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Abstract: Among the methods of hand function rehabilitation after stroke, robot-assisted rehabili-
tation is widely used, and the use of hand rehabilitation robots can provide functional training of 
the hand or assist the paralyzed hand with activities of daily living. However, patients with hand 
disorders consistently report that the needs of some users are not being met. The purpose of this 
review is to understand the reasons why these user needs are not being adequately addressed, to 
explore research on hand rehabilitation robots, to review their current state of research in recent 
years, and to summarize future trends in the hope that it will be useful to researchers in this research 
area. This review summarizes the techniques in this paper in a systematic way. We first provide a 
comprehensive review of research institutions, commercial products, and literature. Thus, the state 
of the art and deficiencies of functional hand rehabilitation robots are sought and guide the devel-
opment of subsequent hand rehabilitation robots. This review focuses specifically on the actuation 
and control of hand functional rehabilitation robots, as user needs are primarily focused on actua-
tion and control strategies. We also review hand detection technologies and compare them with 
patient needs. The results show that the trends in recent years are more inclined to pursue new 
lightweight materials to improve hand adaptability, investigating intelligent control methods for 
human-robot interaction in hand functional rehabilitation robots to improve control robustness and 
accuracy, and VR virtual task positioning to improve the effectiveness of active rehabilitation train-
ing. 
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1. Introduction 
As China faces an aging population, younger stroke incidence and more frequent 

traffic accidents are occurring, stroke has become one of the major diseases that seriously 
endanger health and quality of life. Stroke is one of the major chronic non-communicable 
diseases that seriously endanger the health of Chinese people, and it is also the leading 
cause of death and disability among Chinese adults from 1990 to 2017 [1]. The most recent 
Global Burden of Disease (GBD) 2019 stroke burden estimates [2] showed that stroke re-
mains the second leading cause of death and the third leading cause of death and disabil-
ity combined (as expressed by disability-adjusted life-years lost—DALYs) in the world. 
The estimated global cost of stroke is over US $891 billion (1.12% of the global GDP) [3]. 
From 1990 to 2019, the burden (in terms of the absolute number of cases) increased sub-
stantially (70.0% increase in incident strokes, 43.0% deaths from stroke, 102.0% prevalent 
strokes, and 143.0% DALYs) [4]. According to statistics, China has 12.42 million stroke 
patients over the age of 40, and about 1.96 million patients died. As of today, 12.42 million 
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people over the age of 40 suffer strokes in China, and about 1.96 million have died. About 
75% of survivors are disabled (loss of body movement ability) [5]. 

According to incomplete statistics, nearly 80% of stroke patients develop hand dys-
function, one of the most common symptoms of stroke [5,6]. Hand function accounts for 
about 90% of upper limb function and plays an indispensable role in life. Hand dysfunc-
tion seriously affects the quality of daily life of patients and their families, and also has a 
negative impact on patients’ psychology, so hand function rehabilitation has become one 
of the main tasks of stroke rehabilitation. Fortunately, the human motor system is able to 
restore the function of the injury through intensive and repetitive rehabilitation exercises 
[7,8]. In order for stroke patients to better return to society and family, systematic rehabil-
itation training is particularly important and will directly determine the possible degree 
of patient recovery. The hand dysfunction left by stroke seriously affects patients’ ability 
to perform daily life activities and social abilities. Since hand function requires the partic-
ipation of finger fine motor function and sensory function, and also requires the active 
participation of patients, its recovery is very slow and the rehabilitation efficacy is not 
significant [9]. In addition to the use of medications, appropriate rehabilitation exercises 
will have a greater impact on the rehabilitation of a patient’s hand function. 

The central nervous system is plastic, so repetitive rehabilitation will help the pa-
tient’s limbs to establish new connections with the central nervous system, thus effectively 
treating stroke disease. In the treatment of stroke disease, effective rehabilitation is the key 
to treatment. Currently, rehabilitation exercises are used to help repair and rebuild tissues 
and nerves through repetitive rehabilitation. In addition to traditional rehabilitation meth-
ods, there is a need for a more rational and scientific approach to meet the rehabilitation 
needs of patients, which is why rehabilitation assisted robots have been developed [10–
12]. 

The role of rehabilitation robots is to help patients perform effective rehabilitation 
exercises for damaged limb parts, thus promoting rapid recovery of damaged parts. Due 
to the drawbacks of traditional rehabilitation training methods, a variety of rehabilitation 
robots have been developed at home and abroad to assist patients to complete repetitive 
training through rehabilitation robots [13,14]. One of the important branches of medical 
robotics is rehabilitation robots [15,16]. In the United States and Europe and other coun-
tries due to the continuous development of rehabilitation medicine, the development of 
medical rehabilitation robotic market is rising year by year, more and more patients with 
hand dysfunction benefit from rehabilitation robotics. As shown in Figure 1, the annual 
trend of publications on topics related to hand rehabilitation robots in the web of science 
database has been in a growing phase, which indicates a very promising future for hand 
rehabilitation robots. 

 
Figure 1. Frequency of publication per year. 
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Today, several review articles have been published on hand rehabilitation robots. 
However, few of them have described in detail the drive modes, control strategies, train-
ing modes, and hand state detection techniques of hand rehabilitation robots. 

In this paper, we systematically review the current development of hand rehabilita-
tion robots and provide an overview of the classification, comparison, and design of drive 
modes, control strategies, training modes, and hand state detection techniques. The basic 
outline of the content covered in this paper is shown in Figure 2. The rest of the paper is 
organized as follows: Section 2.1 describes the development of hand rehabilitation robots. 
Section 2.2 describes the drive modes of hand rehabilitation robots. Section 2.3 describes 
the control strategies, including force signal control and biomedical signal control. In Sec-
tion 2.4, the training mode of the hand rehabilitation robot is presented. In Section 2.5, 
different hand state detection techniques are analyzed. In Section 3, the limitations of the 
study and future directions are discussed and summarized. In Section 4, the full text is 
summarized. 

 
Figure 2. The basic outline of the contents is covered in this paper. The aspects marked with an 
asterisk (*) are beyond the scope of this article. 

2. Materials and Methods 
2.1. The Development of Hand Rehabilitation Robot 

At present, hand rehabilitation robots for post-stroke can be divided into those fixed 
to a table and those movable or stationary to the patient’s own body [17], e.g., hand reha-
bilitation robots fixed to a table: hand motion assist robots [18] and hand rehabilitation 
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robots movable or stationary to the patient’s own body: HX wearable robotic exoskeletons 
[19]. In this paper, the authors will focus only on mobile hand rehabilitation robots, which 
include exoskeleton hand rehabilitation robots and end-effector hand rehabilitation robots 
[20,21]. Exoskeleton style refers to devices in which the joints of the device are aligned 
with the patient’s anatomical joints, allowing direct control of individual joints and thus 
reducing the risk of abnormal postures [22,23], such as in Cempini et al. [19] and Tong et 
al. [24]. The end-effector style is a device that applies force to the most distal end of the 
finger, allowing a simple initial setup at the cost of limited control of the proximal finger 
joint, e.g., Iqbal et al. [25]. 

2.1.1. The Exoskeleton Hand Rehabilitation Robot 
Exoskeleton hand rehabilitation robots are similar to human limbs because they are 

connected to the patient at multiple points and their joint axes match those of human joints 
[26,27]. It is possible to train specific muscles by controlling joint movements under com-
putational torque. Most exoskeletal robots are still based on rigid linkages. Existing hand 
rehabilitation robots enable finger flexion and extension movements, differing in that 
some designs do not enable independent movements of each finger, the choice of control 
signals varies, and the range of motion of the affected limb varies between rehabilitation 
robots. After nearly 30 years of development, the technology has become more mature, 
and in recent years there are still many researchers at home and abroad in innovative 
research, and several newer rigid exoskeleton-based hand rehabilitation robots will be in-
troduced below. 

In 2016, the exoskeletal rehabilitation hand HES, produced by 3D printing at the Uni-
versity of Florence [28,29] uses a cord for the transmission of driving forces and a linkage 
mechanism as a finger actuator while limiting joint movements to ensure safety. The HES 
is intended for patients with severe hand contractures to train them in hand extension, 
while hand flexion is performed by the patient. The maximum trajectory error after wear 
is 5 mm.  

In 2017, a wire-controlled hand exoskeleton was designed by the Ulsan University of 
Science and Technology, South Korea [30,31], where each finger is driven by a separate 
linear motor, and each exoskeleton joint uses a four-link mechanism to measure the force 
on the finger and the joint movement angle using a force measuring sensor and a rotary 
potentiometer to limit the exoskeleton hand using the stroke of the linear motor. Bortoletto 
et al. [32] in Italy used springs as power transmission to reduce the risk of hand-filling 
blood pressure injuries during motion compared to traditional linkage rigid structural 
members. Decker et al. [33] designed an underdriven exoskeleton hand with a modular 
design of the mechanism to select different models of exoskeleton hand for wearing ac-
cording to different hand sizes. Each finger is driven by a separate geared motor, and the 
force is transmitted to the linkage on the finger by a cord, and the movement angles of the 
MCP and PIP joints can reach 62° and 88°, respectively. Jo et al. [34] designed an exoskel-
eton hand with two linear motors driving the thumb and four fingers and used the fixed 
stroke of the linear motors to limit the motion of the exoskeleton hand. The finger actua-
tors consisted of two sets of four-linked rods, preserving the natural motion of the DIP 
joints. The overall structure of the device is 3D printed. However, the motors are mounted 
on the back of the hand, which poses a risk of a crush injury to the affected hand. 

In 2018, Sale et al. [35] from Italy invented an underdriven exoskeleton FEX with a 
“finger spine”, which is driven by a single motor with four fingers and can be adapted to 
different hand sizes and can be well matched to the manual motion joints, while the MCP 
joints can be moved inward and outward, and the driving device is placed on the patient’s 
small arm. The actuator is placed on the patient’s small arm, connected and driven by 
Bowden wires, and each “spine” has a certain joint angle restriction to protect the affected 
hand within a normal joint angle. However, most of the weight of the device is located on 
the back of the affected finger, which increases the patient’s sense of weight-bearing after 
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being worn for a long time. In recent years, domestic research has also made some pro-
gress, and many universities have researched hand rehabilitation robots. The wearable 
hand rehabilitation robot system designed by Harbin Institute of Technology [36] uses a 
rack and pinion parallel sliding mechanism to achieve flexion/extension movements of 
the three joints of the finger as well as inward/abduction movements of the MCP joints, 
and the exoskeleton joint rotation center can coincide well with the human hand joint ro-
tation center, and it can also adapt to different sizes of palms. 

In 2019, the Department of Mechanical Engineering, UNIST, Ulsan, Korea invented 
a portable and spring-guided hand exoskeleton for exercising flexion/extension of the fin-
gers [25], as shown in Figure 3. The exoskeleton was designed with a simple structure to 
help the finger move with one degree of freedom (DOF). The desired joint trajectory of 
the exoskeleton was determined based on the user joint ROM and general finger motion 
obtained through hand flexion and extension experiments. The design of the linkage 
structure was optimized to maximize the desired trajectory. When the finger deviates 
from the desired position, a spring attached to the structure generates a force to guide the 
finger to the desired posture. 

 
Figure 3. A portable and spring-guided hand exoskeleton.[25] 

In 2019, D. Marconi et al. invented a HX-𝛽𝛽 orthosis (exoskeleton) with a SEA structure 
[37], as shown in Figure 4 introducing HandeXos-Beta (HX-𝛽𝛽), a novel index finger-thumb 
exoskeleton for hand rehabilitation. The HX-𝛽𝛽 system features an innovative kinematic 
architecture that allows independent actuation of thumb flexion/extension and circum-
duction (opposition), thus enabling a variety of naturalistic and functional grip configu-
rations. Furthermore, HX-𝛽𝛽 features a novel series-elastic actuators (SEA) architecture that 
directly measures externally transferred torque in real-time, and thus enables both posi-
tion and torque-controlled modes of operation, allowing implementation of both robot-
in-charge and user-in-charge exercise paradigms. 

 
Figure 4. Close-up view of the HX-𝛽𝛽 orthosis (exoskeleton).[37] 
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The rigid exoskeleton type hand rehabilitation robot has been studied by many schol-
ars because of its accurate motion transmission, precise control, and mechanical protec-
tion limit, but it has heavy mass, poor self-adaptability, and rigid impact. At present, re-
searchers at home and abroad mainly reduce this deficiency in two ways: one is to reduce 
the weight of the exoskeleton by selecting lightweight materials, and the other is to use 
the rigid-flexible coupling method, in which the power drive of the rigid exoskeleton is 
rearranged and the elastic member is used as the power transmission member to eliminate 
the rigid impact of the exoskeleton and reduce the weight of the hand mechanism, so as 
to reduce the weight feeling at the back of the patient’s hand. 

2.1.2. The End-Effector Hand Rehabilitation Robot 
The end-executing hand rehabilitation robot is connected to the patient’s hand at a 

distal point with joints that do not match the joints of the human hand. The forces gener-
ated at the distal interface change the position of other joints simultaneously, making it 
difficult for individual joints to move individually [26,27]. This paper focuses on driven 
hand rehabilitation robots, which have been developed over the past 30 years and have 
become more mature in technology. There are still a lot of researchers in the innovative 
research, the following will introduce several new end-effector hand rehabilitation robots. 

In 2015, the Robotics Laboratory of Seoul National University developed the Exo-
Glove Poly, a wearable glove powered by tendons, which is a breakthrough from the rigid 
structure of previous gloves The Exo-Glove Poly has a built-in controller that receives 
electrical signals from the user’s brain and then drives the three fingers of the flexible 
glove via a motor. Figure 5a shows a flexible glove made of polymer with two tendons on 
each finger, one on the dorsal side simulating the finger extensor tendon for finger exten-
sion and one across the ulnar and radial sides simulating the deep finger flexor for finger 
flexion [38–42]. The National University of Singapore has designed a flexible rehabilita-
tion glove, shown in Figure 5b, which is pneumatically actuated. The main purpose of this 
rehabilitation hand is to help stroke and hemiplegic patients to stretch their hands to help 
restore muscles and prevent spasticity. The rehabilitation glove has an airbag on the back 
of each finger, and the airbag is driven to stretch the finger by punching air pressure into 
the airbag [43]. The device is simple in construction, lightweight in mass, and suitable for 
rehabilitation of patients with severe hemiplegia, but the rehabilitation hand is single-
functional, enabling only hand extension, and the pneumatic needs to be supplied with 
an air pump, which limits portability and is noisy. Harvard University has designed a 
pneumatically actuated intelligent hand rehabilitation glove, shown in Figure 5c, which 
assists stroke and hemiplegic patients with hand extension and grasping movements. A 
new pneumatic actuator is implanted on the back of each finger of the rehabilitation glove 
to drive the finger movement. The actuator is made of two elastic materials with different 
stretching properties sewn together, and due to the different stretching properties, the 
actuator will bend and stretch during the process of inflation and deflation and drive the 
finger movement at the same time, and the bending mode of the actuator will change with 
different sewing modes of the materials [44,45]. The rehabilitation glove also has various 
sensors implanted in it, and patients can perform rich human-computer interaction reha-
bilitation training under the guidance of doctors after wearing it to help stroke and hem-
iplegic patients to have better rehabilitation. 
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(a) 

 
(b) 

 
(c) 

Figure 5. (a) Close-up view of the Exo-Glove Poly; (b) Close-up view of the flexible rehabilitation 
glove designed by the National University of Singapore; (c) Close-up view of the Compliant Hand 
Based on a Novel Pneumatic Actuator designed by Harvard University. [38-45] 

In 2016, Heidi C. Fischer et al. [46] developed a portable, actuated glove-orthosis, 
allowing free movement of each joint, as the abductor tendon’s cable runs through a cable 
guide attached to the dorsal side of the glove, as shown in Figure 6. The guides form a 
bridge over each joint to allow joint flexion but prevent hyperextension of the joint. They 
are made of glass-filled nylon, using a selective laser sintering technique (SLS), and are 
sewn into each glove. For each finger, the single cable from the corresponding actuator is 
split into three cables to pass through the guides in order to provide greater lateral stabil-
ity. Linear servo actuators (L12, Firgelli Technologies, Inc.,based in Victoria, BC, Canada,) 
move the cables to generate extended torque at each joint of the finger. 
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Figure 6. Close-up view of the portable, actuated glove-orthosis.[46] 

In 2019, Xi’an Jiao tong University invented an attention-controlled hand exoskeleton 
for the rehabilitation of finger extension and flexion using a rigid-soft combined mecha-
nism [47], as shown in Figure 7. Active rehabilitation training is achieved using an atten-
tional value threshold measured by an electroencephalography (EEG) sensor as a brain-
controlled switch for the hand exoskeleton. The spring layer flexes and slides due to the 
linear motion input provided by the linear motor, and then the structure becomes like a 
circular sector that supports the finger flexion/extension movement when the structure is 
attached to the finger. 

 
Figure 7. An attention-controlled hand exoskeleton. (A) CAD drawing of the index finger acuator; 
(B) bending motion generated by the proposed mutli-segment mechanism with a spring layer; (C) 
segment thicknesses (unit: mm); and (D) overview of the hand exoskeleton prototype.[47] 

In 2020, Butzer, T. et al. designed the RELab tenoexo [48], a fully wearable assistive 
soft hand exoskeleton for everyday activities, as shown in Figure 8. It consists of a hand 
module attached to the hand and a backpack containing electronics, motors, and batteries. 
The backpack and the hand module are connected by a force transfer system based on a 
Bowden cable and can be connected by a clip mechanism. In the hand module, three DOFs 
enable power, precision and lateral gripping: combined actuated flexion/extension of 2–5 
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digits, separate actuated flexion/extension of the thumb, and manual lateral and pad op-
position of the thumb. The two DC motors are controlled by force feedforward and actuate 
the finger and thumb flexion/extension separately via a rack and pinion mechanism. The 
Myo armband wireless surface electromyographic EMG sensor was used for monitoring. 

 
Figure 8. Close-up view of the RELab tenoexo.[48] 

In 2022, Zhi Qiang Tang et al. of the University of Hong Kong designed a probabilistic 
model-based learning control of a soft pneumatic glove for hand rehabilitation [49], as 
shown in Figure 9a. This soft-body pneumatic glove, a probabilistic model-based learning 
control method for an integrated “hand-soft-body robot” system and a task-oriented, in-
tention-driven training model is proposed. Marek Sierotowicz et al. of the Institute of Ro-
botics and Mechatronics, German Aerospace Center (DLR) designed an EMG-Driven ma-
chine learning control of a soft glove for grasping assistance and rehabilitation [50], as 
shown in Figure 9b. This glove is able to assist flexion of the index and middle finger, and 
flexion of the thumb, respectively, by means of a tendon-driven system. Two movements, 
namely flexion of the thumb and flexion of the fingers, are independently assisted by mo-
tors that pull and release the respective tendon cable. This glove has an intention recogni-
tion control system via EMG. 

  
(a) (b) 

Figure 9. (a) Close-up view of the probabilistic model-based learning control of a soft pneumatic 
glove; (b) Close-up view of the EMG-Driven machine learning control of a soft glove.[49,50] 
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Compiling an overview of hand rehabilitation robotics in recent years was shown in Table 1. 

Table 1. Compiling an overview of hand rehabilitation robotics in recent years. 

Groups Representative Works Researchers Actuated 
DoF 

Driving Modes Control 
Strategies 

Force Transmis-
sion Mode 

The exoskele-
ton hand reha-
bilitation ro-

bots 

[51] J. Iqbal et al. 4 Motor drive Preset Link 
[52] D. Leonardis et al. 5 Motor drive Preset Link 

[28,29] R. Conti et al. 4 Motor drive Preset Rope + Connecting 
rod 

[30,31] S. Kim et al. 1 Motor drive Preset Link 
[33] Decker et al. 5 Motor drive Preset Link 
[34] I. Jo et al. 5 Motor drive Preset Link 
[35] Sale et al. 4 Motor drive Preset Cable + chain 
[36] F. Zhang et al. 6 Motor drive Preset Cable + Link 
[53] A. Lince et al. 1 Motor drive EMG Cable + Link 
[54] A. Bataller et al. 1 Motor drive Preset Link 
[25] I. Jo et al. 1 Motor drive Preset Spring + Link 

[37] D. Marconi et al. 5 SEA 
Force Con-

trol Link 

The end-effec-
tor hand reha-
bilitation ro-

bots 

[55] 
Haghshenas-Jar-

yani, M. et al. 3 
Hybrid Pneu-

matic Preset 
Pneumatic artifi-

cial muscle 

[56,57] Polygerinos, P. et 
al. 

5 Hydraulic Preset Rubber Return 
Spring 

[58] Diftler, M.A. et al. 3 Motor drive Force Con-
trol 

Tendon/Cable-pul-
ley 

[59] Fischer, H.C et al. 5 Motor drive Preset Cable 
[60] H. K. Yap et al. 5 Pneumatic EMG Flexible Actuators 

[61] Y. Park et al. 3 Motor drive 
Force Con-

trol Cable 

[62] B. W. K. Ang et al. 5 Pneumatic EMG Flexible Actuators 

[63] B. B. Kang et al. 2 Motor drive 
Force feed-
back con-

trol 
Cable 

[64] D. Popov et al. 4 Motor drive Preset Tendon 
[65] L. Randazzo et al. 5 Motor drive EEG Artificial tendon 

[66] Thielbar, K.O. et al. 5 Motor drive Active task 
orientation 

Tendon/Cable-pul-
ley 

[67] Chua, M.C. et al. 4 Pneumatic Force con-
trol 

Pneumatic artifi-
cial muscle 

[47] M. Li et al. 5 Motor drive EEG Multi-Segment 
[48] Butzer, T. et al. 2 DC motors EMG Spring blade 

[68] 
Qiaoling Meng et 

al. 1 Motor drive 
Force con-

trol Tendon 

[49] 
Zhi Qiang Tang et 

al. 
5 Pneumatic EMG Pneumatic artifi-

cial muscle 

[50] 
Marek Sierotowicz 

et al. 2 Motor drive EMG Tendon 
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2.2. Drive Mode of Hand Rehabilitation Robot 
The choice of drive mode directly affects the system solutions, such as structural de-

sign and control system, and is the basis for the design of hand rehabilitation robots. Cur-
rently, common drive modes are hydraulic drive, motor drive, pneumatic drive, and new 
intelligent drive materials [69,70]. We summarized different drive modes in Table 2, in 
which we only summarized three types of drive modes, namely motor drive, pneumatic 
drive, and new intelligent drive materials because the hydraulic drive is not commonly 
used in hand rehabilitation. 

At present, most of the rehabilitation hand rehabilitation robots use motor drive 
mode, which has many advantages compared with other drive modes, such as easy con-
trol, no pollution, and low noise. Among the new drive modes, there is another widely 
used drive mode, pneumatic artificial muscle drive [71]. Pneumatic artificial muscle by air 
as the driving source generally consists of an easily deformable rubber capsule and the 
external play to limit the deformation of the mesh support. When the air pressure de-
creases, the pneumatic artificial muscle will return to its original length by the elasticity 
of the rubber and the external load. Figure 10 shows the pneumatic artificial muscle pro-
duced by FESTO. 

 
Figure 10. The pneumatic artificial muscle produced by FESTO. [71] 

With the development of science and technology, the drive method has been devel-
oping more and more in the direction of flexibility, lightweight and high efficiency from 
the traditional electric motor, to pneumatic drive, and now to the new intelligent material 
drive [72]. Hydraulic drives now have some insurmountable constraints in some applica-
tions, many scholars at home and abroad hope to develop new drive materials to replace 
the traditional drive methods, which has given rise to many new intelligent drive materi-
als, which have played their unique roles in different fields. Among the existing new in-
telligent drive materials, dielectric elastomers, IPMC, piezoelectric ceramics and shape 
memory alloy wires are the most typical drive materials. New intelligent drive materials, 
which are developed by scholars at home and abroad to overcome the traditional drive 
methods, are one of the development directions of drive innovation for future hand reha-
bilitation robots. Motor drive, pneumatic drive and new intelligent drive materials will 
have their own advantages and disadvantages, so researchers need to choose the most 
suitable drive mode in combination with the design requirements and continuously inno-
vate. 

Dielectric elastomer is often used to do research on bionic muscles, it is a new func-
tional material with the advantages of high plasticity, flexibility, low noise, etc., and has a 
high efficiency of electrical and mechanical energy conversion [73], The dielectric elasto-
mer bionic skeletal muscle experiment is shown in Figure 11a below. Some scholars hope 
to use it as a driving source for rehabilitation applications, but its driving conditions are 
very demanding, requiring ultra-high voltage to drive (~100 MV/m), and the poor robust-
ness of control and low driving efficiency, seriously limit its application in rehabilitation 
driving; ion exchange membrane metal composite (IPMC), is formed by a class of precious 
metal cation exchange membrane, such as platinum through the chemical coating. When 
energized, the IPMC film will be bent and deformed in the direction of the anode, and the 
larger the energized voltage, the more obvious the bending amplitude. If an alternating 
current is applied, the film will oscillate as the positive and negative poles keep changing. 
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Using its special deformation response, it can be applied in some driving fields, as shown 
in Figure 11b for IPMC bionic gripper. It requires a low driving voltage of only 5 V to 
drive, but it must be driven in a humid environment or in a conductive environment, such 
as electrolyte, which is very demanding for the environment, and the mechanical conver-
sion efficiency is relatively low. 

  

(a) (b) 

Figure 11. (a) The dielectric elastomer bionic skeletal muscle experiment; (b) IPMC bionic gripper. 
[72,73] 

Piezoelectric ceramics is one of the new smart materials with more applications and 
is a new type of micro-displacement device [74]. Because of its small size, high displace-
ment resolution, fast response, high output force and high transduction efficiency, it is 
widely used in the fields of precision positioning, microelectromechanical systems, micro 
and nanomanufacturing technology and nano bioengineering. It has piezoelectric proper-
ties, i.e., it can convert electrical energy and mechanical energy to each other. In addition 
to piezoelectric properties, they also have many properties, such as elasticity and dielectric 
properties, but the high drive voltage and small maximum deformation rate limit their 
application in large stroke actuators. 

Shape-memory alloy wire (SMA) is a unique new intelligent material that possesses 
two unique properties: shape memory effect and superelasticity [75,76]. After plastic de-
formation and permanent deformation of common metals, SMA wire can return to its 
original shape after heating to a certain temperature; at the same time, it can undergo great 
deformation and consume and absorb mechanical energy after applying a certain load to 
SMA wire under isothermal conditions, and it can return to its original shape after remov-
ing the load, showing a good damping effect. This is its superelasticity. In 2017, a wearable 
glove driven by shape memory alloy filaments was developed at Tehran University, Iran 
[77], as shown in Figure 12. Guides were set at the corresponding joints on the glove for 
fixing the SMA contraction path, and the force generated by the contraction of the SMA 
actuator was used to compensate for the lack of finger muscle force. Tests have shown 
that the glove can effectively achieve flexion-extension movements of the fingers within a 
certain range, with maximum flexion angles of 80°, 90°, and 70° at the DIP, PIP, and MCP 
joints. In addition, the glove can also effectively grip objects with a single fingertip force 
of 8 N or more during gripping. 
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Figure 12. Experimental prototype of the wearable glove driven by shape memory alloy.[77] 

The most commonly used new drive modes in the field of hand rehabilitation robot-
ics are pneumatic artificial muscle drive and shape memory alloy drive. Pneumatic artifi-
cial muscles are more widely studied and have been used in numerous applications. They 
can be used in a variety of harsh environments due to their clean seal and they also have 
excellent flexibility. The flexibility, high power density, and high output force of shape 
memory alloy wire all indicate that it is an excellent intelligent drive material. Both new 
drive modes are more outstanding in terms of comfort and are well suited for applications 
in hand rehabilitation. Relative to exoskeletons that use rigid links, soft Exo suits use low-
modulus materials, often along with tendon actuation, to transmit movement assistance 
without imposing substantial movement constraints along non-actuated DOFs. The field 
has yet to fully establish corresponding best practices for providing gait assistance for 
poorly ambulatory individuals. In the future decade, scholars and researchers in the field 
of soft robotics will also continue to focus on innovative ways to apply new soft drive 
methods [78]. 

Table 2. Overview of drive modes for hand rehabilitation robots. 

Drive types Definition Advantages Disadvantages Representative 
Works 

Motor drive 

Using electric equipment 
and adjusting the circuit 
parameters for power 
transmission and control 

(1) The cable for con-
nection has advantages 
of energy transfer con-
venience, signal trans-
formation quickly 

(1) It has a poor balance of 
movement load [40,79,80] 

(2) High level standard 
(2) It is easily influenced 
by external  

(3) Easily to achieve au-
tomatic control 

(3) Large inertia  

(4) Simple structure (4) Slow change  
(5) Nonpolluting. (5) Large volume  
 (6) Heavy.  

Pneumatic drive 

Taking the compressed air 
as the actuating medium 
for energy transmission 
and control 

(1) Simple structure 
(1) The gas is easy to be 
compressed and leak [43,45] 

(2) Low cost 
(2) The speed is easy to 
change under the load  

(3) Small gas viscosity 
(3) It is difficult to precise 
control, cannot be used 
under low temperature 

 

(4) It can realize step-
less speed regulation 

(4) The gas is difficult to 
seal  

(5) Nonpolluting 
(5) Working pressure is 
usually smaller than 0.8 
Mpa, which only applies 

 



Appl. Sci. 2022, 12, 4540 14 of 28 
 

to small power driving. 
Unsuitable for the high-
power system. 

(6) Little resistance los-
ing 

  

(7) Fire and explosion 
prevention, high flow 
rate 

  

(8) Working in high 
temperature.   

New smart drive 
materials 

Smart materials that re-
spond to changes in exter-
nal environmental condi-
tions or internal states, 
convert their own energy 
into mechanical energy 
and can be used as actua-
tors for hand rehabilitation 
robots 

(1) Light weight, malle-
able, flexible, low noise 

(1) Harsh driving condi-
tions [72,77,81,82]  

(2) Has a high effi-
ciency of other energy 
conversion mechanical 
energy 

(2) Poor robustness of con-
trol 

 

 (3) Low drive efficiency  

2.3. Control Strategy of Hand Rehabilitation Robot 
The interaction control between the robot and the patient is a very important aspect 

in the research of hand rehabilitation robots, because the hand rehabilitation robot is in-
teracting with the affected limb with impaired motor function, and the patient is the object 
with autonomous motor awareness. First, the interactive control creates a safe, comforta-
ble, natural and active training environment for the patient, which prevents the patient’s 
limbs from confronting the robot due to abnormal muscle activities, such as spasms and 
tremors and protects them from secondary injuries. Secondly, the interactive control will 
obtain the patient’s active movement intention from the sensor signals and encourage the 
patient to actively participate in the movement to achieve the so-called active training, 
thus improving the rehabilitation effect. Depending on the signal used to obtain the active 
movement intention, the interaction control strategy between the robot and the patient 
can be basically divided into two categories: (1) control methods based on force signals; 
(2) control methods based on biomedical signals. 

2.3.1. Interactive Control Based on Force Signals 
In force signal-based interactive control, the force signal specifically refers to the force 

acting on the mechanical structure due to the contraction of the limb muscles, the interac-
tive force. It can be measured directly by a force/moment sensor through clever mechani-
cal design or estimated by a dynamic model of a human-machine hybrid system. Com-
pared to biomedical signals, force signals have better determinism and are a more direct 
reflection of the patient’s active movement intentions, making force-based interaction con-
trol relatively reliable and stable. However, since the acquisition of interaction forces usu-
ally depends on mechanical structures, which is not as convenient and flexible as the de-
tection of biomedical signals, the application of this interaction control method is limited. 
Two of the most widely used force control strategies for interaction between rehabilitation 
robots and patients are force-position hybrid control and impedance control [83]. 

Force-position mixing control: The force-position hybrid control approach was first 
proposed by Raibert et al. to solve the problem of controlling a robot in a constrained 
environment [84], which can be simply described as the need to control the robot’s posi-
tion in some directions and the need to control the interaction forces between the mecha-
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nism and the external world in other directions. Therefore, in force-position hybrid con-
trol, when the robot is in contact with the external environment, its task space is naturally 
partitioned into two subspaces, namely, the position subspace and the force subspace, and 
the tracking control of position and force is accomplished in the corresponding subspaces 
[85]. The goal of interactive control of hand rehabilitation robots is to create a safe, com-
fortable, natural and actively supple training environment for paralyzed patients, and 
precise force trajectory tracking is rarely required. Therefore, the following literature re-
view on force-position hybrid control is also related to upper limb rehabilitation robots, 
and the approach is also useful for the control of hand rehabilitation robots. 

Impedance control: The control research of hand function rehabilitation robots is 
mainly focused on finger position control at this stage. The research on the control of the 
contact force between the functional hand rehabilitation robot and the human hand is less. 
In the 1980s, Hogan [86] proposed the well-known theory of impedance control method 
in the study of contact control between robot end and environment. Impedance control 
incorporates force and position into the same control system and has the advantages of 
less computational effort as well as greater robustness, making it an efficient method for 
dealing with machine human control that has been widely studied. Impedance control is 
essentially an indirect force control, characterized by not directly controlling the desired 
position and force, but by adjusting the corresponding dynamic relationship between the 
position (or velocity) and the force acting at the end of the robot in real-time, thus achiev-
ing a soft and compliant control of the robot. Impedance control is divided into two dif-
ferent control results based on force and position; force-based impedance control is 
achieved by controlling the joint drive torque to adjust the end contact force and displace-
ment; while position-based impedance control is achieved by adjusting the position of the 
robot end according to the deviation of the contact force between the robot and the envi-
ronment. 

In the force-based impedance control method, the robot reflects the end impedance 
characteristics of the robot by controlling the robot joint torque through feedback based 
on the contact force between the end and the environment. In practical applications, the 
robot end position and contact force are detected in real-time, the desired force output is 
generated by the grid feedback position and desired impedance model, the difference be-
tween the desired force and the actual contact force is taken, and the control torque is 
calculated by the robot dynamics model based on the force error as the joint driving force 
so that the robot’s system behaves as the desired impedance model characteristics. There-
fore, the force-based impedance control must first determine the exact robot dynamics 
model before the desired impedance model and the exact contact force control can be 
achieved. 

The position-based impedance control consists of two parts, the inner loop of posi-
tion control and the outer loop of impedance control. The inner loop of position control 
processes the three data of the desired position, position compensation amount, and ac-
tual position to make the actual position of the robot track up to the desired position. The 
impedance control outer loop is to process the difference between the desired force and 
the actual force to get the position correction amount, and these will continuously adjust 
the target impedance model parameters by actually detecting the force between the robot 
and the environment, and then control the robot’s position through the position controller 
to achieve force control. The literature mainly addresses the problems of the robot arm in 
terms of unstable impedance control force and position control safety collision avoidance 
and designs an impedance controller with linear decoupling position control in the oper-
ation space as the inner loop and uses the force error to adjust the reference trajectory in 
real-time to achieve effective force tracking impedance control and collision avoidance 
control of the robot arm. In the literature, an impedance control method based on the po-
sition inner loop was proposed for the gripping force tracking of the end-effector double-
finger grasping of fruits and vegetables to reduce the damage of the robot in the picking 
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process, which realized the flexible grasping of the robot, reduced the damage of the 
grasped fruits and vegetables, and ensured the picking quality. 

Most of the current research on hand function rehabilitation robot systems focuses 
on function realization in the bionic structure power source which mainly adopts a micro 
DC motor, a transmission method selects a linkage mechanism or rope wheel mechanism, 
and currently, for the selection of degrees of freedom, quality, institutional efficiency is to 
be further improved. In terms of control methods, based on multi-rigid body robot control 
methods, most scholars focus on the study of motion control of hand-functional rehabili-
tation robot systems, or the study of rehabilitation training patterns based on motion con-
trol, and a few scholars focus on the study of human-machine contact forces for hand-
functional rehabilitation robots. There is a lack of in-depth research regarding human-
machine interface modeling and contact force control methods for hand-functional reha-
bilitation robots. 

2.3.2. Bioelectric Signal Control 
Surface electromyography (sEMG), electroencephalography (EEG), and electroocu-

lography (EOG) are mainly used for the interactive control of hand rehabilitation robots. 
Since these signals are acquired in a non-invasive manner, surface EMG and EEG are ob-
tained in an operable way that does not require medical expertise, and their performance 
can be guaranteed.  

sEMG signal control: Surface electromyographic signals (sEMG), acquired by non-
invasive electrodes affixed to the skin surface, contain information about the motor state 
and motor commands of the neuromuscular system [87,88], reflecting the generation and 
propagation of action potentials from muscle motor units [89]. sEMG is currently widely 
used in prosthetic control, rehabilitation robot control, exoskeleton robot control, teleoper-
ated robots, virtual reality, etc., [90–93] using machine learning algorithms The sEMG sig-
nal is used to decode the human motor intent and map it to the control output, which is 
used to establish an information channel between the patient and the robot to obtain bio-
feedback control during rehabilitation training [89,94–100]. The sEMG-generated EMG 
control allows the patient to participate in the actual control of the device, which is im-
portant for increasing the patient’s awareness of active participation [101]. 

In the study by Iqram Hussain et al. [102]. It was emphasized that the degree of mus-
cle changes due to stroke depends on the severity of the stroke and its effect on neuro-
muscular activity, and that accurate lower limb muscle selection is crucial for identifying 
stroke impaired gait impairments, as well as for hand muscles. Machine learning and deep 
learning methods applied to EMG detection techniques can effectively classify EMG pat-
tern recognition, and since this review is biased towards an overview of hand rehabilita-
tion robots, in general, the review of the bioelectric signal part will be systematically sum-
marized in a subsequent study. 

Unilateral limb dysfunction caused by stroke is one of the post-stroke symptoms and 
providing rehabilitation training to post-stroke patients can improve the patient’s motor 
ability and thus the ability to perform daily activities. Bilateral training is a rehabilitation 
strategy based on natural limb coordination [103]. Bilateral training involves manipulat-
ing both hands together, with the participant using both hands to work together to ac-
complish the target task. It has been shown that simultaneous movement of both limbs 
helps the neuromuscular system to restore a degree of stability and improve the efficiency 
of the use of the damaged limb [104]. Training patients with a two-handed task improves 
the efficiency of grasping movements on the neurologically impaired side, accompanied 
by a reconfiguration of neural networks in the brain of the impaired hemisphere [105]. In 
healthy individuals, corticomotor control of spontaneous hand movements is derived 
from contralateral cortical areas because of the contralateral control of left and right-hand 
movements in humans; after stroke, the role of uncrossed fibers in the cerebrospinal path-
way is redirected and the balance of limb control is shifted from the injured hemisphere 
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to the contralateral hemisphere [106]. Therefore, bilateral training can contribute to motor 
function rehabilitation after stroke [107]. 

EEG signal control: The brain is the source of all human movement and thought, 
consisting of ten billion nerve cells that continuously process information obtained from 
the outside and efficiently send feedback instructions to various organs and structures of 
the body. Since the first recording of the human electroencephalogram (EEG) by German 
scientists in 1929 [108], the development of brain-computer interface technology has never 
stopped, and the dream of using EEG signals for control and communication with external 
devices has never ceased.  

However, the EEG signals recorded for the first time by German scientists are quite 
random and non-linear. Brain activity is the most complex biological activity in the human 
body, and each area within it is relatively independent yet closely connected, either indi-
vidually to accomplish a complex thinking activity, or in concert with each other to ac-
complish some imagination. In addition, compared to the power line interference in the 
air, the strength and assignment of EEG signals are very weak, and the signal-to-noise 
ratio of detectable EEG signals is also relatively unsatisfactory, and the waveform of the 
original EEG signal (raw EEG) appears to the naked eye to be no different from that of 
white noise interference waves, which are jittering in a chaotic manner. In 1937, the Amer-
ican scientist Jacques Vidal discovered the rhythm of EEG signals and realized the proto-
type of the brain-computer interface for the first time: using EEG signals to control the 
cursor to do two-dimensional movement [109]. According to this study, the integrated 
waves in the common frequency band of EEG signals between 0.5 and 35 Hz were decom-
posed into Delta (δ, 0.5~3 Hz), Theta (θ, 4~8 Hz), Alpha (α, 8~13 Hz), and Beta (β, 14~30 
Hz) by frequency. The waveform vibration of EEG signals in each band also vaguely cor-
responds to different brain activities. With the development of society, the research of 
brain-computer interface technology has been gradually combined with practical engi-
neering applications, and brain-computer interface platforms based on Brain-Computer 
Interface (BCI) [110] and Brain-Machine Interface (BMI) [86] have been introduced one 
after another, and EEG signals were steadily collected and analyzed, and eventually uti-
lized as an effective operating command for electronic devices, thus facilitating our lives. 
While brain-computer interface technology is developing rapidly, the lives of elderly peo-
ple with physical movement disorders and hemiplegic handicapped patients are gradu-
ally gaining attention, and the technical implementation of controlling external electronic 
devices through EEG signals is just perfect to overcome the obstacles in the lives of such 
people in terms of physical movement and to meet their rehabilitation training needs. 

The utilization of EEG signals in existing brain-machine interface upper limb reha-
bilitation platforms is still at a low level, and the meaning of EEG signals in most fre-
quency bands is not yet clear. At the same time, most of the existing EEG signal processing 
algorithms are not designed to be universally meaningful, considering the large individ-
ual differences in EEG signals. In the medical field, the research of EEG signals has 
achieved remarkable results, but there are no mature products for the integration of brain-
machine interfaces with rehabilitation devices, and there are still many problems to be 
solved in the communication and integration of EEG signal processing algorithms and the 
lower computer. This thesis will explore the above aspects, propose reasonable solutions 
and verify them. The application of brain-computer interface technology on rehabilitation 
platforms is an interdisciplinary research field involving neuroscience, biomedicine, sig-
nal processing, circuits and systems, computer programming, communication technol-
ogy, mechanical design, rehabilitation medicine, etc. It is a complex and young cutting-
edge technology field. 

Electrooculogram (EOG) [111] is also increasingly used by researchers in a wide va-
riety of control systems. EOG signals are caused by the electrical potential difference be-
tween the cornea and the retina and can be used to reflect eye movements (e.g., gaze, 
blink, frown, etc.) [112]. Compared with limitations, such as weak EEG signals, suscepti-
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bility to environmental noise interference, and complex signal processing, EOG as a con-
trol signal for control systems has obvious advantages, such as obvious patterns, easy de-
tection, EOG-based control systems that do not cause excessive discomfort to the user, 
low operation difficulty for users, etc. Currently, EOG-based control systems are used in 
wheelchair control [113], control of home appliances [114], and learning evaluation, etc. 

The above three bioelectric signal control methods have their own advantages and 
disadvantages. In some high-level articles, researchers have combined the required func-
tions of the hand rehabilitation robot and selected the appropriate control method or com-
bined two of the bioelectrical signal control methods to obtain the optimal control system. 
For example, S.R. Soekadar et al. [115] published three papers, in 2014, 2015 and 2016, 
describing a novel brain/neuro-computer interaction (BNCI) system for controlling a hand 
exoskeleton robot that integrates electroencephalography (EEG) and electrooculography 
(EOG). Brain-computer interfaces (BMI) are developed to translate electronic or metabolic 
brain activity into control signals for machines or robots. Non-invasive BMI techniques 
may be a possible alternative, but do not achieve high reliability and are susceptible to 
signal artifacts, especially in everyday life settings. The fusion of biological signals related 
to eye movements works better. A hybrid system fusing biological signals from different 
sources (e.g., EEG and EOG) could achieve better performance in controlling the hand 
exoskeleton compared to a system using brain signals alone. A validation experimental 
paper of this system, also published in the journal science robotics, demonstrated that the 
use of this hybrid EEG/EOG-based BNCI system enabled the patient to regain full inde-
pendence in daily life. Overall, future research should investigate this hybrid bioelectrical 
signal control system, as such systems can largely improve the applicability of assistive 
devices in real-life scenarios. 

2.4. Training Mode of Hand Rehabilitation Robot 
The current training mode of hand rehabilitation robots can be divided into active 

training mode and passive training mode according to the source of motion signals. 

2.4.1. Passive Training Mode 
Continuous Passive Motion (CPM) rehabilitation therapy is a method proposed by 

Canadian orthopedic surgeon Robot Salto [116], which not only maintains the compliance 
of normal periarticular soft tissues but also accelerates the recovery of articular cartilage 
and calcified tissues. By repeatedly training the joint mobility, the stiffness of the joint can 
be stopped and the contracture can be prevented. Because this treatment is effective in 
preventing contractures and altering the inhibitory state of the central nervous system and 
promoting behavioral responsiveness, passive joint movement training has now become 
a routine tool in the clinical treatment of stroke patients. In this study, a passive rehabili-
tation training model was designed to restore the grip of the patient’s fingers by helping 
the affected hand to move according to the set training movements. 

2.4.2. Active Training Mode 
Active Repetitive Motion (ARM) rehabilitation therapy has a human-computer inter-

action system that allows patients to actively participate in rehabilitation training. It 
senses the motion parameters of the rehabilitation hand and joins the control session while 
displaying them on the interactive interface. The main research results include the Hand 
Mentor TM rehabilitation hand designed by the Deaconess Health System in the United 
States and the ARM rehabilitation hand developed by the University of Victoria in Can-
ada. The Hand Mentor TM was designed by Deaconess Health System [117]. In addition 
to continuous passive flexion and abduction training, this rehabilitation hand has the abil-
ity to sense the pressure caused by finger flexor spasms and compulsively induce finger 
movement training. The size of the glove can be adjusted to fit most adult left and right 
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hand sizes. The device is stable and reliable and is one of the more mature hand rehabili-
tation devices already in use in U.S. rehabilitation medical institutions.  

2.5. Hand State Detection Technology 
As an important communication tool for people, the human hand contains rich con-

tents, and people can understand and transmit information to each other conveniently, 
intuitively, and naturally. In recent years, with the development and widespread applica-
tion of computer technology, human-computer interaction technology has thus been rap-
idly developed and advanced and has become a hot research issue in computer vision.  

Hand state detection technology plays a crucial role in the field of hand rehabilitation 
robotics. Hand state detection technology can effectively verify that the device designed 
by the researcher is consistent with the biology of the human hand and the kinematics of 
the hand to ensure that it will not cause secondary damage to the affected hand. Another 
application of hand state detection technology, which can be used to drive active con-
scious hand rehabilitation in the bad hand by performing gesture recognition in the good 
hand, is both convenient and effective. However, because of the complexity and diversity 
of hand gestures in time and space, coupled with the fact that the hand is a part of the 
human body with numerous complex deformations, gesture recognition is an extremely 
challenging and difficult research topic. 

The generalized hand gesture recognition flow chart is shown in Figure 13. When the 
user’s hand motion signal is obtained, the user’s hand is first detected and motion tracked, 
then feature extraction and analysis are performed by hand trajectory extraction, hand 
shape feature extraction, and gesture modeling, respectively, and finally gesture recogni-
tion is performed. Among them, the part of hand motion analysis within the dashed box 
is the core content of gesture recognition, so how to get accurate motion analysis is the 
key to a gesture recognition system. 

User Gestures

Hand testing

Hand track 
extraction

Hand shape feature 
extraction

Gesture modeling

Gesture 
recognitionHand 

Tracking

 
Figure 13. Generic gesture recognition flow chart. 

Hand motion analysis techniques have been researched and explored by numerous 
scientists and have led to great achievements and applications. At the beginning of the 
research, hand motion analysis was conducted through hardware devices interacting with 
computers, and many devices and sensors were used to study hand motion, such as com-
mon optical cameras. Such devices are simple and inexpensive, but the limitations of two-
dimensional images make it difficult to locate and segment targets quickly from complex 
and variable backgrounds. Other kinds of wearable sensor devices, such as electronic 
gloves, can provide high-precision position information and hand movements that can 
identify many complex behaviors, but such devices require a lot of precise debugging be-
fore use and are not convenient for ordinary people to use and operate. In addition, such 
devices need to be worn on the body, hindering the natural interaction between people 
and machines. This, coupled with their expensive price makes ordinary people discour-
aged. In order to get rid of the reliance on sensors and other devices and give the ordinary 
a better experience, a large number of researchers began to study how to achieve efficient 
and friendly natural human-machine interaction without contact. 
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According to different technical criteria, hand motion analysis techniques can be di-
vided into different categories. According to the different definitions of recognition target 
object form, hand gesture recognition can be divided into static hand recognition and dy-
namic hand recognition; according to the different ways of hand image acquisition, we 
can divide hand recognition into data glove-based methods and computer vision-based 
methods. The computer vision-based methods can be divided into recognition methods 
based on ordinary optical cameras and recognition methods based on depth cameras.  

2.5.1. Static Hand Recognition and Dynamic Hand Recognition  
Research in static hand recognition has focused on work in the area of hand posture 

and hand shape. There are many related studies in China, for example, Rmeki Ziemlinski 
et al. have proposed a special static hand recognition method. The object of study for dy-
namic hand recognition is a set of continuous hand movements, where a dynamic hand 
forms a trajectory in the model parameter space that is composed of a series of continuous 
static images over a period of time and includes rotational, deformation and displacement 
movements of the hand in space [118,119]. 

The timeliness requirement of dynamic hand motion recognition is very high, and 
since its recognition object is real-time input hand data and requires a real-time response 
to the input, the algorithmic speed of the recognition system is required to be higher, and 
research experts in this field have invested a lot of time, effort and enthusiasm, while var-
ious algorithms for dynamic hand motion recognition have been proposed.  

2.5.2. Data Glove-Based Approach and Computer Vision-Based Approach  
Regarding the research related to hand motion recognition technology, the initial re-

search mainly focused on inventing a special hardware device for interacting with com-
puters, such as data gloves, i.e., the user needs to wear a pair of sensors with a shape 
similar to ordinary gloves, and the computer uses this device and position tracking tech-
nology to measure the trajectory and timing information of hand motion in three-dimen-
sional space and obtain rich hand position, finger bending degree and other hand motion 
information. The advantages of the data glove-based hand motion recognition system are 
the high recognition rate of the system and the ease of implementation of the technology. 
Many studies have been conducted using typical sensing device approaches, such as data 
gloves. For example, Liang et al. at National Taiwan University used a single VPL com-
pany’s data glove as an input device and technically recognized 250 basic words in a Tai-
wanese gesture textbook with a recognition rate of 90.5% [120]. Christopher Lee and Xu 
et al. at Carnegie I Mellon University completed a gesture control system that can manip-
ulate robots using gestures using data gloves in 1995 [121]. Kadous used PowerGloves as 
a hand input device to recognize word sets consisting of 95 isolated words with a correct 
rate of 80% [122]. Vogler and Metaxas studied the recognition of 53 sign languages with a 
probability of 89.9% by combining data gloves and gesture recognition, using a position 
locator and three cameras perpendicular to each other as input devices [123].  

As the above experiments and applications require the user to bring a special glove 
device, which hinders the natural interaction between people and machines, coupled with 
its high price to discourage ordinary people, after that, scientists are committed to mark-
ing hand research, that is, by placing specific markings on the hand, such as in the wrist 
and fingers stickers or painted with special color stripes, the computer recognizes the 
movement of such colors to identify the corresponding action. For example, Dvais and 
Shah used colored gloves with highlighted markings between the fingers as input to a 
hand motion recognition system, resulting in the recognition of seven different hand mo-
tions [124]. While this approach brought breakthroughs and convenience in recognition 
technology, it also caused a great deal of trouble for the user and hindered truly natural 
human-computer interaction. Finally, scientists finally focused their attention and atten-
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tion on the natural hand, and through dedicated hardware devices detached from the hu-
man hand and offline training, some researchers succeeded in studying a vision-based 
hand motion recognition system. 

In terms of general optical camera-based hand motion recognition methods, some of 
the more representative research results include Starner et al. in which American gestures 
in which 40 short sentences with lexical words are randomly composed with a final recog-
nition rate of up to 99.2% [125]. Grboel and Assma recognized 262 isolated words by ex-
tracting features from video footage and then using Hidden Markov (Freeman and Roth 
et al. proposed a hand motion recognition system based on directional histograms, and 
Canesta, Inc. of San Jose, CA, USA, introduced a personal handheld computer (PDA) in 
2004, which uses a 3D image above the keyboard to recognize human movements on the 
keyboard to control the input of the machine [126]. 

Currently, there has been much research on hand motion analysis methods in the 
field of human-computer interaction, but due to the complex multilateral nature of human 
hands, how to achieve effective and accurate hand segmentation and fingertip recognition 
is still a problem to be improved and solved. 

In conclusion, hand motion analysis technology has a broad development and appli-
cation prospect and is a research hotspot in the field of human-computer interaction, 
which deserves a lot of human and material resources for research and development. We 
believe that in the near future, the hand motion analysis system will contribute unique 
advantages to changing people’s quality of life. 

3. Discussion 
The purpose of this paper is to (i) describe the existing research on hand rehabilita-

tion robots, and (ii) describe the drive modes, control strategies, training modes, and hand 
state detection techniques of hand rehabilitation robots. The results show that in the ex-
isting research on commercial hand rehabilitation robots, it is important to focus not only 
on the mechanical structure part but most importantly on the system control and hand 
state monitoring aspects of hand rehabilitation robots in order to have the best hand re-
habilitation results. In particular, commercial hand rehabilitation robots, cannot be sepa-
rated from clinical trials. A successful technology needs to undergo extensive controlled 
trials before it can be brought to market quickly. For example, the research process of S.R. 
Soekadar et al. [115] is a relatively complete one, from problem formulation to practice to 
validation. 

In the face of the severe situation of the aging population and a large number of 
stroke and hemiplegia patients, the research on hand functional rehabilitation robots will 
remain a relatively cutting-edge and popular field that can be explored in depth in recent 
years and in the coming decades. This paper reviews the development of hand rehabilita-
tion robots, Drive mode, Control strategy, Training mode and Hand state detection tech-
nology. The problem is still a key and difficult issue in this field. Based on the summary 
of this paper, there are still many areas that need to be improved and enhanced in the 
future research of hand rehabilitation robots: 
1. Portability and comfort of hand rehabilitation robots. Although the hand rehabilita-

tion robot has slowly changed from a rigid exoskeleton to a flexible wearable type, 
its weight has been greatly reduced, but its drive still uses motors or air pumps, 
which makes it difficult to carry for a long time and limits the scope of use of the 
hand rehabilitation robot. Moreover, the biological characteristics and kinematics of 
the human hand should be fully considered to avoid secondary injuries to the pa-
tient’s hand. 

2. Diversity and flexibility of human-robot interactions. Most of the same kind on the 
market cannot realize EEG signal control, and the product cannot be remotely and 
instantly monitored during operation, the patient cannot independently conduct re-
habilitation training, and there is little effective feedback data available for extraction, 
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and the training rhythm cannot be independently fine-tuned during the rehabilita-
tion process. 

3. Accuracy of hand state recognition. Improving the accuracy, stability, real-time and 
adaptiveness of hand detection and tracking is of great academic value and practical 
engineering significance for the control and detection of hand rehabilitation robots. 

4. VR virtual task-oriented enhanced active rehabilitation training. Many hand rehabil-
itation robots have been combined with virtual reality technology. It is believed that 
as virtual reality (VR) technology continues to mature, future hand rehabilitation 
training will also be more interesting. 
In order to optimize the difficult trade-off between functionality and usability typical 

of hand functional rehabilitation robotics in everyday life, we have identified the above 
four future directions that are of great interest. As shown in Figure 14, we have compiled 
a conceptual figure of robotic solutions in post-stroke hand rehabilitation. Future work 
should include several of these directions of development as a way to address the specific 
needs and desires of the user to control the device. 

 
Figure 14. The conceptual figure of robotic solutions in post-stroke hand rehabilitation. 

4. Conclusions 
The purpose of this review is to explore the research concerning hand rehabilitation 

robotics, review its current research status in recent years, and summarize the future de-
velopment trends in the hope that they will be useful to researchers in this research field. 
This review summarizes the technology in this paper with a systematic approach. Specif-
ically, we provide an overview of the development of hand rehabilitation robots, drive 
modes, training modes, and control strategies in the reviewed literature. Finally, we dis-
cuss the future directions of hand rehabilitation robots. The results show that the devel-
opment trends in recent years are more inclined to pursue new lightweight materials as a 
way to improve manual adaptability, studying intelligent control methods for human-
computer interaction in hand function rehabilitation robots, improving the robustness 
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and accuracy of control, and VR virtual task orientation to enhance the effect of active 
rehabilitation training. This paper will be useful in helping researchers understand the 
current state of the art regarding robotic technology for post-stroke hand rehabilitation in 
recent years. 
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