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Abstract: Graph visualization with proper layout is widely applied to understand the relationship
between entities in a complex system and the topological structure information is mainly used. Real-
world graphs often have the community structures property which is ignored in many existing graph
layout methods. Thus, we propose a multivariate network layout method using the force-directed
method with attribute constraints. This method can effectively take into account the hierarchical
structure, connection strength, and quantitative comparison between communities. First, the layout of
community centers is generated by a force-directed algorithm in which node count of the community
is taken as constraints to enable area balance of community; Second, community force based on node
attribute is added in the force-directed algorithm to maintain the community clarity. A visualization
system is also developed to allow users to interactively generate community structure-aware layout
results. qualitative and quantitative evaluation of the results verifies the usability and effectiveness
of the proposed method by comparing it with other methods.

Keywords: visualization; multivariate network; attribute constraint; force-directed

1. Introduction

As an effective way to show the relationship between entities, network layout is widely
used in a large number of fields, such as social networks, logistics networks, and paper
citation networks [1]. In practical scenarios, the networks often contain a lot of additional
attribute information, such as the age and hobbies of user nodes in the social network [2],
which are called multivariate networks. The layout of multivariate networks requires
full consideration of network attribute information while expressing network topology
information [3,4].

In the past few decades, many network layout methods have been proposed, and
a wealth of multivariate network visualization methods have been realized on this ba-
sis, which can be categorized into three categories: node-link, matrix, and attribute. As
the most important layout structure, node-link structures are used to display network
information in many network visual analysis systems, e.g., Vister [5], Polaris [6], and
Scalable Framework [7]. The latest research on node-link structure pays more attention to
the time complexity, and many acceleration methods have been proposed [8,9]. Current
commonly used node-link structure layout algorithms mainly include two categories: the
force-directed method [10–14] that simulates the repulsive force and attraction between
nodes in the physical system; and the dimensionality reduction method [14–16] that uses
the graph distance matrix to project the graph to a high-dimensional space and then re-
duce the graph to a low-dimensional space. The force-directed method is simple, easy
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to implement, and extensible, but lacks the use of attribute information. Similarly, the
dimensionality reduction method can maintain the structural consistency, but it has poor
scalability and also lacks the use of attribute information.

The matrix structure [17] displays the connection relationship of the network with
an adjacency relationship matrix. The hybrid structure combines the node-link structure
with the matrix structure [18]. For multivariate networks, although they clearly display the
connection relationship of nodes and the attribute information, the network display lacks
visual perception.

The attribute structure ignores the structural information of the multivariate network
and directly uses the attribute information for layout. It is possible to convert the attributes
into coordinates, and then draw the position of the node in the layout space [19]. It is also
possible to lay out the network with time attributes according to the time axis [20]. The
advantage is that it can display the attribute information of the network without restriction,
but the disadvantage is that the visualization lacks structural information, which is not
conducive to exploration.

To tackle the above problems, in this paper, we propose a multivariate network layout
method using the force-directed method with attribute constraints (FDAC). We utilize the
network topology and node attribute information, based on the user’s choice, to realize
the visual exploration of multivariate networks. First, through the interactive selection
from users, the attributes of the nodes are obtained and the communities are allocated,
to realize the data preprocessing. Then the attribute community layout is performed to
obtain the position information of the attribute community of the node. Finally, the node
layout is carried out to realize the visualization of multivariate networks. In the layout
process, the attribute information of the nodes is fully utilized, and the layout is realized
adaptively according to the user selection. We have implemented an interactive visual
system to complete the layout task of the entire multivariate network. The source code
of FDAC is available at https://github.com/tddsa/FDAC (accessed on 27 April 2022).
Overall, our contributions are as follows:

• We propose a multivariate network layout method FDAC based on attribute con-
straints. It mainly includes attribute community layout and node layout. Based
on the force-directed method, multiple constraints are constructed using attribute
information.

• We construct an interactive visualization system. The system allows users to select the
focus and attributes of interest, generates the corresponding layout adaptively, and
supports the visualization of numerical and non-numerical attributes.

• We propose two evaluation metrics to evaluate our layout results. Through qualitative
and quantitative evaluation, we verify the usability and effectiveness of the proposed
method compared with other state-of-the-art methods.

The structure of this paper is as follows: Section 2 introduces related work, Section 3
explains the proposed FDAC methods, Section 4 illustrates the visualization system, Section 5
displays the experiment results, and Sections 6 and 7 introduce the discussion and conclusion.

2. Related Work
2.1. Force-Directed Method

The node-link structure draws nodes and edges in the layout space according to certain
rules, allowing users to select nodes and edges to achieve the ideal layout [21]. The most
basic requirement is to ensure that the nodes are displayed clearly and without overlap,
and the edges overlap and cross as little as possible [22]. The force-directed method is the
most popular node-link structure. The pioneer of the force-directed layout algorithm is the
algorithm of Tutte [23] in 1963. This method is only suitable for three connected graphs and
plane graphs. In 1984, Eades [24] proposed a spring embedding algorithm. The core idea is
to represent the nodes in the network as rings and the edges as springs. Fruchterman and
Reingold [10] proposed the FR algorithm based on the Eades algorithm, using the iterative
process of the displacement scale control algorithm to generate a uniformly distributed

https://github.com/tddsa/FDAC
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layout of nodes. Kamada and Kawai proposed the KK algorithm [25], which uses the
method of minimizing the energy function of the spring model of the network topology
to generate the results. The LinLog [26] algorithm also uses the energy function to realize
network visualization, but it can gather the topological structure of the network together
to realize the clustering of nodes. Jacomy et al. proposed the ForceAtlas2 [27] algorithm,
which achieves speed and accuracy improvements. The stress optimization model [28–32]
obtains the optimal solution of the energy function through optimization. First, construct
the energy function of the network layout, then derive it, and obtain the optimal solution
through iteration. This process is strictly convergent [33]. Davidson and Harel proposed
the DH algorithm [34], which uses a simulated annealing algorithm to reduce the moving
speed of nodes and prevent nodes from approaching unconnected edges, thereby reducing
edge crossing. The DRgraph [9] method approximates the graph distance through a sparse
distance matrix, uses a negative sampling technique to estimate the gradient, and uses a
multi-level layout scheme to accelerate the optimization process. PIM [8] speeds up the
force-guided layout by using an in-memory processing architecture.

2.2. Network Visualization

There are many methods for visual analysis of networks by using topology and
attributes. Some methods analyze the network from a global view and show the overall
structure to users. For example, Li et al. [35] use a topology-based approach to detect
closely connected subgraphs in a network and represent them as abstract nodes to construct
multi-level structures. Gemici et al. [36] analyzed the structure of social networks using
information from underlying networks and hierarchies. Ge Huang et al. [37] used a radial
layout algorithm based on tree layout to explore the hierarchy of the network. Stef et al. [38]
used an approach based on attribute information to aggregate nodes with the same attribute
value to provide a coarse network representation. Shen et al. [39] proposed a method
that simultaneously utilizes network topology information and attributes information.
OnionGraph [40] creates a five-level layout through attributes and topologies and allows
users to access each level through context. Edge binding [41,42] helps users tease out
connections in a graph layout by binding edges that are close together. Other methods
analyze the network from a local view, focusing on nodes that users are interested in.
FACETS [43] compute fractions according to topology and attributes to find neighbors of
nodes that users are interested in. Crnovrsanin et al. [44] recommended nodes associated
with focus through filtering. After users select nodes, Refinery [45] obtains correlation
information through a random walk algorithm. Laumond et al. [46] allowed users to
select multiple nodes continuously to help users obtain the regional structure they are
interested in.

3. Methods

In this section, we first introduce the two keys of the FDAC method, i.e., attribute
community layout and node layout, and then introduce the two evaluation metrics.

3.1. Attribute Community Layout

We utilize the force-directed method with constraints to calculate the location of the
attribute community. The forces received by each community include spring force, repulsive
force, collision force and central force. The simulated annealing method is used to obtain the
community location coordinates. In the following, we introduce the problem illustration.

We define the entire multivariate network as G = (V, E), where V = {v1, v2, ..., vn}
represents n nodes in the network, and E = {e1, e2, ..., em} represents m edges in the network,
where each edge ek = (vi, vj) connects two different nodes in the network. On this basis,
we obtain the attribute community structure of the multivariate network GC = (VC, EC),
where VC = {vc1 , vc2 , ..., vcn} represents the locations of cn attribute community centers, and
EC = {ec1 , ec2 , ..., ecm} represents the connection relationships between communities. Each
edge eck = {vci , vcj} connects two different attribute communities. Note that VC and EC do not
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exist in the original multivariate network. For each attribute community center vci in VC, its
coordinates are randomly initialized vci = (xci , yci ). If there is an edge ek connection between
the nodes of two attribute communities, then there is an edge eck between the two communities.

3.1.1. Spring Force

Spring force acts on two attribute communities connected by edges, and its calculation
formula is as follows:

Fa(eck ) = (dpq − Lpq) · α(t) · strengtha(eck ) (1)

where eck is the edge of calculating the spring force, and dpq is the Euclidean distance between
the centers vcp and vcq of the current two attribute communities p and q, which are connected
by eck . Lpq is the ideal distance between the two attribute communities, i.e., the ideal length
of edge eck , and t represents time. In our method, it indicates the current iteration number
of the algorithm. We set α as the global temperature at time t, which is used to implement
the simulated annealing algorithm, whose function is to reduce the force on the node as the
iteration proceeds, control the severity of the changes in the position of the node and finally
achieve the convergence of the algorithm. strengtha is the elastic strength of this edge, just
like the elastic coefficient. The formulas of α and strengtha are as follows:

α(t) = α(t− 1) + (T − α(t− 1)) · αdecay (2)

strengtha(eck ) =
1

min(degp, degq)
(3)

where T is the target value of simulated annealing, degp and degq are the degrees of the
centers vcp and vcq of the two attribute communities. The strength of edge eck depends on
the two connected nodes. αdecay is the decay rate of the simulated annealing algorithm.
When α decreases to less than the threshold, the iteration is terminated.

There are differences in the number of nodes in communities with different attributes.
Therefore the ideal distance between communities Lpq is not static. The community radius
should be determined according to the number of nodes in the community. The formula of
Lpq is as follows:

Lpq = L0 + Lmax · (
√

ncp

n
+

√
ncq

n
) (4)

where L0 is the basic distance between communities, n is the number of all nodes, ncp and
ncq are the number of nodes contained in the two attribute communities p and q. Lmax is the
maximum distance of the edge, depending on the size of the layout area. The calculation
formula is as follows:

Lmax =
1
2

√
W2 + H2 (5)

where W and H are the width and height of the layout area, respectively. According to the
Verlet [1] integration algorithm of particle motion simulation, the velocity changes ∆vax
and ∆vay of the attribute communities p and q in the horizontal and vertical directions
under the action of the attractive force Fa can be calculated. The formulas are as follows:

∆vax(q) =
xpq

dpq
· Fa · bpq (6)

∆vay(q) =
ypq

dpq
· Fa · bpq (7)

∆vax(p) = −
xpq

dpq
· Fa · (1− bpq) (8)

∆vay(p) = −
ypq

dpq
· Fa · (1− bpq) (9)
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bpq =
degp

degp + degq
(10)

where xpq and ypq are the distances between the attribute communities p and q in the
horizontal and vertical directions, respectively. bpq is determined by the degree of the
center of the two attribute communities vcp and vcq . This makes the node with the smaller
degree at both ends of the same edge move more.

3.1.2. Repulsive Force

The repulsive force is the force that an attribute community is repelled by others, and
its function is to spread the entire network layout on the plane. For community p, the
formula for the repulsive force exerted by the community q is as follows:

Fr(p, q) = α(t) · strengthr(p, q) · δ (11)

where strengthr(p, q) is the repulsive strength of the community p by the community q, δ is
a multi-segment function, the formula is as follows:

strengthr(p, q) =

√
ncp + ncq

n
· Smax (12)

δ =

{
1, dpq ≤ Lpq
k, dpq > Lpq

(13)

where Smax is the maximum setting of the repulsive strength and the default value of Smax
is 600, and k is a coefficient between 0 and 1. When the distance between the communities is
less than the target distance, the node is subject to greater repulsion. Finally, the horizontal
and vertical velocity changes of the attribute community p under the action of repulsive
force are as follows:

∆vrx(p) = −
xpq

dpq
· Fr (14)

∆vry(p) = −
ypq

dpq
· Fr (15)

3.1.3. Collision Force

Collision force is the force that two attribute communities receive when they overlap.
It acts to repel the two communities in opposite directions along the centerline, which
is similar to the repulsive force. When the actual distance is greater than the sum of the
community radius, the collision force will disappear. The formula is as follows:

Fc(p, q) =

−strengthc · (1−
dpq

Lpq − L0
) , dpq ≤ Lpq − L0

0 , dpq > Lpq − L0

(16)

where strengthc is the default collision strength. The closer the two communities are, the
greater the collision force they receive. Under the effect of the collision force, the velocity
changes of the two overlapping attribute communities p and q in the horizontal and vertical
directions are as follows:

∆vcx(q) =
xpq

dpq
· Fc · bpq (17)

∆vcy(q) =
ypq

dpq
· Fc · bpq (18)

∆vcx(p) = −
xpq

dpq
· Fc · (1− bpq) (19)

∆vcy(p) = −
ypq

dpq
· Fc · (1− bpq) (20)
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bpq =
ncq

2

ncp
2 + ncq

2 (21)

The purpose is to make the attribute community with many nodes move slowly, and make the
community with few nodes move fast. This guarantees the stability of the network visualization.

3.1.4. Central Force

The central force refers to the force received by each attribute community from the
center of the layout area. It makes the center point of the entire network layout close to or
even coincides with the center point of the layout area, ensuring that the network is drawn
in the center of the layout area. Define the coordinates of the center point of the layout area
as (xo, yo), and the coordinates of the center point of the network as (x′o, y′o), the formula is
as follows:

xo =
W
2

(22)

yo =
H
2

(23)

x′o =
∑cn

i=1 nci · xi

n
(24)

y′o =
∑cn

i=1 nci · yi

n
(25)

where (xi, yi) is the coordinates of the center of the i-th attribute community, nci is the
number of nodes in the i-th attribute community. This makes it possible to consider the
influence of communities with more nodes on the central location when calculating the
central location of the network. The formula of the central force is as follows:

Fo(p) =
√
(x′o − xo)

2 + (y′o − yo)
2 · strengtho (26)

where strengtho is the strength of the central force. Therefore, the velocity change of the
attribute community p in the horizontal and vertical directions under the action of the
central force is as follows:

∆vox(p) = (x′o − xo) · Fo (27)

∆voy(p) = (y′o − yo) · Fo (28)

Since the expression of the result of the force in each attribute community is the speed
in the horizontal and vertical directions, in the process of each iteration, these speeds can
be accumulated, and at the end of each iteration, the location of the attribute community is
moved. Therefore, combining the effects of the above four forces on the community center,
the total speed change is as follows:

∆vx(p) = ∑
a

∆vax(p) + ∑
r

∆vrx(p) + ∑
c

∆vcx(p) + ∆vox(p) (29)

∆vy(p) = ∑
a

∆vay(p) + ∑
r

∆vry(p) + ∑
c

∆vcy(p) + ∆voy(p) (30)

where ∑a ∆vay(p) is the total amount of velocity change in the horizontal direction of
the attribute community p under the attractive action, and the formulas of repulsive and
collision forces are similar. Finally, the update formula of the velocity change to the location
of the center (xcp , ycp) of the attribute community p is as follows:

xcp = x′cp + (v′x(p) + ∆vx(p)) · β (31)

ycp = y′cp + (v′y(p) + ∆vy(p)) · β (32)
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where (x′cp , Y′cp) is the position of the center of the attribute community p in the previous
iteration, v′x(p) and v′y(p) are the speed of the previous iteration, and β is the decay rate of
speed, and the default value of β is 0.5, which is used to control the severity of changes in
node position.

Therefore, as the algorithm runs and the number of iterations increases, the global
temperature α of the simulated annealing algorithm continues to decrease, thereby gradu-
ally achieving the convergence of the algorithm, and finally obtaining the ideal location of
the center of each attribute community.

3.2. Node Layout

Similar to the Section 3.1 attribute community layout method, in the node layout
process, each node will be also subject to attraction, repulsion, collision, and central force.
In addition, each node is also subject to the community force exerted by its corresponding
attribute community. If each attribute community is regarded as a circular area, then
the role of community force is to draw the nodes of the same attribute to the range of
the circular area. However, only relying on the action of these five forces cannot achieve
satisfactory visualization results, so additional constraints must be introduced to these
forces to achieve multivariate network visualization based on attribute constraints.

3.2.1. Spring Force Constraint

Spring force acts on nodes connected by one edge. The difference from the spring
force of attribute community layout is that the ideal distance Lij between the two nodes i
and j.

When the attributes of two nodes are the same, the two nodes belong to the same
attribute community. Therefore, the formula for calculating Lij is as follows:

Lij = Lmax ·
√

ncp

n
− r(

√
degi

degmax
+

√
degj

degmax
) (33)

where r is the default radius of the node, degi is the degree of the node i, degmax is the
maximum degree of all nodes.

When the attributes of two nodes are different, the two nodes belong to different
attribute communities p and q. Therefore, the formula for calculating Lij is as follows:

Lij =
√
(xcp − xcq)

2 + (ycp − ycq)
2 (34)

3.2.2. Repulsive Force Constraint

For each node, the repulsive force by the node with the same attribute and by the
node with different attributes should be different, so the repulsive force strength of node i
received by node j is modified; the formula is as follows:

strengthr(i, j) =


S , ai = aj√

(xcp − xcq)
2 + (ycp − ycq)

2

Lmax
· S · µ , ai 6= aj

(35)

where ai is the attribute of the node i, S is the default repulsive force strength, the default
value S is −30 , and µ is an adjustable parameter.

3.2.3. Community Force

Community force refers to the attraction that the center of the attribute community
exerts on the nodes of the same attribute. Its function is to draw the nodes of the same
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attribute into the same attribute community. The formula for node i in the attribute
community to be attracted by the community center vcp = (xcp , ycp) is as follows:

Fk(i) = (dip − Lmax ·
√

ncp

n
· σ) · α(t) · strengthk(i, p) (36)

where dip is the Euclidean distance between the node i and the community center vcp , σ
is a parameter to control the ideal distance between the node and the community center,
strengthk(i, p) is the strength of the community force. Its formula is as follows:

strengthk(i, p) = S ·
√

ni−d
ni−s

(37)

where S is the default value of community force strength, ni−d is the number of nodes with
different attributes connected to node i, ni−s is the number of nodes with the same attributes
connected to node i. In this way, nodes with more different types of nodes than nodes of
the same type in the neighborhood can be closer to their own attribute communities to
maintain discrimination. Further, under the influence of the community force, the velocity
change of the node i in the horizontal and vertical directions is:

∆vkx(i) =
xip

dip
· Fk · bip (38)

∆vky(i) =
yip

dip
· Fk · bip (39)

bip = (
degp−max

degi + degp−max
)2 (40)

where xip and yip are the distance between node i and the center of the attribute community
vcp in the horizontal and vertical directions, respectively, and degp−max is the maximum
value of the node degree in the attribute community p.

Finally, under the action of attractive force, repulsive force, collision force, central
force, and attribute community force, the position of each node is calculated; the formula is
as follows:

∆vx(i) = ∑
a

∆vax(i) + ∑
r

∆vrx(i) + ∑
c

∆vcx(i) + ∆vox(i) + ∆vkx(i) (41)

∆vy(i) = ∑
a

∆vay(i) + ∑
r

∆vry(i) + ∑
c

∆vcy(i) + ∆voy(i) + ∆vky(i) (42)

xi = x′i + (v′x(i) + ∆vx(i)) · β (43)

yi = y′i + (v′y(i) + ∆vy(i)) · β (44)

Algorithm 1 is a flow chart of the entire algorithm process, which introduces the
overall layout algorithm of the multivariate network with attribute constraints.
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Algorithm 1: Attribute Constraint Layout

Input: G = (V, E): a multivariate networks; T: the target temperature; α: the
current temperature

Output: V = {vi, v2, ..., vn}: the position of nodes
1 Randomly initialize the attribute community center VC = {vc1 , vc2 , ..., vcn};
2 for every pair of nodes in G do
3 Generate edges EC = (ec1 , ec2 , . . . , ecm) between communities according to the

connection relationship between nodes;

4 while α > T do
5 Update current temperature α;
6 for each node vci in VC do
7 Get the velocity change ∆va, ∆vr, ∆vcand∆vo;
8 Get the total velocity change ∆v;
9 Update the position of vci ;

10 while α > T do
11 Update current temperature α;
12 for each node vi in V do
13 Get the velocity change ∆va, ∆vr, ∆vc, ∆voand∆vk;
14 Get the total velocity change ∆v;
15 Update the position of vi;

16 return V;

3.3. Evaluation Metrics

This paper proposes two evaluation metrics to measure the clarity and discrimination
of the attribute community in the layout results from two aspects.

The first metric is the average distance between nodes in attribute communities (ADIAC).
This metric can measure the degree of cohesion of the attribute community. On the one
hand, the index reflects the clustering degree of nodes within the attribute community. The
smaller its value is, the higher the distinguishable degree of the community is. On the other
hand, when the ADIAC tends to 0, it means that nodes are stacked towards the community
center, which will cause serious node overlap and make it difficult to show the connection
relationship between nodes. The formula of ADIAC is as follows:

ADIAC =
1
m

m

∑
k=1

1
nk

∑
i 6=j∩i,j∈Ck

√
(x∗i − x∗j )

2 + (y∗i − y∗j )
2 (45)

where m is the number of all communities under the constraint of the attribute, Ck is the
k-th attribute community, nk is the number of nodes in Ck, i and j are two different nodes
in Ck, x∗i is the abscissa of node i after maximum and minimum normalization, and y∗i is
the ordinate. The formula for maximum and minimum normalization is as follows:

x∗ =
x− xmin

xmax − xmin
(46)

where x is the abscissa of the node in the layout result, xmin is the minimum value of the
abscissa of all points, xmax is the maximum value of the abscissa of all points, x∗ is the
result of maximum and minimum normalization. Through the maximum and minimum
normalization, the error interference of the size of the layout area on the evaluation result
can be eliminated.

The second metric is the average distance between attribute communities (ADBAC), which
can measure the degree of distinguishability of attribute communities. The larger the
distance between attribute communities, the greater the degree of distinction between
attribute communities, and the layout results are presented more clearly. When the value
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of the metric tends to 0, it means that the different attribute communities are very close to
each other. At this time, different attribute communities overlap with each other, and it is
difficult to distinguish the existence of attribute communities from the layout results. The
formula of ADBAC is as follows:

ADBAC =
2

m(m− 1)

m

∑
i=1

m

∑
j=i+1

√
(x̄i − x̄j)

2 + (ȳi − ȳj)
2 (47)

where i and j are the i-th and j-th attribute communities respectively, x̄i is the abscissa of the
centroid of the i-th attribute community, x̄j is the ordinate. The formula of (x̄, ȳ) is as follows:

(x̄, ȳ) =
∑i(x∗i , y∗i )

n
(48)

where (x∗i , y∗i ) is the coordinate of the i-th node after the maximum and minimum nor-
malization in a certain attribute community, and n is the number of nodes in this attribute
community.

4. System

As shown in Figure 1, we introduce the general framework of our method. The input
is a multivariate network Gin = (V, E, A), where V is a node set, E is an edge set and
A = {attr1, ..., attrm} is the attributes for every node. The output is the layout of the whole
of the multivariate network. The general framework consists of two major modules: data
preprocessing and network layout module. After data preprocessing, every node has a
label and it belongs to an attribute community, then we can use FDAC to start the network
layout. In our method, the data preprocessing module mainly consists of three steps: user
select node of interest, user select attribute of interest and node attribute community distribution.

Figure 1. The general framework of our approach.

On this basis, we developed a visualization system for applying the FDAC method.
As shown in Figure 2, our system consists of three parts: (1) the focus selection view is
used for the user to select the node of interest. (2) the attribute selection view is used for
the user to select the attribute of interest and distribute the node attribute community (3)
the layout result view is used to display multivariate network layouts.
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Figure 2. Visual system for user interaction with FDAC. (a) The focus selection view with (a1) the
automatic screening by the system and (a2) the search view. (b) The attribute selection view. (c) The
layout result view.

4.1. Focus Selection View

The main task is to select the nodes of interest based on the specified dataset. As
shown in Figure 2a, we provide two options.

Automatic screening by the system. Automatic screening by the system As shown
in a1 in Figure 2a, shows the top 100 results after sorting based on a certain metric. The
ranking metrics include PageRank [47], the degree of the node, and some attribute values
of the node. PageRank is automatically calculated by the system after selecting the dataset.
This option is mainly provided to users who are not familiar with the dataset.

Search view. As shown in a2 in Figure 2a, shows the search results based on the
attributes and attribute values, including the total number of nodes and the corresponding
information of all nodes. After selecting the dataset, the system will count the attributes of
the node and the corresponding attribute values for the user to select in the search box.

Through the above two options, the user can select the nodes of interest for subsequent
network layout tasks. The result of the selection will be displayed in Current Focus, and the
user also needs to select hop, which is used to determine the size of the subgraph used for
the layout.

4.2. Attribute Selection View

As shown in Figure 2b, the user needs to select the attribute used for the layout
and the attribute value under that attribute. For numerical attributes and non-numerical
attributes, we have designed different attribute community distribution methods.

Numerical attributes. Taking the age attribute of each node in a social network as
an example, users are not very interested in a specific age most of the time. Therefore,
we provide an interval division method for numerical attributes. The user can select the
expected number m of attribute communities to be divided. Knowing that n nodes are
waiting to be laid out in the network, the formula for the expected number of nodes nc in
each community is as follows:

nc =
n
m

(49)

Sort the numerical attributes of all nodes, and divide the sequence with nc as the length.
When the sum of the number of nodes corresponding to consecutive numerical attributes
reaches nc, it is classified as an attribute community. The label of the attribute community
is the mark from the minimum to the maximum value of the numerical attribute. Each
node in the attribute community can be assigned this mark.
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Non-numerical attributes. Take the keyword attribute of each node in the paper
citation network as an example. A paper often contains multiple keywords. When users
explore the keyword attributes, they often choose multiple keywords as the focus of
attention. Using a method based on perfect matching, the dataset is traversed, and the
node attributes that exactly match the user’s selection are labeled. For nodes that match
multiple attributes at the same time, they contain multiple tags and are assigned to a new
attribute community.

Node attribute community distribution. Based on the choices, we need to assign
attribute labels to nodes. For some nodes, its attribute value matches only one of the
choices, then the label of this node is the attribute value. For other nodes, if its attribute
value matches multiple attribute values, then the label of this node is the combination of
the attribute values and this node will be assigned to a new attribute community where
nodes have the same label also be in. For example, keywords attribute may contain multiple
values, like graph layout, visualization, data mining, etc. the combination of the attribute
values is graph layout+visualization.

4.3. Layout Result View

Based on the user’s selection result, the data are obtained from the database and
preprocessed, and then the force-directed layout algorithm based on attribute constraints is
used for layout. As shown in Figure 2c, the layout result is drawn on the view.

When users are faced with a crowded network layout, the complex relationship
formed by nodes and edges will interfere with users’ exploration of the network structure.
Therefore, we have realized the function of assisting users to explore in the visual system.
As shown in Figure 3a, users first acquire the structure of the entire network when exploring
the nodes they are interested in. As shown in Figure 3b, users can focus on a local region
by zooming and exploring the connection relationship between nodes in the corresponding
region. As shown in Figure 3c, we also support users to select and drag nodes, allowing
users to make temporary changes to the layout of the network to better identify the
connections between nodes.

Figure 3. Illustration of User detail exploration. (a) global view; (b) local view; (c) local view after interaction.

5. Evaluation

We compared the three layout methods in terms of evaluation indicators (ADIAC and
ADBAC), layout visualization, and edge length. The complexity of our method is analyzed.
A user experiment is designed to verify the effectiveness of the method. We conduct all
experiments on a laptop computer with Intel(R) Core(TM) i7-9750H CPU, 16 GB memory,
and Windows 10 installed.

5.1. Dataset

This paper uses three graph datasets. The first one is the paper citation network in
the field of visualization (VisPCNet), and the second one is the Researcher Collaboration
Network (RCNet) composed of the paper collaborations of researchers in the four fields of
visualization (Vis), data mining (DM), human–computer interaction (HCI), and machine
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learning (ML). Both are based on the open source dataset of Aminer. The last one is an office
message network (OMNet) dataset based on VAST 2012 mini-challenge II network [48]

However, the comparison method in this paper, that is, the traditional force-guided
layout method, performs very poorly on large-scale datasets. Therefore, this paper extracts
four moderate-scale subgraphs from a relatively large-scale researcher cooperation network,
which are named RCNet1, RCNet2, RCNet3, RCNet4, and OMNet1, respectively. The
evaluation part of this article mainly uses these six datasets, and their specific information
is shown in Table 1.

Table 1. Illustration of the datasets.

Dataset Num of Nodes Num of Edges Attributes of Nodes

VisPCNet 513 1890 title, keywords, journal,
year, number of citations

RCNet1 176 425
name, interests, number
of papers, number of
citations, H index

RCNet2 473 1623
name, interests, number
of papers, number of
citations, H index

RCNet3 450 1258
name, interests, number
of papers, number of
citations, H index

RCNet4 204 825
name, interests, number
of papers, number of
citations, H index

OMNet1 52 140
IP, name, working years
message type, message
number, device type

VisPCNet. The network consists of 513 visualization papers (nodes) and the citation
relationships (edges) between them. Among them, each paper has five attributes: title,
keywords, journal, year, number of citations.

RCNet1, RCNet2, RCNet3 and RCNet4. These four networks are composed of re-
searchers in the field of visualization, data mining, human–computer interaction, and ma-
chine learning, as well as their cooperation in the field. The node represents the researcher.
If two researchers have published a paper together, then there is an edge connection be-
tween them. In each network, researchers have five attributes: name, interests, number of
papers, number of citations, H index.

OMNet1. The network consists of 52 devices(nodes) and 140 communications links(edges)
between nodes. Each node has six attributes: IP, user name, working years of user, message type,
message number, and device type.

5.2. Compared Methods

We compare our method with three layout methods, i.e., FR layout [10], LinLog
layout [26], and ForceAtlas2 layout [27]. FR is the most classic force-directed model, and
the subsequent various force-directed methods are improved versions of it. The LinLog
model is a force-directed layout method based on an energy function, and its layout can
present the structural community in the graph data. The nodes in the structural community
may have the same attribute information. At this time, the LinLog model can present
the attribute community, so we also use it as a comparison method. ForceAtlas2 is a
force-directed method integrated in the well-known graph visualization tool Gephi. It
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uses various constraints to optimize the graph layout and can well reveal the structural
information of the graph data.

5.3. Experiment
5.3.1. Quantitative Results

Tables 2 and 3 are the comparison of experimental results under ADIAC and ADBAC
evaluation metrics, respectively. We compare the four methods on the four attributes of
the above six datasets. Attribute 1 of VisPCNet is the keywords, attribute 2 is the journal,
attribute 3 is the year, and attribute 4 is the number of citations; Attribute 1 of RCNet1,
RCNet2, RCNet3, and RCNet4 is interests, attribute 2 is the number of papers, attribute
3 is the number of citations, and attribute 4 is the H index. Attribute 1 of OMNet1 is the
working years, attribute 2 is the message type, attribute 3 is the message number, and
attribute 4 is the device type.

It can be seen from Table 2 that under each attribute of each dataset, the ADIAC value
of the method in this paper is much smaller than the ADIAC value of the other three
methods. Compared with other methods, ADIAC in this paper is the lowest, about 0.1.
This shows that our method has good layout stability, can obviously gather nodes with the
same attributes together, and ensure the differentiation between nodes. It can be seen from
Table 3 that under each attribute of each dataset, the ADBAC value of this method is much
larger than that of other methods. The results of the comparison of evaluation metrics show
that compared with other methods, the method in this paper can obtain clearer and more
distinguishable results of attribute community layout.

Table 2. Average distance between nodes in attribute community.

Attribute 1 Attribute 2
ours FR [10] linLog [26] FA2 [27] ours FR [10] linLog [26] FA2 [27]

VisPCNet 0.10 0.27 0.54 0.53 0.09 0.29 0.52 0.52
RCNet1 0.10 0.38 0.54 0.5 0.13 0.42 0.54 0.53
RCNet2 0.11 0.44 0.52 0.54 0.11 0.40 0.51 0.50
RCNet3 0.12 0.35 0.53 0.53 0.15 0.36 0.54 0.54
RCNet4 0.08 0.28 0.57 0.52 0.12 0.37 0.51 0.53
OMNet1 0.13 0.31 0.50 0.49 0.15 0.38 0.48 0.50

Attribute 3 Attribute 4
ours FR linLog FA2 ours FR linLog FA2

VisPCNet 0.14 0.33 0.52 0.54 0.13 0.34 0.52 0.53
RCNet1 0.12 0.42 0.55 0.47 0.13 0.42 0.52 0.54
RCNet2 0.10 0.41 0.52 0.54 0.12 0.38 0.53 0.52
RCNet3 0.13 0.35 0.54 0.53 0.14 0.34 0.51 0.51
RCNet4 0.11 0.38 0.51 0.53 0.10 0.39 0.54 0.55
OMNet1 0.12 0.30 0.49 0.52 0.13 0.37 0.47 0.52

Table 3. Average distance between attribute communities.

Attribute 1 Attribute 2
ours FR [10] linLog [26] FA2 [27] ours FR [10] linLog [26] FA2 [27]

VisPCNet 0.38 0.21 0.09 0.10 0.37 0.18 0.09 0.10
RCNet1 0.45 0.22 0.09 0.12 0.53 0.11 0.11 0.09
RCNet2 0.42 0.17 0.12 0.04 0.40 0.10 0.07 0.10
RCNet3 0.46 0.14 0.06 0.09 0.42 0.19 0.09 0.12
RCNet4 0.49 0.30 0.13 0.12 0.58 0.17 0.13 0.11
OMNet1 0.45 0.29 0.12 0.13 0.44 0.15 0.14 0.12

Attribute 3 Attribute 4
ours FR linLog FA2 ours FR linLog FA2

VisPCNet 0.53 0.08 0.06 0.07 0.45 0.07 0.04 0.09
RCNet1 0.52 0.15 0.12 0.25 0.51 0.12 0.12 0.09
RCNet2 0.40 0.40 0.10 0.08 0.42 0.10 0.12 0.05
RCNet3 0.46 0.13 0.07 0.08 0.46 0.16 0.09 0.08
RCNet4 0.54 0.16 0.07 0.11 0.50 0.14 0.12 0.10
OMNet1 0.50 0.28 0.11 0.15 0.48 0.12 0.13 0.11
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5.3.2. Qualitative Results

After visualizing the layout results, qualitatively comparing the layout results with hu-
man eyes can visually compare the differences between the methods. We selected 4 sets of
layout results corresponding to VisPCNet and 1 set of layout results corresponding to OM-
Net1 to visualize. Among them, different colors represent different a ttribute communities.
As shown in Figures 4–8, the comparison results of the layout under the four attributes are
drawn separately. The results indicate that our method can draw the attribute community
and display the attribute information well according to the attributes of the nodes.

Figure 4. The result of attribute community layout under the attribute ‘keywords’. (a) FR layout;
(b) LinLog layout; (c) ForceAtlas2 layout; (d) layout of our method.

Figure 5. The result of attribute community layout under the attribute ‘Journal’. (a) FR layout;
(b) LinLog layout; (c) ForceAtlas2 layout; (d) layout of our method.
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Figure 6. The result of attribute community layout under the attribute ‘Year’. (a) FR layout; (b) LinLog
layout; (c) ForceAtlas2 layout; (d) layout of our method.

Figure 7. The result of attribute community layout under the attribute ‘Number of Citations’. (a) FR
layout; (b) LinLog layout; (c) ForceAtlas2 layout; (d) layout of our method.
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Figure 8. The result of attribute community layout under the attribute ‘working years’. (a) FR layout;
(b) LinLog layout; (c) ForceAtlas2 layout; (d) layout of our method.

5.4. Edge Length

We use two metrics: uniform edge length and maximum edge length to measure
edges in the layout result. For the metric of uniform edge length, we calculate the standard
deviation of the length of all edges. The experimental results are shown in Table 4. The
smaller the standard deviation and maximum value, the more balanced the network layout.
From the results, although our method does not reach the best level, the cost is acceptable
compared to the attribute information representation it brings.

Table 4. Metric comparison of edge lengths.

Standard Deviation of Edge Length Maximum of Edge Length

Ours FR linLog FA2 Ours FR linLog FA2

VisPCNet 80 60 99 100 324 247 510 476
RCNet1 95 79 102 109 331 204 477 503
RCNet2 90 74 113 93 351 202 489 498
OMNet1 100 65 102 111 397 219 486 496

5.5. Complexity Analysis
5.5.1. Time Complexity

The time complexity of our algorithm includes attribute community layout O(T|VC|2),
node layout (T|V|2), where |V| is the number of nodes, |VC| is the number of communities,
and T is the number of iterations. Because the number of communities in the network is
much smaller than the number of nodes, the total computational complexity of FDAC is
derived as (T|V|2). Table 5 shows the running times of our method for different data sets.

Table 5. Running times of our method.

Node Number Edge Number Time

OMNet1 52 140 0.18 s
RCNet1 176 425 0.56 s

VisPCNet 513 1890 3.8 s
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5.5.2. Space Complexity

The data in the network consist of nodes and edges. Hence, the space complexity of
our method is O(|V|+ |E|+ |VC|+ |EC|), where |E| is the number of edges, and |EC| is the
number of edges between communities.

5.6. User Study

To verify the effectiveness of our method in the representation of attribute information,
we designed a user study. We defined three tasks:

• Community task: can users intuitively distinguish the number of attribute communities?
• Node task: Based on the nodes that the user is interested in, can users intuitively judge

the proportion of nodes with the same attribute and nodes with different attributes in
its neighbor nodes?

• Edge task: Based on the node that the user is interested in, can users intuitively explore
other nodes with the same attribute connected to the structure along the edge?

We compared it with FR, linLog, and FA2. We invited five graduate students interested
in the field of network layout as users. Users scored the experimental results of the four
methods on multiple datasets according to the above tasks. The highest score is 5, which
means it is easy to complete the task, and the lowest score is 1 which means it is difficult to
complete the task. We averaged all the user scores. The experimental results are shown in
Table 6.

Table 6. Average scores of users study.

Ours FR linLog FA2

task1 4.6 2.2 2.6 3.2
task2 3.8 1.6 2 1.5
task3 3.4 2.8 2 2.4

It can be seen from the experimental results that our method has obvious advantages
in helping users to distinguish the number of attribute communities and judge node
neighborhood relations. In terms of edge exploration, due to the influence of attribute
community force, our method has more interference between edges in a larger graph,
resulting in a lower overall score. In conclusion, our method can provide effective help for
users to explore attribute information in the network.

6. Discussion

In this paper, we propose a method to visualize the layout of the graphs considering the
attribute information of nodes. Compared with the traditional graph visualization layout
method, the method in this paper can reflect the attribute information of the community
graph data well. As in the above example, the clustering in the graph layout result can
intuitively reflect the attribute information implicit in each attribute of the graph data. In
the layout method that does not consider attributes, some nodes may be far away from most
nodes with the same attributes due to the structural connection relationship. Although
the layout uses colors and shapes for the logo, it still gives people a mixed feeling. On the
contrary, the introduction of additional powerful constraints through attribute similarity
can enable people to better confirm the attribute information of nodes.

In our method, attribute community force is applied to nodes to gather nodes with
the same attribute into the same area. For some nodes, attribute constraints cause them
to move away from neighboring nodes with different attributes, which creates additional
edge crossings in the layout. This makes it difficult for users to explore the larger attribute
community. On the one hand, we strengthen users’ exploration ability through interaction
design in the system. On the other hand, by defining community force strength, nodes
closely connected with other attributes are more likely to be distributed on the periphery of
the community to reduce crossover.
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Our method automatically calculates the location of the attribute communities in
space, allowing for a flexible layout. The idea of tree layout can be used in future work.
Predetermine the location of each community layout based on the distribution of leaf nodes
in the tree. For some nodes in the network, it may be connected to a large number of
edges. We can also borrow PLANET’s [37] idea of using polar coordinates to increase
angles between different edges and enhance resolution.

Our method allows users to visualize the graph layout by selecting the node attributes
they are interested in, to explore the attribute information implied by the graph data under
this attribute. This kind of user interest-driven model makes the method in this paper
flexible. If the node contains a non-numeric attribute, then each attribute value under the
attribute is regarded as a kind of attribute community. If the node contains numerical
attributes, users can discretize the attribute values according to their preferences, and each
interval is an attribute community.

Adjusting the strength of attribute constraints has a significant impact on the results of
the layout. When the attribute constraints are too tight, the nodes will closely surround the
community center, resulting in a large number of overlapping nodes within the community.
It is unable to distinguish the connection relationship between the same community node.
When the attribute constraints are too loose, although the structural information between
the same community nodes can be displayed well, the degree of discrimination between
attribute communities will decrease.

7. Conclusions

In this paper, we propose a multivariate network layout method using force-directed
with attribute constraints(FDAC), which can generate layout results with attribute informa-
tion. We adopt a hierarchical layout strategy. By introducing attribute community force
and multiple layout constraints in the force-directed layout, nodes with the same or similar
attribute values are brought close to each other to form clusters. In this way, the attribute
information contained in the network data can be intuitively conveyed to the user.

Aiming at the layout quality, this paper proposes two evaluation metrics, average dis-
tance between nodes in attribute communities and average distance between attribute communities.
We compare three representative force-guided layout methods on six datasets to verify the
effectiveness of this method.

The method in this paper generates large attribute communities when dealing with
large networks, which is not conducive to users’ exploration. We consider designing a
multi-level attribute community layout in future work to reduce community size. There
are a large number of edges between communities with different attributes. These edges
interfere with the exploration of the network. We consider using edge bundling to simplify
the structure. The time complexity of the algorithm can also be optimized. In the future,
we consider completing both attribute community layout and node layout in one iteration.
Our method automatically calculates the location of the attribute communities in space.
We consider allowing users to decide where to place the attribute communities. We also
consider using the tree layout structure to predetermine the location of each community
and increase angles between different edges to enhance resolution.
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