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Abstract: Neuromorphic hardware designs realize neural principles in electronics to provide high-
performing, energy-efficient frameworks for machine learning. Here, we propose a neuromorphic
analog design for continuous real-time learning. Our hardware design realizes the underlying
principles of the neural engineering framework (NEF). NEF brings forth a theoretical framework
for the representation and transformation of mathematical constructs with spiking neurons, thus
providing efficient means for neuromorphic machine learning and the design of intricate dynamical
systems. Our analog circuit design implements the neuromorphic prescribed error sensitivity (PES)
learning rule with OZ neurons. OZ is an analog implementation of a spiking neuron, which was
shown to have complete correspondence with NEF across firing rates, encoding vectors, and intercepts.
We demonstrate PES-based neuromorphic representation of mathematical constructs with varying
neuron configurations, the transformation of mathematical constructs, and the construction of a
dynamical system with the design of an inducible leaky oscillator. We further designed a circuit
emulator, allowing the evaluation of our electrical designs on a large scale. We used the circuit
emulator in conjunction with a robot simulator to demonstrate adaptive learning-based control of a
robotic arm with six degrees of freedom.

Keywords: OZ spiking neurons; NEF; Nengo; REACH; prescribed error sensitivity; neuromorphic en-
gineering; neuromorphic computing; machine learning; online learning; real-time learning; adaptive
robotics; neurorobotics; MuJoCo

1. Introduction

While proven incredibly valuable for numerous applications, ranging from robotics
and medicine to economy and computational cognition, artificial intelligence (AI), in many
ways, is nullified when compared with biological intelligence. For example, the Cockatiel
Parrot can navigate and learn unknown environments at 35 km/h, manipulate objects,
and use human language, with a brain consuming merely 50 mW of power [1]. Compara-
bly, an autonomous drone with comparable mass and size consumes 5000 mW of power
while being limited to pretrained flying in a known environment with limited capacity for
real-time learning [2]. Deep learning with artificial neural networks (ANNs) is a predomi-
nant method in AI. ANNs, however, are limited to slow generalization with massive data,
offline training, and batched optimization [3]. In contrast, biological learning is character-
ized by fast generalization and online incremental learning [4]. Spiking neural networks
(SNNs) closely follow the computational characteristics of biological learning and stand
as a new frontier of AI [5]. SNNs comprise densely connected, physically implemented
“silicon neurons”, which communicate with spikes [6]. SNNs were realized in various
hardware designs, including IBM’s TrueNorth [7], Intel’s Loihi [8], the NeuroGrid [9], the
SpiNNaker [10], and the BrainDrop [11].

Programming a neuromorphic system is a challenging endeavor, as it requires the
ability to represent data, manipulate and retrieve it with spike-based computing. One theo-
retical framework designed to address these challenges is the neural engineering framework
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(NEF) [12]. NEF brings forth a theoretical framework for representing high-dimensional
mathematical constructs with spiking neurons for the implementation of functional large-
scale neural networks. It was used to design a broad spectrum of neuromorphic systems
ranging from vision processing [13] to robotic control [14]. NEF was compiled to work on
each of the neuromorphic hardware designs listed above [15] via Nengo, a Python-based
“neural compiler”, which translates high-level descriptions to low-level neural models [16].

One of the most promising directions for neuromorphic systems is real-time continu-
ous learning [6]. A neuromorphic continuous learning framework was recently shown to
handle temporal dependencies spanning 100,000 time steps, converge rapidly, and use few
internal state variables to learn complex functions spanning long time windows and out-
performing state-of-the-art ANNs [17]. Neuromorphic systems, however, can realize their
full potential only when deployed on neuromorphic hardware. While NEF was previously
adopted for both digital [18] and hybrid (analog/digital) neuromorphic circuitry [11,19],
we propose a detailed, fully analog design for NEF-based online learning.

The BrainDrop was designed to specifically tailor NEF. In this hybrid circuit, computa-
tion is held in analog circuitry and spike routing is held digitally. Learning in the BrainDrop
is realized by digitally solving a least-squares optimization problem. While digital and
hybrid neuromorphic designs have proven immensely important for the development of
various neuromorphic applications, analog designs have been tremendously successful in
vision [20] and sound [21] processing due to their unique tradeoff between performance
and energy efficiency [19]. Here, we propose an entirely different approach based on the
analog realization of PES learning. Thus, this study provides a full analog neuromor-
phic implementation of NEF-inspired learning. Our circuit design utilizes OZ, an analog
implementation of the NEF-inspired spiking neuron we recently proposed [15]. OZ is a
programmable spiking neuron that can support arbitrary response dynamics (Figure 1A–C).
We used online learning to represent high-dimensional mathematical constructs (encod-
ing and decoding with spiking neurons), transform one neuromorphic representation to
another, and implement complex dynamical behaviors. We further designed a circuit
emulator, allowing the evaluation of our electrical designs on a large scale. We used the
emulator to demonstrate adaptive learning-based control of a six-degree-of-freedom robotic
arm (Figure 1D). Our design supports the basic three fundamental principles of NEF (repre-
sentation, transformation, and dynamics) and can therefore be of potential use for various
neuromorphic systems.
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Figure 1. Neuromorphic encoding of mathematical constructs. (A) OZ circuit design; (B) A control
circuit aiming at creating a distribution of intercepts (x1 − x8) and maximal firing rates (y1 − y8)

for eight neurons’ tuning; (C) Three tuning modalities: uniform (top), bounded (middle), and pure
(bottom); (D) Raster plots of eight OZ neurons, defined by the tuning distribution set in (C) and
driven by a linear (top), exponential (middle) and sinusoidal (bottom) input signals; (E) Schematic
of this work’s methodology.

2. Methods

NEF is based upon three fundamental principles: representation, transformation, and
dynamics. Here, we show that our hardware PES-driven analog design can be used to
implement these principles.

2.1. Neuromorphic Representation with NEF

NEF brings forth a theoretical framework for neuromorphic encoding of mathematical
constructs with spiking neurons, allowing for the implementation of functional large-scale
neural networks [12]. It provides a computational framework with which information,
given in terms of vectors and functions, can be transformed into a set of interconnected
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ensembles of spiking neurons. In NEF, spike train δi of neuron i in response to a stimulus x
is defined as follows:

δi(x) = Gi

[
αiei + Jb

i

]
, (1)

where Gi is a spiking neuron model, αi is a gain term, ei is the neuron’s preferred stimulus
(encoding vector), and Jb

i is a fixed background current. An ensemble of neurons can
encode a high-dimensional vector, which can be linearly decoded as x̂ according to:

x̂ = ∑N
i ai(x)di, (2)

where N is the number of neurons, ai(x) is the postsynaptic low pass filtered response of
neuron i to the stimulus x, and di is a linear decoder that was optimized to reconstruct x
using least-squares optimization. Neuron’s postsynaptic response is defined in NEF as:

ai(x) = ∑ hi ∗ δi
(
t− tj(x)

)
, (3)

where hi is the synaptic response function (usually an exponential with a time constant
determined by the neurotransmitter type at the synapse), ∗ is the convolution operator, and
δi
(
t− tj(x)

)
is the spike train produced by neuron i in response to stimulus x, with spike

times indexed by j.
Importantly, when the representation is distributively realized with spiking neurons,

the number of neurons dramatically affects performance and stability. This is referred to
as decoder-induced static noise SN , and it is proportional to the number of neurons N
according to:

SN ∼ 1/N2 (4)

2.2. Neuromorphic Transformation with NEF

Equations (1) and (2) describe how vectors are encoded and decoded using neural
spiking activity in neuronal ensembles. Propagation of data from one ensemble to another
is realized through weighted synaptic connections, formulated with a weight matrix. The
resulting activity transformation is a function of x. Notably, it was shown that any function
f (x) could be approximated using some set of decoding weights df [12]. Defining f (x) in
NEF can be made by connecting the two neuronal ensembles A and B via neural connection
weights wij(x) using:

wij = di ⊗ ej, (5)

where i is the neuron index in ensemble A, j is the neuron index in ensemble B, and di are
the decoders of ensemble A, which were optimized to transform x to f (x), and ej are the
encoders of ensemble B, which represents f (x) and ⊗ is the outer product operation.

2.3. Prescribed Error Sensitivity

Connection weights, which govern the transformation between one representation to
another, can also be adapted or learned in real time rather than optimized during model
building. Weight adaptation in real time is of particular interest in AI, where unknown
environmental perturbations can affect the error. One efficient way to implement real time
learning with NEF is using the prescribed error sensitivity (PES) learning rule. PES is a
biologically plausible supervised learning rule that modifies a connection’s decoders d to
minimize an error signal e. This error signal is calculated as the difference between the
stimulus and its approximated representation: x̂− x. The PES applies the update rule:

∆d = λeδ, (6)

where λ is the learning rate. Notably, it was shown that when a− λ‖δ‖2 (denoted γ) is
larger than −1, the error e goes to 0 exponentially with rate γ. PES is described at length
in [22].
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2.4. Neuromorphic Dynamics with NEF

We recently described neuromorphic dynamics with NEF in [13]. System dynamics
is a theoretical framework concerning the nonlinear behavior of complex systems over
time. Dynamics is the third fundamental principle of NEF, and it provides the framework
for using SNNs to solve differential equations. It is essentially an integration of the first
two NEF principles: representation and transformation, where transformation is used in
a recurrent scheme. A recurrent connection (connecting a neural ensemble back to itself)
is defined using x(t) = f (x(t)) ∗ h(t). A canonical description of a linear error-correcting
feedback loop can be described using dx

dt = Ax(t) + Bu(t), where x(t) is a state vector,
which summarizes the effect of all past inputs, u(t) is the input vector, B is the input matrix,
and A is the dynamic matrix. In NEF, this standard control can be realized by using:

dx
dt

= A′x(t) + B′u(t), (7)

where A′ is the recurrent connection matrix, defined as τA + I, where I is the identity
matrix, τ is the synapse decaying time constant, and B′ is the input connection, which is
defined as τB.

An oscillator is a fundamental dynamical system. A two-dimensional (2D) oscillator,
which alternates the values of x1 and x2, at a rate r, can be defined recurrently using:(

x1
x2

)
=

(
1 r
−r 1

)(
x1
x2

)
= Ax. (8)

To achieve an oscillatory dynamic in which dx1
dt = rx2 and dx2

dt = −rx1, the following
recurrent connections: x1 = x1pre + rx2 and x2 = x2pre − rx1 are defined, achieving x1 =
r
τ x2 and x2 = −r

τ x1. Implementing this model without inducing some initial value x1 or x2
will result in a silent oscillator, i.e., it will stand still at (0, 0). However, when a stimulus is
applied—even a very short stimulus—the oscillator is driven to oscillate indefinitely. A
leaky oscillator can be defined by introducing κ as a dumping factor:(

x0
x1

)
= (A− κ I)

(
x0
x1

)
, (9)

where I is the identity matrix.

2.5. OZ NEF-Inspired Spiking Neuron

OZ is an analog implementation of a NEF-inspired spiking neuron (Figure 1A). In this
circuit design, the input voltage is transformed into a proportional current, driven into
a voltage-amplifier leaky integrated and fire (LIF) neuron circuit. The neuron produces
a spike train according to its response dynamic (tuning curve). Finally, the spike train is
introduced into an integrator circuit to provide temporal integration. OZ neurons can be
explicitly defined to feature arbitrary tuning curves following NEF neuron specifications.
In NEF, a tuning curve is described with an intercept, the value for which the neuron
starts to produce spikes at a high rate and a maximal firing rate. OZ response dynamic
is defined by the values of Vlk and Vre f . Vlk controls the discharge rate of Cmem (via the
voltage-amplifier LIF neuron), thus controlling the neuron’s intercept, and Vre f controls the
spikes’ refractory period, thus controlling the neuron’s firing rate. OZ design was shown to
have high predictability of the produced spike trains and a complete correspondence with
NEF across firing rates, intercepts, and encoders [15].

2.6. Circuit Simulation and Emulation

Circuit simulations in this work were executed using LTspice by Analog Devices [23].
The simulator is based on the open-sourced SPICE framework [24], which utilizes the
numerical Newton–Raphson method to analyze nonlinear systems [25]. We used LTspice
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to evaluate the performance of our circuit design on a small scale. To efficiently demon-
strate our circuit design on a larger scale, we designed a scalable Python-based emulator,
supporting the emulation of many OZ neurons and numerous PES-based learning circuit
blocks. We further compared our results to Nengo-based simulations [16].

2.7. Robotic Arm Simulation

We recently described our robotic arm simulation in [14]. To simulate a robotic arm, we
used the Multi-Joint dynamics with Contact (MuJoCo) physics simulation framework. The
mechanical description of the robotic arm and its accurate joint dynamics were specified
using CAD-derived specifications and inertia and mass matrices provided by Trossen
Robotics (Downers Grove, IL, USA). The arm provides 6 DOF, 82 cm reach, and 1.64 m span.
The simulation was developed using Python. Arm control was evaluated using Nengo, a
Python package for building, testing, and deploying NEF-based neural networks and our
circuit emulator described below.

3. Results
3.1. Circuit Design
3.1.1. Control Circuit

OZ neurons are configured using two control signals (Vlk, Vre f ; see Figure 1A), setting
the neuron’s intercept and maximal firing rate. However, individually controlling each
neuron is tedious and not feasible in a large-scale design. We would therefore prefer
programming the neurons to exhibit different distributions of response dynamics. One
way in which a distribution can be configured is with simple resistor ladders (a serially
connected set of resistors) (Figure 1B). One ladder sets the neurons’ intercepts, and the
other sets their maximal firing rate. In this simple control design, changing the voltages
that feed the ladders uniformly shifts the response of the controlled OZ ensemble in the
representation space. We simulated this control circuit to generate various distributions
of tuning curves, including a uniform and bounded intercept distribution (by feeding
different input values to both resistor ladders) and a pure configuration in which the
intercepts were set to zero (Figure 1C). Each ensemble was driven by linear, exponential,
and sinusoidal inputs to highlight their different response dynamics (Figure 1D). Note that
in the design of OZ, a preprocessing module generates a signal for positively encoded and
negatively encoded neurons. Therefore, by assuming symmetry of activations (such as the
one demonstrated in Figure 1C), only four activations should be set for the configuration of
eight neurons.

3.1.2. Learning Core

We propose a novel analog circuitry with which OZ neurons could be utilized to learn
neuromorphic representations, transformation, and dynamics using the realization of the
PES learning rule. This circuit design aims at online learning with neuromorphic analog
circuitry, and it is scalable to comprise numerous OZ learning cores. The system schematic
is shown in Figure 2A. In each learning core, a normalized input signal is preprocessed to
drive positively and negatively encoded neurons. The preprocessing module is slightly
differently configured for each encoding modality, simplified here for clarity. See [15] for a
full description.

With OZ neurons, the input signal is rate-coded (following the neuron’s tuning curve)
and temporally integrated. The integrated signal is driven into a learning block alongside a
normalized error signal and a learning rate. The learning block (Figure 2B) processes the
signal and transforms it to an optimized value by minimizing the error signal using hard-
ware realization of PES learning. The learning block is also responsible for the maintenance
of the neuron’s weight. Finally, all learning blocks’ outputs are summed up by an adder
block achieving an estimated signal. The estimated signal is subtracted from the desired
signal, providing the error signal. The error signal is divided by the number of neurons
(via a voltage divider, not shown in the diagram) and sent back to the learning block.



Appl. Sci. 2022, 12, 4528 7 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 16 
 

signal using hardware realization of PES learning. The learning block is also responsible 

for the maintenance of the neuron’s weight. Finally, all learning blocks’ outputs are 

summed up by an adder block achieving an estimated signal. The estimated signal is sub-

tracted from the desired signal, providing the error signal. The error signal is divided by 

the number of neurons (via a voltage divider, not shown in the diagram) and sent back to 

the learning block. 

 

Figure 2. OZ Learning core. (A,B) Schematic of a learning core (A), in which a learning block (B) is 

utilized to provide PES-driven online learning; (C) A Circuit implementation of a learning block, 

utilizing a voltage divider, two multipliers, and a weight update module. 

The electrical circuit constituting the learning block is shown in Figure 2C. The learn-

ing block circuit comprises a voltage divider (accounting for a learning rate, colored blue), 

two multipliers (colored purple), and a weight update module (colored orange). Analog 

multipliers were implemented by subtracting the outputs of two analog squaring circuits. 

One squaring circuit is driven by the summation of the two signals (𝑥, 𝑦) and the other by 

their difference, following: (𝑥 + 𝑦)2 − (𝑥 − 𝑦)2 = 4𝑥𝑦 . A differential amplifier further 

modulates the resulting value to factor out the constant. The diode bridge operates in an 

extensive frequency range, and its square law region is at the core of the squaring circuit. 

The left diode bridge handles 𝑥 + 𝑦 and the right bridge handles (𝑥 − 𝑦) (𝑦 is negated 

with an inverting op-amp). The squaring circuit’s output current can be approximated 

with Taylor’s series. As the differential output across the diode bridges is symmetric, each 

bridge’s output comprises the even terms of the combined Taylor expansions. Odd terms 

are removed due to the four diode currents, as they produce frequency components out-

side the multiplier’s passband. Therefore, the resulting output of the circuit is propor-

tional to the square of its input. 

The first multiplier multiplies the normalized error with the neuron’s temporally in-

tegrated spikes, constituting a weight update. Weights are implemented with a memory 

cell (transistor-capacitor), allowing the maintenance of negative values at low overhead. 

Using a recurrently connected summing amplifier, the weight update circuit sums the 

updated value with its current weight value. The second multiplier multiplies the weight 

with the neuron’s temporally integrated spikes providing the neuron’s output. 

3.2. Circuit Simulation 

In this section, we show that our hardware PES-driven analog design can be used to 

implement NEF’s three fundamental principles: representation, transformation, and 

Figure 2. OZ Learning core. (A,B) Schematic of a learning core (A), in which a learning block (B) is
utilized to provide PES-driven online learning; (C) A Circuit implementation of a learning block,
utilizing a voltage divider, two multipliers, and a weight update module.

The electrical circuit constituting the learning block is shown in Figure 2C. The learning
block circuit comprises a voltage divider (accounting for a learning rate, colored blue),
two multipliers (colored purple), and a weight update module (colored orange). Analog
multipliers were implemented by subtracting the outputs of two analog squaring circuits.
One squaring circuit is driven by the summation of the two signals (x, y) and the other
by their difference, following: (x + y)2 − (x− y)2 = 4xy. A differential amplifier further
modulates the resulting value to factor out the constant. The diode bridge operates in an
extensive frequency range, and its square law region is at the core of the squaring circuit.
The left diode bridge handles x + y and the right bridge handles (x− y) (y is negated with
an inverting op-amp). The squaring circuit’s output current can be approximated with
Taylor’s series. As the differential output across the diode bridges is symmetric, each
bridge’s output comprises the even terms of the combined Taylor expansions. Odd terms
are removed due to the four diode currents, as they produce frequency components outside
the multiplier’s passband. Therefore, the resulting output of the circuit is proportional to
the square of its input.

The first multiplier multiplies the normalized error with the neuron’s temporally
integrated spikes, constituting a weight update. Weights are implemented with a memory
cell (transistor-capacitor), allowing the maintenance of negative values at low overhead.
Using a recurrently connected summing amplifier, the weight update circuit sums the
updated value with its current weight value. The second multiplier multiplies the weight
with the neuron’s temporally integrated spikes providing the neuron’s output.

3.2. Circuit Simulation

In this section, we show that our hardware PES-driven analog design can be used
to implement NEF’s three fundamental principles: representation, transformation, and
dynamics (described above). The results below were generated using SPICE, with the
exceptions of Figures 7 and 8, in which the results were generated using our Python-
based emulator (described below), and Figure 3D, where the purple traces were generated
using Nengo.
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3.2.1. Representation

In NEF-driven representation, input signals are distributively encoded with neurons as
spikes (following each neuron’s tuning) and decoded by either calculating a set of decoders
(Equation (2)) or learning a set of weights (Equation (5)) via PES learning (Equation (6)). In
both cases, neuromorphic representation entails a reference signal (supervised learning).
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Figure 3. Neuromorphic representation. (A) System schematic for a neuromorphic representation of
input values; (B–D) Representation of exponential (top) and sinusoidal (bottom) input signals with
two, four, and eight neurons. Representation was based on neurons with a bounded distribution of
activation (Figure 1C, middle); (E) Representation of a sinusoidal input with eight neurons featuring
uniform (Figure 1C, top) and pure (Figure 1C, bottom) distributions of activation; (F) Representational
error RMS with bounded, uniform, and pure activations with one to eight neurons; (G) Continual
weight tuning of each of the eight neurons during representation.

We utilized our proposed learning block (Figure 2B,C) to realize neuromorphic repre-
sentation with PES learning, using the input signal itself as a reference signal (Figure 3A).
We used the system to encode and decode exponential and sinusoidal signals with two,
four, and eight OZ neurons (Figure 3B–D). As expected, following Equation (4), as the
number of neurons increases, the learning system’s performance improves. Our hard-
ware simulation-derived results (Figure 3D, red traces) closely follow Nengo’s NEF-based
software simulation (Figure 3D, purple traces), with a cross-correlation similarity (sliding
dot product) of 0.872 ± 0.032. We show that an analog learning system comprising only
8 OZ neurons can accurately represent the input with a swift convergence toward the
represented value.

As described above, representation is highly dependent on neuron tuning. The results
shown in Figure 3B–D were derived using neurons with a bounded activation distribution.
We further represented the sinusoidal input with neurons characterized by uniform and
pure activations, following Figure 1C. The results are shown in Figure 3E. We evaluated this
representation using the three activation schemes with one to eight neurons by calculating
the error’s root mean square (RMS). Our results demonstrate the superior performance for
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a bounded distribution of neuron tuning (Figure 3F). The continually changing weights of
each neuron are shown in Figure 3G, demonstrating continual online learning.

An essential characteristic of NEF is the ability to represent high-dimensional math-
ematical constructs with high-dimensional neurons. OZ neurons can be driven with
high-dimensional signals (using few weighted inputs), featuring high-dimensional tun-
ing [15]. The analog learning system schematic is shown in Figure 4A. By setting a similar
weight for the two incoming signals, we derive the neuron’s tuning shown in Figure 4B.
We used the circuit described in Figure 4A, with eight 2D spiking neurons to represent a
2D signal, wherein one dimension follows an exponentially rising signal and the other, a
sinusoidal wave. Representation results are shown in Figure 4C, and the error traces are
shown in Figure 4D.
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3.2.2. Transformation

Whereas in signal representation, we represent the input signal itself; in signal trans-
formation, we represent some function of the input signal. Here, the system was utilized to
neuromorphically perform squaring of an input sinusoidal signal (Figure 5A). The transfor-
mation results with one positively encoded neuron and eight bounded neurons, as shown
in Figure 5B. Whereas one positively encoded neuron cannot account for the input signal’s
negative phase, it provides a temporal output only at the positive sinus phase. With eight
neurons, however, the results show accurate transformation (Figure 5C). We measured
transformation error with bounded, uniform, and pure activations with one to eight neu-
rons. The results show superior performance for a uniform distribution of neuron tuning
(Figure 5D). The neuromorphic system presented herein continually modulates neuronal
weights. Weight tuning for each of the eight spiking neurons during transformation is
shown in Figure 5E.
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Figure 5. Neuromorphic transformation and dynamics. (A) Input (sinus wave) and target transfor-
mation (squared input); (B) Transformation with one (positively encoded) and eight OZ neurons with
a bounded distribution of activations; (C) Transformation with eight OZ neurons with a uniform
distribution of activations; (D) Transformation error with 1 to 8 OZ neurons with bounded, uniform,
and pure distribution of activations; (E) Continual weight tuning of each the eight neurons during
transformation; (F) System schematic for 2D oscillatory dynamic; (G) Hardware defined leaky os-
cillation. Oscillation is induced by a single 5 ms pulse (green); (H) A leaky oscillator is sequentially
induced by two 5 ms pulses (green, blue), achieving maintained oscillation.

3.2.3. Dynamics

Neuromorphic representation and transformation are the first two main pillars of NEF.
The third is the realization of a dynamical system. Here, we used our circuit design to
implement an induced leaky oscillator (Equation (9)). The system schematic is shown in
Figure 5F. This system utilizes our 2D representation scheme, described above in Figure 4.
We traced the system’s two dimensions (x1 and x2) throughout time, following induction
with a single three mSec pulse (driven to x1). The resulting oscillatory dynamic is shown in
Figure 5G. Oscillation slowly converges back to zero at a rate determined by the hardware’s
leaky characteristic. When induced again, oscillation can be maintained, as demonstrated
in Figure 5H, where two five mSec pulses are spaced by two seconds.

3.2.4. Worst-Case Analysis

Analog circuit elements (e.g., resistors, capacitors, transistors) are prone to process,
voltage, and temperature (PVT) variations. “Process” in this case refers to manufacturing
as a measure of the statistical variability of the physical characteristics from component to
component as they come off the production line (ranging from variations in mask alignment
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and etching times to doping levels). These variations affect the electrical parameters of the
components, such as the sheet and contact resistance. Analog components also change in
time to their endurance limit (the stress level below which an infinite number of loading
cycles can be applied to a material without causing fatigue failure). Here, we used Monte
Carlo-driven variations to study: (1) The way our hardware design handles a high degree
of component variation; and (2) To compare the traditional variation-based spanning of a
representation space with the programmed neurons’ tuning approach. In each simulation
run, all components in our circuit design were varied within an explicitly defined variation
rate (e.g., in the 5% variation case study, the 10 nF capacitors featured in our OZ circuit
design will randomly be specified in the 9.5–10.5 nF range). Transistors were similarly
varied in their sizes. The level of process variation increases as the process size decreases.
For example, a fabrication process that decreases from 350 nm to 90 nm will reduce chip
yield from nearly 90% to a mere 50%, and with 45 nm, the yield will be approximately
30% [26]. Here, we simulate 100 Monte Carlo runs with 3, 5, and 7% variability. The
resulting neurons’ tuning in the bounded distribution of intercepts and firing rates and
with a single setpoint (used for the variation-based spanning of representation space) are
shown in Figure 6A. The results show that the intercepts are much more prone to variation
than the neurons’ firing rate. Importantly, we show that relying on process variation for
the manifestation of neurons with heterogeneous tuning curves is inadequate compared to
a predefined distribution of neuron tuning (Figure 6B). These results further demonstrate
that our learning circuit design can compensate for process variation.
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Figure 6. Worst-case analysis and variation-based tuning representation. (A) Bounded (top) and
variation-based (bottom) tuning curves for eight OZ neurons with 0, 3, 5, and 7% transistor size
variation (left to right); (B) Representation of a sinusoidal wave with 100 Monte-Carlo driven runs
of eight neurons with a bounded distribution of activation (left) and variation-based (7%) (right)
OZ neurons.

3.2.5. Circuit Emulator

To efficiently demonstrate our circuit design on a large scale, we designed a neural
emulator. Our emulator is a scalable Python-based framework designed to support compil-
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ing, testing, and deploying OZ-based SNNs, and support PES-based learning as described
above. In contrast to the SPICE-driven simulations described above, this Python-based
emulator realizes the SPICE-derived component behavior without simulating the actual
components, allowing an efficient evaluation of the circuit. The emulator is time-based with
a predefined simulation time and number of steps. At each step, the emulator’s scheduler
traverses a list of SimBase objects, activating them. The SimBase object structure constitutes
the network design, and it is up to the user to define. Each SimBase object is aware of the
simulation time step via a configuration class. Its responsibility is to process the input data
received via a voltage or a current source interface object. Following each activation step,
each object stores its resulting state. Each building block (learning block, error block, etc.)
has a corresponding model created using its SPICE simulation with varying input signals.
Blocks can be built hierarchically. For example, the OZ neuron block comprises the pulse
current synapse block, which comprises a current source. The emulator is schematically
shown in Figure 7A.
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Figure 7. Circuit emulator. (A) Emulator schematic; (B) Eight uniformly distributed tuning curves
for eight OZ neurons in both SPICE (lines) and OZ emulator (dashed lines). A raster plot showing
the spikes generated by the eight neurons of the emulator as a response to a linearly increasing input
voltage (−1 to 1 V) is shown on the right; (C) A representation of a sinusoidal input wave with
eight neurons, in both SPICE and OZ emulator. Weight modulations are shown on the right; (D) A
transformation of a sinusoidal input wave to its squared value with eight neurons, in both SPICE and
OZ emulator; (E) Representation of both linear and sinusoidal voltage inputs with high-dimensional
representation in both SPICE and OZ emulator.

To demonstrate the emulator, the generated neuron’s tuning curves and the corre-
sponding generated spikes are shown in Figure 7B. A SPICE-made spike was encapsulated
in the emulator and iteratively generated in Python following the desired tuning curve,
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specified by OZ’s voltage signals described above. SPICE and emulator-generated neuron
tuning show high correspondence. Similar to Figure 3D, we used our emulator to represent
sinusoidal waves with eight neurons (Figure 7C). The results show a very high correlation
with the SPICE circuit simulation (cross-correlation similarity (sliding dot product) of
0.904 ± 0.01), thus demonstrating the accurate emulation of the learning core. Weight
modulations in both the SPICE simulation and the emulator show comparable patterns.
Similarly, high-dimensional representation (Figure 4C) and transformation (Figure 5B)
demonstrate the emulator’s accuracy (Figure 7D,E).

3.2.6. Application in Adaptive Neurorobotics

In the past few decades, multijoint open-chain robotic arms have been utilized in
a diverse set of applications, ranging from robotic surgeries [27] to space debris mitiga-
tion [28]. The control of robotic arms is currently dominated by proportional, integral, and
derivative (PID)-based modeling. Such a model aims to accurately represent the controlled
system. It would capture the effect of external perturbations and the system’s internal
dynamics on its ability to move. Thus, it provides signals for movement control, given a
desired location. However, in a human collaborative-assistive setting, the controller should
consider kinematic changes in the system, such as object manipulation of an unknown
dimension or at an unknown gripping point. Neuromorphic systems have been shown to
outperform PID-based implementation of the required nonlinear adaptation, particularly
in their ability to handle high degree-of-freedom systems. One possible implementation for
neuromorphic control is the recurrent error-driven adaptive control hierarchy (REACH)
model proposed by DeWolf and colleagues [29]. REACH is powered by PES, implemented
using NEF, realized within the Nengo development environment, and open-sourced by
Applied Brain Research Inc. The model has been demonstrated to control a three-link,
nonlinear arm through complex paths, including handwritten words and numbers. It can
adapt to environmental changes (e.g., an unknown force field) and changes to the physical
properties of the arm (e.g., tear of joints) (Figure 8A).

To demonstrate the applicability of our circuit design, we used the OZ and our learning
core emulator to implement REACH on a 6 degree-of-freedom robotic arm in a physical
simulator (Figure 8B). We have implemented two simulations. In the first simulated
scenario, we applied an external force field on the robot’s joints. The arm, therefore, cannot
accurately reach the specified target points without adaptation, as the internal joint’s
dynamic does not consider unknown perturbations (Figure 8C). In the second simulated
scenario, we used adaptive signals, allowing the arm to adjust its behavior in real time
using PES. We used the classical REACH Nengo-driven model and our circuit emulator to
power the arm adaptation. Both Nengo and OZ show similar adaptation patterns, allowing
the arm to reach the desired target points accurately while an external force field is applied
(Figure 8D).
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Figure 8. Application in adaptive neurorobotics. (A) A simplified schematic of the REACH model
for adaptive robotic control; (B) A screenshot from the simulated arm and a designated target
point in space; (C) Reaching eight target points while an external force is applied without adaptation;
(D) Reaching eight target points while an external force is applied with adaptation using Nengo-based
simulation (left) and OZ emulator (right).

4. Discussion

NEF is one of the most utilized frameworks in neuromorphic computing. It has
been utilized to implement a wide range of neuromorphic applications, ranging from
robotics [14] to the most comprehensive functional cognitive model [30]. NEF is based
on three main pillars: representation of high-dimensional mathematical constructs, the
transformation of one representation to another, and the two’s utilization to build dynamical
systems. In this work, we propose a fully analog circuit design, which realizes these three
main pillars. Our design comprises the realization of PES, a neuromorphic online learning
rule, and the utilization of OZ, a spiking neuron model tailored to the NEF configuration.

Previous designs utilized NEF to implement neuromorphic functional circuits. For
example, Intel’s Loihi can be programmed to work with the NEF-based Nengo compiler [18],
realizing, among other features, PES learning [31]. Although Loihi, TrueNorth [32], and
SpiNNaker [33] can be programmed with Nengo, they are digital circuits. NEF was also
compiled to work on hybrid neuromorphic designs, such as the NeuroGrid [19] and its
later successor, the BrainDrop [11]. While digital and hybrid neuromorphic were used to
support a wide array of neuromorphic applications, analog designs have been tremendously
successful in signal processing due [19]. Analog components, however, are particularly
vulnerable to fabrication variability. There are several techniques to reduce the process
variation; for example, adding dummy transistors to pad the operational transistors in
the layout stage. Fortunately, heterogeneous neuronal tuning is desirable with NEF, as it
provides the variability in activation needed for spanning a representation space. Circuit
variability was shown to be essential for adequately spanning a representation space [19].
NEF’s computational approach, therefore, embraces variability. However, we show that
relying on process variation alone may require a large number of neurons. We demonstrated
that by programming neuron tuning, we could better span a representation space per a
given number of neurons. More importantly, even though a postsilicon calibration sequence
can be used to compensate for process variation during neuron programming, we show
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that our learning circuit can inherently compensate for it. Our circuit design can therefore
learn to adapt to changes within itself.

To conclude, in this work, we propose a design of a novel analog circuitry for online
learning, implementing the PES neuromorphic learning rule using NEF-specified spiking
neurons (OZ). We demonstrated for the first time the representation and transformation of
high-dimensional mathematical constructs using NEF-specified spiking neurons using our
online learning analog circuitry. We illustrate the design of dynamical oscillatory dynamics
by combining NEF-driven neuromorphic representation and transformation with analog
circuitry. We further propose a new circuit emulator (written with Python), allowing us
to efficiently simulate our analog circuitry on a large scale (thousands of spiking neurons
and learning circuits). Finally, we demonstrate adaptive control of a robotic arm using a
physics-aware robotic framework (MuJoCo) and using analog spiking neurons, featuring
representation, transformation, and our circuit emulator.

The next design improvement to be further considered is our naïve control circuit. The
control circuit presented herein is limited, as the resistance values governing the neurons’
tuning curves are constant. Therefore, changing the voltages that feed the control circuit
uniformly shifts the neurons’ representation characteristics. A more advanced resistance
design, via digitally controlled resistors in a hierarchical pattern or via a diffusor (used in
the design of the BrainDrop), will enable dynamic nonlinear configurations. Furthermore,
we aim to advance to a full VLSI large-scale design of the proposed circuit.
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