intra (AI)

Class Sequence Average Y
BD-Rate

Average Cb
BD-Rate

Average Cr
BD-Rate

Average Y
BD-Rate

Average Cb
BD-Rate

Average Cr
BD-Rate

Class A1 4K
Tango2 2.84% 3.14% 3.51% 0.73% 5.47% 3.44%

FoodMarket4 3.72% 4.92% 5.63% 0.83% 1.60% 1.50%
Campfire 1.27% 1.21% 1.38% 0.69% 0.19% 1.10%

Class A2 4K CatRobot1 1.49% 1.67% 1.32% 1.01% 2.32% 1.19%
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Table 5. Cont.

Random Access (RA) All Intra (AI)

Class Sequence Average Y
BD-Rate

Average Cb
BD-Rate

Average Cr
BD-Rate

Average Y
BD-Rate

Average Cb
BD-Rate

Average Cr
BD-Rate

DaylightRoad2 0.48% 0.74% 1.14% −0.17% 0.06% −0.15%
ParkRunning3 0.91% 1.14% 1.15% 0.24% 0.90% 0.95%

Class B 1080p

MarketPlace 0.61% 1.16% 0.96% −0.01% 1.69% 1.14%
RitualDance 3.82% 4.41% 5.20% 0.07% 0.87% 1.37%

Cactus 1.77% 2.71% 2.92% 0.95% 2.54% 2.12%
BasketballDrive 3.54% 3.96% 3.39% 1.07% 1.34% 0.84%

Class C
WVGA

BQTerrace 0.88% 1.08% 0.49% 0.07% 0.33% 0.26%
BasketballDrill 4.10% 3.09% 3.32% 1.01% 0.00% −0.08%

BQMall 3.74% 3.84% 4.13% −0.55% 1.21% 1.33%
PartyScene 2.41% 2.27% 2.65% 1.13% 1.68% 2.16%

Average

Class A1 2.61% 3.09% 3.50% 0.75% 2.42% 2.01%
Class A2 0.96% 1.18% 1.21% 0.36% 1.09% 0.66%
Class B 2.12% 2.66% 2.59% 0.43% 1.35% 1.14%
Class C 3.40% 3.46% 3.67% 0.83% 1.92% 1.90%

All 2.33% 2.67% 2.78% 0.59% 1.66% 1.42%

5. Conclusions

In this paper, we proposed a method for incorporating video compression with an
object-detection algorithm. The QP was adjusted in a CU-unit, and the CUs containing
objects provide better video quality in the detected-object areas than the background based
on a lower QP. By comparison, the CUs without the detected-object areas had low subjective
quality based on a higher QP. The averages of ∆Y-PSNR, ∆Cb-PSNR, and ∆Cr-PSNR were
better for the areas where objects were detected. The average ∆PSNR in the AI configuration
was better than that in the RA configuration because the quality of the reference pictures to
be used for inter predictions was worse. The overall BD-rate performance in the AI and
RA configurations was poor due to the PSNR drop in the background areas. However,
the subjective image quality improved when the proposed object detection-based coding
was applied. Therefore, the detected objects showed better picture quality. As the objects
were not precisely detected in the boundaries of objects, it was not easy to clearly divide
and encode the object boundaries using the block-based VVC standard. Although the
proposed object detection-based video coding increased the BD-rate, as shown in Table 5, it
has many application fields, such as traffic monitoring, density detection and prediction,
traffic flow prediction, and resource allocation, in which it is necessary to display only a
specific object with high quality without background areas, display all detected objects
without background areas, recognize a specific object, obtain security information, etc. Our
proposed method is provided with executable code and two batch files in [27]. This consists
of two batch files that process the encoder and decoder.

6. Future Works

Video compression using Supplemental Enhancement Information (SEI) messages
may replace the proposed method. Object information is transmitted through an SEI
message, but the SEI message should not change the decoder syntax. Therefore, unlike
the proposed method, a process such as post-processing is required. That is, since the
CU-based QP-control using the SEI message cannot directly be applied to the VTM-8.2
encoder and decoder, the reconstruction block obtained by the VTM-8.2 encoder and that
obtained by the CU-based QP-control using the VTM-8.2 encoder are subtracted, and the
subtracted (residual) sample values are transmitted by the SEI message for post-processing
in the VTM-8.2 decoder. Figure 12 shows the block diagram of the video compression using
the SEI message in the decoder. The VTM-8.2 decoder is used to create the reconstruction
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video and the object information in the SEI message shown in Figure 12 is used in the
post-processing. The CU-based QP-control using the SEI message increases the complexity
due to the VVC encoder having to perform twice as many times. Since the SEI message
is not allowed to change the VTM-8.2 bitstream syntax, it needs twice the encoding: the
VTM-8.2 encoding and the CU-based QP-control encoding, which is similar to the method
proposed in Section 3.2. Since the CU-based QP-control method using the SEI message
encodes all the residual samples between the VTM-8.2 reconstruction samples and the CU-
based QP-control reconstruction samples to transmit the message in the SEI bitstream, the
bitstream size is increased. However, the proposed method encodes the object information
once in the feature bitstream. Therefore, the proposed method only has to send information
such as the center (x, y) coordinate of each object, the width and height of each object, and
the name of each object (object index) obtained from the object detection. In conclusion, the
CU-based QP-control using an SEI message may be used in an object-detection algorithm,
but the complexity and bitstream size are currently too high.
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