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Abstract: Cold atmospheric plasma (CAP) has become a promising tool for modern medicine. With
its recent applications in oncology, regenerative medicine, and immunotherapy, CAP can be used for
a myriad of different clinical treatments. When using CAP specifically for the treatment of tumors, it
is known to elicit an oxidative response within malignant cancer cells, inducing cell cycle arrest and
apoptosis. In this study, data of intracellular reactive oxygen species (ROS), caspase activity, Ki-67
expression, and cell cycle activity in the G1 phase were acquired to determine the causal relationships
these intermediates have with cell proliferation and death after Canady Helios Cold Plasma (CHCP)
treatment. The data were derived from four different subtypes of breast cancer cell lines: BT-474,
MCF-7, MDA-MB-231, and SK-BR-3. Data transformation techniques were conducted on the time-
series data for the input into the causal model code. The models were created on the basis of Granger
causality principles. Our results demonstrated that there was a Granger causal relationship among
all potentially causal variables (ROS, caspase, Ki-67, and G1 activity) and cell proliferation after 5
min CHCP treatment; however, not all variables were causal for the 3 min models. This same pattern
did not exist for cell death models, which tested all potentially causal variables (ROS, Ki-67, and
G1 activity) vs. caspase activity. All models were validated through a variety of statistical tests and
forecasting accuracy metrics. A pseudo data set with defined causal links was also created to test R’s
ability in picking up known causal relationships. These models, while nonexhaustive, elucidated
the effects cold plasma has on cell activity regulators. Research in causal modeling is needed to help
verify the exact mechanism of cold plasma for the ultimate optimization of its application in the
treatment of cancers.

Keywords: cold atmospheric plasma (CAP); reactive oxygen species (ROS); caspase; Ki-67; cell cycle;
Granger causality

1. Introduction

Breast cancer is a result of random mutations that allow breast cells to grow and prolif-
erate without the tight restrictions imposed on them during the cell cycle [1]. These muta-
tions affect several of the cells’ homeostatic parameters, including their cellular metabolism,
proliferation rate, and the defenses they establish to circumvent cell cycle arrest or con-
trolled death [1]. Given this, breast cancers can be categorized into four groups based on
genetic information: luminal A, luminal B, HER2-positive, and triple-negative. These four
types, as seen in Table 1, are classified based on whether or not the cancer cells possess (1)
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the human epidermal growth factor receptor 2 (HER2) protein, a type of transmembrane re-
ceptor tyrosine kinase and (2) hormone receptors, including estrogen receptors (ER) and/or
progesterone receptors (PR), within the cell membrane [1]. Luminal A breast cancers, such
as the MCF-7 cell line, are HER2-negative and hormone receptor-positive [2]. These cancers
tend to grow slowly due to low levels of Ki-67, a tumor proliferative marker that helps con-
trol the pace of the cell growth by preventing the aggregation of mitotic chromosomes [2,3].
Luminal B breast cancers, such as the BT-474 cell line, are hormone receptor-positive, and
either HER2-negative or -positive, with high levels of Ki-67 [2]. HER2-positive breast
cancer, as the name suggests, is HER2-positive and hormone receptor-negative [4]. SK-BR-3
falls under HER-2 classification. Triple-negative breast cancers, such as MDA-MB-231, do
not express any of the three main receptors, making it more aggressive and difficult to treat
than the other breast cancers [5].

Table 1. Classification of Breast Cancer Cell Lines and Their Characteristics. Four different breast
cancers and their categorization based on receptor type are listed.

Classification Immunoprofile Ki-67 Level Example Cell Line
Used in This Study

Luminal A ER+, PR+/−, HER2− Low MCF-7

Luminal B ER+, PR+/−, HER2+ High BT-474

HER2+ ER−, PR−, HER2+ High SK-BR-3

Triple-negative ER−, PR−, HER2− Low MDA-MB-231

Receptor status determines the initial prognosis and the ensuing treatment of the
cancer since certain subtypes do not respond to targeted hormone therapies. Many stan-
dard systemic and localized cancer treatments are unable to precisely kill microscopic
disease around the tumor site and often affect healthy adjacent tissue [6,7]. In the case of
chemotherapy and endocrine therapy, these treatments also worsen the quality of life to
a greater extent and for a longer period of time [8]. However, some modern treatments
not only work to actively kill cancer cells but also mitigate the chance of recurrence after
tumor resection without worsening the patient’s quality of life [9,10]. One such treatment
is through the use of cold atmospheric plasma (CAP).

CAP is a room temperature ionized gas, generating a composite of charged particles,
photons, and an electric field [11]. CAP also gives rise to a cellular environment rich in
reactive oxygen species (ROS) and reactive nitrogen species (RNS). Major CAP-generated
ROS include ozone (O3), singlet oxygen (1O2), superoxide anion (O2˙−), and hydroxyl
radical (˙OH). The major RNS generated include nitric oxide (˙NO) and nitric dioxide
(˙NO2) [12]. These reactive species yield peroxynitrite (ONOO-), hydroxide (H2O2), and
nitrite (NO2

−) when in contact with bodily fluid or a cell culture medium [13]. Excess
cellular levels of these species can lead to the activation of apoptosis due to the damage they
cause to mRNA [14], vital proteins, nucleic acids, lipids, membranes, and organelles [15].
During apoptosis signaling, caspase precursors undergo rapid proteolytic processing and
activation [16]. Activated caspases function to hydrolyze key enzymes and degrade cellular
proteins necessary for the survival and growth of the cell, resulting in cell death [16].
Additionally, a decrease in mitotic cell division and a reduction of Ki-67 expression in
tumor cells could indicate CAP-induced cell death post treatment. Ki-67 is a nuclear
protein that is expressed in actively proliferating cells during all phases of the cell cycle [17].
CAP prompts a decrease in Ki-67 as it is known to selectively induce apoptosis and cell
cycle interruption [18]. Cell cycle interruption caused by CAP oxidizes histone mRNA and
activates cell cycle checkpoints that halt the cells from undergoing further development [14].
The G1 phase in the cell cycle is the time in which cells physically grow and their organelles
develop [19]. When this growth process is interrupted by CAP, cancer cells can no longer
proliferate at an uncontrollable rate.
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While studies show strong temporal correlations among CAP treatment, a decrease
in cell proliferation, and an increase in cell death, several different theories of the CAP’s
mechanism of action exist due to the complex microprocesses involved in its ability to
trigger cell cycle arrest and apoptosis. Our approach aims to bridge the gap in knowledge
regarding these CAP-induced outcomes. Although the literature has implied correlations
among cell signaling intermediates, cell proliferation, and cell death, the three have not
been combined in a comprehensive causal model thus far. A causal model is one that
examines the relationships between potential causes and potential effects.

Granger causality is a way to investigate causality between two variables in a time
series, a sequence of data points that occurs in successive order over a period of time [20].
Granger causality tests whether a variable, the potential “cause”, is helpful for forecasting,
or predicting, the behavior of another variable, the potential “effect”. By using empirical
data sets to find patterns of correlation, the formulated vector autoregressive (VAR) model
assumes the data-generating processes in any time series are independent variables. In
a VAR model, each variable is regressed on all variables, including itself, at previous
time points. Regression is a statistical method that attempts to determine the strength
and character of the relationship between variables, revealing the temporal dynamics of
a system of related parameters across time. A VAR model itself is made up of a system
of equations that represents the relationships between the variables. The data sets are
analyzed to see if they are correlated, verifying the usefulness of one variable to forecast
another [20]. Therefore, according to Granger causality, if X “Granger-causes” Y, then
past values of X should contain information that helps predict Y above and beyond the
information contained in past values of Y alone [21].

In this study, Granger modeling was used to compare the individual effects of in-
tracellular ROS, caspase activity (CA), Ki-67 expression, and G1 phase activity on cell
proliferation and cell death after treatment with Canady Helios Cold PlasmaTM (CHCP).
CHCP was developed at the Jerome Canady Research Institute for Advanced Biological
and Technological Sciences (JCRI-ABTS) (U.S. Patent No. 9,999,462 B2 June 2018 [22]), and
previous studies have demonstrated its anticancer effect on a variety of solid tumor cell
lines including breast cancers [23,24]. The primary objective of this study is to identify
causal versus correlational links of intracellular oxidative stress, CA, Ki-67 expression, and
cell cycle to the death of breast cancer cells. The rationale for developing a computational
causal model is that it can help answer questions on what variables need to be prioritized
for future in vivo mammalian studies.

2. Materials and Methods
2.1. Data Acquisition

The data used to construct the models were acquired from the experiments performed
at the Jerome Canady Research Institute for Advanced Biological and Technological Sciences
(JCRI-ABTS) in Takoma Park, MD, USA. The CAP generation device used in this study,
CHCP, has been described in our previous studies [25]. It is comprised of a high-frequency
electorsurgical generator and a conversion unit. The conversion unit utilizes a high voltage
transformer connected to the output from the electrosurgical generator and upconverts
voltage up to 4 kV while downconverting frequency and power to less than 300 kHz and
40 W, respectively. The main reactive oxygen and nitrogen species generated by CHCP
were OH (A2Σ+-X2Π+) at 309 nm; N2 (C3Πu-B3Πg) second positive system (SPS) at 337 and
357 nm; N2

+ (B2Σu
+-X2Σg

+) first negative system (FNS) at 391 and 427 nm; He at 667 nm;
and OI at 777 nm as reported in the spectrum in [23]. Human breast ductal carcinoma BT-
474 and breast adenocarcinoma SK-BR-3 were purchased from ATCC (Manassas, VA, USA).
Human adenocarcinoma cell lines MCF-7 and MDA-MB-231 were generously donated
by Professor Yasmine Kanaan’s laboratory at Howard University. Cells were cultured in
ATCC-recommended media supplemented with 10% fetal bovine serum and 1% Pen Strep
(Thermo Fisher Scientific, Waltham, MA, USA) in a 37 ◦C and 5% CO2 humidified incu-
bator (Thermo Fisher Scientific, Waltham, MA, USA). When cells reached approximately
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80% confluence, cells were seeded at a concentration of 105 cells/well into 12-well plates
(USA Scientific, Ocala, FL, USA). Helium flow was set to a constant 3 lpm, and power was
set to 80 p (equivalent to 15.7 W) or 120 p (equivalent to 28.7 W). Cells were treated directly
by CHCP 24 h after being seeded, and the plasma scalpel was placed 1.5 cm away from the
surface of the cell media. The data metrics, including intracellular ROS, caspase activity
(CA), Ki-67 expression, G1 activity, and confluence for each cell line were acquired up to
48 h after treating all cells with CHCP for 3 and 5 min at 120 p except for the SK-BR-3 cell
line, which was treated at 80 p for Ki-67 models.

Data of intracellular ROS, CA, cell cycle, and proliferation were collected by IncuCyte®

(Sartorius, Göttingen, Germany). The inputted data needed to be time-series dependent and
composed of at least 48 data time points that were of the same hourly time scale. Therefore,
experimental data generated by IncuCyte® Live-Cell Analysis System (Sartorius, Göttingen,
Germany) were proper and convenient in that IncuCyte® (Sartorius, Göttingen, Germany)
enables imaging and continuous quantification of cell behavior over time. Protocols and
data for CA, cell cycle, and confluence for the 4 breast cancer cell lines have been reported
in our previous work [14]. The experimental protocol for intracellular ROS was per-
formed as follows: prior to CHCP treatment, cells were stained for intracellular ROS with
CM-H2DCFDA (ThermoFisher Scientific, Waltham, MA, USA) at appropriate concentra-
tions according to manufacturer’s instructions, incubated under standard conditions of
37 ◦C and 5% CO2 for 30 min, replenished with fresh warm media, and then incubated
under the same conditions again for 30 min for recovery. After CHCP treatment at 120 p
(equivalent to 28.7 W) for 3 and 5 min, intracellular ROS activity for all cell lines was moni-
tored and quantified in the IncuCyte® in an incubator for 48 h under standard conditions.
CHCP-generated H2O2 and NO2

− concentrations were measured in PBS by colorimetric
kits (Sigma-Aldrich, St. Louis, MO, USA and Promega, Madison, WI, USA). Corresponding
concentrations of H2O2 and NO2

− were added to the cells for intracellular ROS measure-
ment as positive controls.

Ki-67 data, also published in our previous work [14], was collected using confocal
microscope imaging at 6, 24, and 48 h post CHCP treatment. The number of Ki-67-positive
cells was counted for each cell line after CHCP treatment. Ki-67 data required interpolation
due to sparse data. Using the dplyr package, a data cleaning tool in R, interpolation was
used to fill in gaps in the time-series data in order to have consistent hourly time intervals
for each variable.

Each data set was normalized to no treatment (control) and averaged. The data were
combined into standardized headers for data preprocessing. Cell proliferation, represented
by confluence data, was defined as one “effect” variable, and cell death, represented by CA
data, was the secondary “effect” variable.

2.2. Construction of Model

The Granger causal statistical analysis methodology was used in model formation.
F-statistics and resulting p-values were generated through the vars package embedded
within R software (Version 1.4.1717). The VAR() function created multivariate time-series
equations where the endogenous variables in the system are functions of the lagged values
of all endogenous variables [26]. Principles of mathematical regression were used within
R’s functions to generate the multivariate equations. Regression is defined as a system
of statistical analysis that estimates the strength of correlation and the directionality of
data [26]. The outputted regression equations of the model represent the relationships each
variable has with cell proliferation or cell death. A lag order of 1 was determined using
the VARselect() function, which outputted the optimal lag based on different information
criterion (IC). The Akaike Information Criterion (AIC) tests how well the model fits the
data set without overfitting it and therefore was used in determining the IC score.

Regression analysis alone cannot be used to reveal causality because it only establishes
the impact of the predictive variables on the dependent variables tested [26]. In simple
regression, the equations merely reflect that “x” has a relationship with “y”. To infer
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causality, that relationship must reflect that “x” causes “y”. Therefore, after a VAR equation
was obtained for each potentially causal variable (intracellular ROS, CA, Ki-67+ count, and
G1 activity) vs. cell proliferation, the equation and its associated parameters were inputted
into the causality() function. ROS, Ki-67+ count, and G1 activity were subsequently used
to assess cell death causality, with CA used as the “y” term. The causality function then
outputted p-values that represented whether or not each relationship displayed statistically
significant causality. Tables were generated to organize the p-values of each model for later
analysis. Models were created from data collected after 3 and 5 min of CHCP treatment.

3. Results

Breast cancer cell lines of four different subtypes were treated by CHCP for 3 or 5 min.
Following the treatment, a set of data including intracellular ROS, CA, Ki-67+ count,
G1 activity, and confluence was obtained every hour for 48 h. Intracellular ROS as an
oxidative stress maker was monitored, and the data are shown in Figure 1. All data plotted
were subtracted by breast cancer cells stained with the fluorescent probe (CM-H2DCFDA)
but without CHCP treatment. CHCP-generated H2O2 and NO2

− concentrations were
measured in PBS by colorimetric, and corresponding concentrations of H2O2 and NO2

−

were added to the cells for intracellular ROS measurement as positive controls. Compared
to no treatment, treatment with CHCP 120 p at both 3 and 5 min caused a significant
increase in ROS levels in all breast cancer subtypes. Fluorescent intensity (Y-axis) was
brought to the same scale for each cell line treated by CHCP for 3 and 5 min for easy
comparison. Treatment with chemicals alone (H2O2 or NO2

− or in combination) also
induced increased ROS levels in all four subtypes, especially at higher concentrations, but
the increased intensity was much lower compared to CHCP-induced ROS.

The VAR() function in R was used in conjunction with the causality() function to
generate several models using the inputted data. Cell proliferation data, represented by
confluence data, were defined as one “effect” variable, and cell death, represented by
CA data, was the secondary “effect” variable. Tables 2 and 3 display the p-values and
coefficients of the cell proliferation models for the 3 and 5 min CHCP treatment times,
respectively, and Tables 4 and 5 display the outputs of the 3 and 5 min cell death models,
respectively. Significant models yielded p-values under 0.05, the chosen critical value, after
being treated with CHCP for a set amount of time. The absolute values of the coefficients
of regression were also outputted from the VAR() function. These coefficients indicate the
weight of causality. Only the coefficients of significant models can be accurately compared.

For the 3 min CHCP treatment models with cell proliferation set as the effect variable,
different variables displayed causality depending on the cell line studied. The significant
causal variables and their associated coefficients can be seen in Table 2. The models that
had significant Granger causal relationships were denoted as * (p < 0.05). The Ki-67 model
for SK-BR-3 was formulated based on data acquired after 80 p CAP treatment as opposed to
120 p because CHCP at 120 p eliminated all SK-BR-3 cells, making it technically impossible
for confocal microscopy to image any cells. This condition is present within all of SK-BR-3’s
Ki-67 models. The absolute value of the coefficients of regression represents the weight of
causality. CA was the only variable that lacked causality for the BT-474 cell line, whereas
it was the only one which demonstrated causality for the MDA-MB-231 cell line. The
intracellular ROS level did not display causality for cell proliferation in neither the MCF-7
nor the MDA-MB-231 cell lines but was significant in BT-474 and SK-BR-3. Based on the
weighted coefficients, CA showed the greatest causality for the MCF-7 and MDA-MB-231
cell lines, while Ki-67 showed the greatest causality for the BT-474 and SK-BR-3 cell lines.
Cell cycle activity data could not be collected for the SK-BR-3 cell line using the IncuCyte,
and hence no models could be formed to test causality.
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Figure 1. Intracellular ROS measurements of breast cancer cell lines at 0–48 h post CHCP treatment.
H2O2 and/or NO2

− were used as positive controls. All cells were treated by CHCP at 120 p for 3
and 5 min. (A,B) Treated MCF-7 cells. (C,D) Treated BT-474 cells. (E,F) Treated MDA-MB-231 cells.
(G,H) Treated SK-BR-3 cells.
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Table 2. p-values and coefficients of linear regression for all cell proliferation models for cells treated
for 3 min (* p < 0.05).

Cell Line Result Cause:
ROS

Cause:
Caspase

Cause:
Ki-67

Cause:
G1

BT-474
p-value 1.22 × 10−6 * 0.09563 0.02058 * 0.0003267 *

Coefficient of Regression 0.0029492 0.07529 0.03642 0.006221

MCF-7
p-value 0.2315 0.000879 * <2.2 × 10−16 * 1.38 × 10−13 *

Coefficient of Regression 0.00615 2.31185 1.23687 0.047372

MDA-MB-231
p-value 0.1305 6.271 × 10−8 * 0.2152 0.5003

Coefficient of Regression 0.0005864 0.20576 0.09413 0.002546

SK-BR-3
p-value 0.0006389 * 8.94 × 10−10 * 0.01111 * -

Coefficient of Regression 3.18 × 10−4 0.04626 0.06148 -

Table 3. p-values and coefficients of linear regression for all cell proliferation models for cells treated
for 5 min (* p < 0.05).

Cell Line Result Cause:
ROS

Cause:
Caspase

Cause:
Ki-67

Cause:
G1

BT-474
p-value 1.81 × 10−9 * 1.08 × 10−10 * 0.006065 * 0.001206 *

Coefficient of Regression 0.0008579 0.021373 0.07069 0.012123

MCF-7
p-value 0.0161 * 4.201 × 10−7 * 0.008426 * 1.19 × 10−12 *

Coefficient of Regression 0.0012449 0.10747 0.06238 0.028388

MDA-MB-231
p-value 4.50 × 10−6 * 1.161 × 10−8 * <2.2 × 10−16 * <2.2 × 10−16 *

Coefficient of Regression 0.0007024 0.08849 0.69244 0.022176

SK-BR-3
p-value 0.04855 * 3.34 × 10−12 * 1.81 × 10−8 * -

Coefficient of Regression 8.28 × 10−5 0.051128 0.08787 -

Table 4. p-values and coefficients of linear regression for all cell death models for cells treated for
3 min (* p < 0.05).

Cell Line Result Cause:
ROS

Cause:
Ki-67

Cause:
G1

BT-474
p-value 0.1823 0.08641 * 0.03197 *

Coefficient of Regression 0.001565 0.03311 0.003271

MCF-7
p-value 0.001521 * 0.0001978 * 0.000331 *

Coefficient of Regression 0.0012771 0.017391 0.0018635

MDA-MB-231
p-value 0.09577 0.2085 0.5509

Coefficient of Regression 0.0004847 0.09009 0.002259

SK-BR-3
p-value 5.16 × 10−7 * 0.000365 * -

Coefficient of Regression 2.48 × 10−4 0.25092 -
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Table 5. p-values and coefficients of linear regression for all cell death models for cells treated for
5 min (* p < 0.05).

Cell Line Result Cause:
ROS

Cause:
Ki-67

Cause:
G1

BT-474
p-value 0.01091 * 4.726 × 10−7 * 0.4513

Coefficient of Regression 0.00223 0.26380 0.005350

MCF-7
p-value 0.2384 0.1001 0.01122 *

Coefficient of Regression 0.0007537 0.06361 0.023061

MDA-MB-231
p-value 0.01123 * 0.01146 * 0.05247

Coefficient of Regression 0.0005037 0.23959 0.009367

SK-BR-3
p-value 5.98 × 10−5 * 0.006272 * -

Coefficient of Regression 2.46 × 10−4 0.55293 -

The same data analysis was conducted for cells treated with CHCP for 5 min. For the
5 min treatment, all variables showed causality (see Table 3) when proliferation was set
as the effect variable. Ki-67 showed the greatest causality for all cell lines, except MCF-7,
after 5 min of CAP treatment. ROS models had the lowest absolute valued coefficients
on average.

Models were also created with cell death, represented by the CA variable, as the effect.
These models are displayed in Table 4, for 3 min CHCP treatment. Cell proliferation was
omitted as a causal variable because a lack of cell proliferation does not have any definite
causal linkage to cell death. All inputted variables were causal for the MCF-7 and SK-BR-3,
while none were causal for MDA-MB-231. Only Ki-67 and G1 activity showed causality for
the BT-474 models. Ki-67 had the greatest causal relationship to CA across all cell lines.

Shown in Table 5, the same causality testing was then done for cell death using data
from cells that underwent CHCP treatment for 5 min. When comparing the 3 min and
5 min cell death models, it was seen that the G1 variable for BT-474 and the ROS and
Ki-67 variables for MCF-7 did not have significant causal link after 5 min CHCP treatment.
However, the same variables were considered significantly causal for the 3 min models.
This was inconsistent with the cell proliferation models, where all 5 min models were
statistically significant, including those that had p-values > 0.05 in the 3 min models.

The standard errors for the ROS, CA, Ki-67, and G1 models are presented in Table 6.
The error of the models varied greatly among cell types. The standard of error for each
model was computed from the causality() function in R, alongside the estimated p-values.
The SK-BR-3 ROS models had the smallest error on average, while the MCF-7 caspase
models had the largest.

Table 6. Standard of error for cell proliferation models.

Cell Line

Standard of Error

ROS Model Caspase Model Ki-67 Model G1 Model

3 min 5 min 3 min 5 min 3 min 5 min 3 min 5 min

BT-474 0.0005668 0.0001282 0.0447 0.002926 0.01545 0.02515 0.001665 0.003625

MCF-7 0.005106 0.0005075 0.67176 0.01969 0.11736 0.02316 0.005439 0.003437

MDA-MB-231 0.0003843 0.0001438 0.03487 0.01409 0.07541 0.04053 0.003762 0.001562

SK-BR-3 8.99 × 10−5 4.14 × 10−5 0.006755 0.006358 0.02371 0.01421 - -
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3.1. Model Validation

To validate the models, the vars, tseries, and forecast packages in R were utilized in
order to conduct diagnostic statistical testing on time-series models that had demonstrated
Granger causality (p-value < 0.05). Autocorrelation was utilized to determine if there was a
similarity present between observations as a function of the time lag between them [21].
Autocorrection existed across all cell lines, suggesting that previous observations of the
time series have an influence on the current state, whether that be of ROS, CA, and Ki-67
expression or G1 activity.

Another metric to consider is heteroscedasticity or the volatility of the changing
variance in data [27]. Heteroscedasticity is present if the dependent variable changes
significantly from the beginning to the end of the time series [21]. Heteroscedastic behavior
was demonstrated across all variables for each significant model. This indicates that there
were large ranges between the largest and smallest observed values of the data sets.

The last metric, stability, tests for the presence of structural breaks, which is important
because model accuracy declines when structural breaks go undetected [28]. CUSUM
processes, which contained cumulative sums of standardized ordinary least squares (OLS)
residuals, were computed, providing evidence as to whether or not a structural change
occurred. In a time-series analysis, structural changes represent shocks impacting the
evolution with time of the data generating process [28]. In order to fail the stability tests,
the data would need to fall outside of the red boundaries in the generated plots, which
were determined from the stability() function in R. An example plot of the stability test for
the 3 min treatment MDA-MB-231 Ki-67 model is shown in Figure 2. The data exhibit no
structural breaks as no point exceeds the red boundaries. After calculating and plotting
the empirical fluctuation process for all significant models, each variable was seen to pass
this metric.
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3.2. Model Verification

Another large portion of validation for this project was the software validation portion.
We wanted to test R’s ability in picking up on Granger causal relationships if data that
we knew had causal relationships were inputted. In order to input pseudo data that had
distinct causal links, four variables were generated in MATLAB [Version R2022a]—Y, Z, N,
and P. In order to generate these variables, Y was first defined as the first 48 values of a
sin() function. An upward trend was added by increasing each Y data point by a random
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value between 0.01 and 1.5. Then, a random component was added by adding a random
number within −1.5 and 1.5 to each Y value. Next, the variables Z, N, and P were made
with respect to Y. The variables Z, N, and P are as follows: Z = 2Y3 − Y2 + 5Y, N = 33Y,
and P = 3Y + 2. Once the test data set was completed, it was subsequently run through
the Granger causality code. All combinations of Y, Z, N, and P models were tried, and all
models resulted in a p-value of 2.2 × 10−16, which is how R outputs p-values less than
0.0001. In addition to running the test data set through the Granger causal code, the same
statistical VAR tests done for ROS, CA, Ki-67, and G1 data were also completed. All tests
were passed.

4. Discussion

The intracellular levels of ROS, CA, Ki-67+ count, and cell cycle activity can indepen-
dently help indicate whether cell proliferation or cell death is occurring for cells treated
with CHCP. This study thus aimed to pinpoint which variables affect cell proliferation and
cell death in a Granger causal manner. The Granger causal model is a prediction-based
statistical concept of causality in which empirical data is used to find patterns of correla-
tion. Granger causality is also known as a “bottom-up” procedure because it assumes two
time-series variables are independent of one another. The variables are then subsequently
analyzed for correlation. This is different from “top-down” procedures which initially
assume a link between the time series variables [21].

Prior to model generation, it was hypothesized that ROS would act as the main proxy
of causality due to the widespread effects of oxidation on the cell cycle. Intracellular ROS
measurements indicated that after CHCP treatment, all breast cancer cell lines underwent
oxidative stress, which gradually increased with post-treatment incubation time. For both
cell proliferation and cell death, while not all ROS models indicated Granger causality, as
seen by p-values > 0.05, this does not mean that ROS did not heavily influence upstream
actions. The effects of oxidative species may have affected other cellular processes in a more
direct manner. For the 3 min CHCP treatment cell proliferation models, it was seen that only
BT-474 and SK-BR-3 displayed ROS Granger causality. Both of these cell lines are HER2+,
with ER/PR receptors present in BT-474 cancer cells and no ER/PR receptors present in
SK-BR-3. The cell lines that did not display ROS causality, MCF-7 and MDA-MB-231, are
both HER2−. Ligand-mediated stimulation of HER2 receptors causes auto-phosphorylation
of key tyrosine residues that serve as docking sites for downstream signaling cascades
that regulate normal cell function by promoting growth and survival. However, when
disrupted, HER2 can spur on the growth of cancer [4]. Given this, HER2+ cell lines are
more likely to respond to treatment that directly targets the HER2 protein itself. The results
of this study may suggest that CHCP does directly affect the HER2 transmembrane protein
in a way that would signal Granger causality.

It was also seen that the coefficient of regression for the SK-BR-3 3 min ROS model
was significantly smaller than that of the BT-474 ROS model. This may be due to the fact
that SK-BR-3 has no hormone receptor, while BT-474 is both ER+ and PR+ [1]. Based on the
results, CAP-induced ROS may have a greater impact on cells with a greater number of
different receptors. A lack of hormone receptors may cause cells to have a certain degree of
tolerance to different oncological therapies, including CAP.

CA showed consistent causality for all of the 3 min cell proliferation models, except
that of the BT-474 cell line. This is because BT-474 treated by CHCP at 120 p for 3 min did
not induce activation of caspase (data shown in [14]). When treated for 5 min, CA of all
four cell lines showed causality towards proliferation, but BT-474’s coefficient being the
smallest also confirmed lower CHCP-induced caspase activation in this cell line.

It was also found that the Ki-67 variable had a clear causal relationship to cancer
cell proliferation for all cell lines except MDA-MB-231. The Ki-67 count increased as cells
prepared to divide, and with the generalized uncontrolled growth exhibited by cancer
cells, a large Ki-67 count indicates significant cancer growth [17]. Thus, tumor suppression
goes hand-in-hand with a decrease in Ki-67 due to its vital role in the continuance of the
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cell cycle itself [17,29]. The reason MDA-MB-231 did not display Ki-67 causality with cell
proliferation may be due to the cell line’s inherent level of resistance to CAP and its low
levels of Ki-67 already present within the cells [2,5]. MDA-MB-231’s receptor status may
also account for why the majority of its variables, including cell cycle activity in the G1
phase, showed no significant causality [5].

When analyzing the general outputs of the causality function, it was seen that all
variables displayed a Granger causal relationship with cell proliferation only after CAP
treatment for 5 min. This may suggest that CHCP directly initiates and executes apoptotic
cell death and reduces cell proliferation in a more pronounced way the longer the cells
are treated with the cold plasma. With longer treatment times, oxidative responses and
caspase-dependent events may increasingly influence the cleavage of specific substrates to
propagate the proapoptotic signal, directly influencing cancer cell proliferation [16]. Out
of the significant cell proliferation models, it can be seen that most of the coefficients of
regression for each cell line were greater for the 5 min treatment time than the coefficient for
the 3 min treatment time. This increase suggests that CAP effectively increases its influence
on cell proliferation inhibition as the cells are treated for longer periods of time. However,
CA demonstrated a decrease in its causal effect for each cell line as treatment time increased.
While causality is still observed, other variables must be considered. A longer treatment
time may enact other factors to play a larger role in reducing cell proliferation.

For the cell death models, it was seen that the 3 min MDA-MB-231 model detected
no causality for any variable. This, again, may be due to the highly aggressive nature
of the cell line as it lacks functional ER, PR, and HER2 expression. However, after being
treated with CAP for 5 min, ROS and Ki-67 showed causality. G1 remained insignificant.
G1 activity is a typical indicator of cell growth that is required for DNA synthesis and
mitosis, and therefore low G1 activity may elicit apoptosis and cell cycle arrest if regulatory
checks are not met within the cell cycle [18]. Yet, both the cell proliferation model for the
3 min treatment and the cell death model for both the 3 and 5 min treatments showed
no G1 phase causality for the MDA-MB-231 cell line. This may suggest that this specific
cancer type bypasses the regulatory checkpoints that are responsible to cease abnormal cell
proliferation, spurring on uncontrolled cancer cell growth.

It is important to note that although Granger causality was not detected for certain
relationships, this does not insinuate that one variable has absolutely no influence on
another. While the Granger causality formulation may not have picked up on any causal
links, there are many other variables and cellular intermediaries sparked by CAP that play
a role, no matter how indirect, in controlling cancer cell growth and cell death.

While the four cell lines examined in this study, BT-474, MCF-7, MDA-MB-231, and
SK-BR-3, are all invasive ductal/breast carcinoma cells, they have several phenotypic and
genotypic differences that make them metabolically unique [1]. The clinical heterogeneity
of the cell lines thus stems from their differences in sensitivity and responsiveness to
different treatments. Different treatment modalities may be implemented into these models
for future studies.

Limitations

Many limitations stemmed from the lack of data availability. Had daily raw data been
available for different cancer cell types, the models would have more successfully captured
the complexities of CAP treatment for varying cancer stages, morphologies, and chemical
intricacies. Increased cell-type diversity would have provided a more comprehensive view
of the subtleties each cancer type has in terms of cell cycle arrest and programmed cell
death. In addition, a consistently maintained data set on an hourly time-scale for each
variable would prevent the need for any interpolation and data estimating.

Even though statistical p-values were used to detect causality, the definition of sig-
nificance is subjective based on our critical value of 0.05. There is also a chance of type-1
error in which the statistical test concludes causality when in actuality there is not any,
and therefore further research should be conducted to verify our findings. It may also be
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beneficial to incorporate high-pass/low-pass filtering of the data, which would remove
any outliers present in the data.

As for model validation, heteroscedasticity tends to produce p-values that are smaller
than they should be. This effect occurs because heteroscedasticity increases the variance of
the coefficient estimates, but the OLS procedure does not detect this increase. Consequently,
OLS calculates the t-values and F-values using an underestimated amount of variance.
These values are statistical measures, which determine if there is a significant difference
between the two groups of data. This problem can lead one to conclude that a model term
is statistically significant when it is actually not significant.

In addition, error may in part be due to the fact that the raw data were originally
collected from different cell passages, meaning one experiment was conducted prior to
passaging or splitting the cells, while another may have been conducted after. The test
results may also be impacted by the data cleaning processes and interpolation that were
conducted prior to input into the model functions.

5. Conclusions

Our results demonstrate that Granger causality was present among all independent
causal variables (ROS, caspase, Ki-67, and G1 activity) and cell proliferation after 5 min
CHCP treatment. However, not all variables were causal for the 3 min models. This same
pattern did not exist for cell death models, which tested all potentially causal variables
(ROS, Ki-67, and G1 activity) vs. caspase activity. The receptor status for each cell line
studied greatly impacted the causal influence each variable had on cell proliferation and
cell death.

While the literature-based correlations among CAP, cell cycle arrest and cell death
have been hypothesized, little computational modeling has been used to test such theories.
Computational modeling aids in understanding the systematic series of microcellular
operations that occur with cancer treatment without the need for clinical randomized
controlled trials or costly research methods. The models thus serve to incentivize more
research in terms of what clinical adaptations should be taken to reduce the extent of
cancer’s burden on human health.

CHCP has demonstrated its ability to induce cellular oxidative stress, and the media
containing CHCP-generated species are more than the mere combination of hydrogen
peroxide and nitrite chemical solutions. Quantifying CHCP’s relationship to intracellular
reactive oxygen species, caspase, Ki-67 expression, and cell cycle activity in the G1 phase
elucidates the impact cold plasma has on disturbing different malignant cellular processes.
By harnessing CAP’s innate ability to elicit certain chemical reactions in order to cease
uncontrolled tumor formation, CAP has great potential as a fourth arm for cancer treatment
in addition to surgery, chemotherapy, and radiation therapy.
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