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Abstract: Aiming at the trajectory generation and optimization of mobile robots in complex and
uneven environments, a hybrid scheme using mutual learning and adaptive ant colony optimization
(MuL-ACO) is proposed in this paper. In order to describe the uneven environment with various
obstacles, a 2D-H map is introduced in this paper. Then an adaptive ant colony algorithm based on
simulated annealing (SA) is proposed to generate initial trajectories of mobile robots, where based
on a de-temperature function of the simulated annealing algorithm, the pheromone volatilization
factor is adaptively adjusted to accelerate the convergence of the algorithm. Moreover, the length
factor, height factor, and smooth factor are considered in the comprehensive heuristic function of
ACO to adapt to uneven environments. Finally, a mutual learning algorithm is designed to further
smooth and shorten initial trajectories, in which different trajectory node sequences learn from each
other to acquire the shortest trajectory sequence to optimize the trajectory. In order to verify the
effectiveness of the proposed scheme, MuL-ACO is compared with several well-known and novel
algorithms in terms of running time, trajectory length, height, and smoothness. The experimental
results show that MuL-ACO can generate a collision-free trajectory with a high comprehensive quality
in uneven environments.

Keywords: trajectory generation and optimization; mutual learning; adaptive ant colony algorithm;
2D-H map; de-temperature function

1. Introduction

Mobile robots are increasingly used in outdoor applications, such as search and rescue
missions, planetary ground surveys, and national defense security [1] where robots usually
have to face complex environments with an uneven terrain [2–4]. In such an environment,
the planned trajectory usually includes path segments with rapidly changing height and
multiple sharp turns. When the mobile robot passes through this section of the path, it
will consume more energy [5], which should be avoided. Therefore, this paper focuses
on trajectory generation and optimization to quickly find a short and smooth trajectory in
uneven environments.

In an uneven environment, it is obvious that ordinary 2D grid maps cannot reasonably
model the environment, so it is essential to build a map model that can better describe the
uneven environment. Generally, 3D modeling and 2.5D elevation maps are used in this
circumstance. In [6–8], 3D radar for 3D modeling was used which simulates the complex
uneven outdoor environment including stairs, slopes, etc. This method can accurately and
comprehensively grasp the specific information of the surrounding environment [9], but it
occupies a large amount of computer running memory and has poor timeliness, especially
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when the size of the environment increases. Therefore, scholars have tried to find simpler
and more applicable modeling methods. In [10–12], the authors tried to reduce the cost
of 3D radar modeling, using RGB-D (Red Green Blue-Depth) sensors to store the height
information and coordinates of the environment in the same grid to obtain a discrete 3D
grid map, namely a 2.5D elevation map. This paper proposes a 2D-H grid map based on a
2.5D elevation map, which maps the height information of the environment to a 2D plane.
Compared with the 2.5D elevation map, the 2D-H method further reduces the number of
calculations and saves memory space, which not only meets the needs of timeliness but is
also practical enough.

The goal of trajectory planning is to find a trajectory for a robot from a starting point to
an ending point without colliding with obstacles and meeting other constraints, such as the
trajectory length and smoothness. In recent years, trajectory planning has attracted much
attention in the field of robotics. Traditional methods, such as simulated annealing (SA) [13]
and the artificial potential field method (APF) [14], are widely used because of their ease
of understanding and implementation. However, [15] these methods may easily fall into
a local optimal solution and cannot reach the end point when a complex environment
is encountered.

When dealing with trajectory planning in a complex dynamic environment, intelligent
bionic algorithms often play an important role [16], including genetic algorithms (GA) [17],
neural networks [18], particle swarm optimization (PSO) [19], and the ant colony algorithm
(ACO) [20]. The GA algorithm has strong uncertainty in the planned trajectory due to
its large number of parameters and the randomness of the initial population [21]. In the
PSO algorithm, [22] the initial particles are randomly selected, which leads to a variety
of different planning results. [23]. Neural network algorithms spend a lot of time on
pre-training and adjusting parameters. Not only is the number of calculations significant,
but also the interpretability is not ideal. In an uneven environment with obstacles, the
uncertainty of the environment, such as the distribution of obstacles and the complexity of
the environment, brings difficulties to the trajectory planning of mobile robots. Therefore,
the required path planning algorithm needs a strong search ability and good stability.

ACO is a probabilistic technique to solve computational problems which is robust
and easy to combine with other methods [24,25]. In recent years, the ant colony algorithm
has been widely used in transportation, logistics distribution, network analysis, and other
fields [26]. Nevertheless, the traditional ant colony algorithm has the defects of a low search
efficiency and a slow convergence speed, and it is also easy to fall into local extremes.

Researchers have put forward various improved methods to optimize the search ability
of the ant colony algorithm. Li et al. [27] proposed an improved ant colony algorithm with
multiple heuristics (MH-ACO), which is better reflected in the global search ability and
convergence. However, the parameter setting is complex, which brings randomness to
the experiment. Akka et al. [28] used a stimulating probability to help the ants choose the
next grid and employed new heuristic information based on the principle of unlimited
step length to expand the field of view and improve the visibility accuracy. The improved
algorithm speeds up the convergence speed and expands the search space, but the safety of
the trajectory cannot be guaranteed. In addition, Ning et al. [29] designed a new pheromone
smoothing mechanism to enhance the search performance of the algorithm. When the
search process of the ant colony algorithm is close to stagnation, the pheromone matrix is
reinitialized to increase the diversity of the connections at the expense of a large time cost.

Furthermore, the improved ant colony algorithm is combined with some two-stage
trajectory planning methods. Chen et al. [30] proposed a fast two-stage ant colony algorithm
based on the odor diffusion principle, including two stages of preprocessing and trajectory
planning, which accelerated the convergence speed but did not consider the trajectory
optimization. Yang et al. [31] proposed a multi-factor improved ant colony algorithm
(MF-ACO) to solve the problem related to the fact that the trajectory planning algorithm
of mobile robots cannot cope with the complex actual environment. The maximum and
minimum ant strategy was adopted to avoid local optima. Then the dynamic tangent point
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adjustment method was used to smooth the path to further improve the quality of the
trajectory, but the smoothness needed to be further improved.

Although the above-mentioned improved algorithm attempts to improve the search
performance of ACO and speed up the convergence speed, it does not consider the height
information in the environment, which is different from ordinary raster maps, and the
convergence performance of ACO can be further improved. For trajectory planning and
optimization in complex and uneven environments, this paper proposes a trajectory gen-
eration and optimization method based on mutual learning and adaptive ant colony
optimization (MuL-ACO), which can make robots safely and quickly plan a short and
smooth trajectory in uneven environments. In this method, the global trajectory planning
of mobile robots is divided into two consecutive parts: the initial trajectory generation
and trajectory optimization. Firstly, the improved adaptive ant colony algorithm further
accelerates the convergence of ACO to quickly generate the initial trajectory. The initial
planned trajectory may contain redundant points and inflection points, which results in
high memory consumption and poor trajectory quality. Then, a trajectory optimization algo-
rithm based on mutual learning is proposed to further optimize the length and smoothness
of the initial trajectory.

The main contributions of this paper are as follows.

1. The 2D-H raster map is proposed to simulate the uneven outdoor environment. The
height information in the three-dimensional environment is stored in the 2D plane;

2. A hybrid scheme using mutual learning and adaptive ant colony optimization is pro-
posed in this paper. The global robot trajectory planning problem is divided into two
consecutive parts: the trajectory generation part and the trajectory optimization part;

3. An improved adaptive ant colony algorithm is proposed to generate the initial trajec-
tory. Considering the height information of the map, a comprehensive heuristic func-
tion including length, height, and smoothness is designed. Then, a new pheromone
adaptive update strategy is proposed through an improved simulated annealing
function to speed up the convergence of the algorithm.

4. A new trajectory optimization algorithm based on mutual learning is proposed to
optimize the generated initial trajectory. Firstly, feature ablation experiments are
carried out for each turning point to obtain the safety feature sequence of each turning
point. Then, each point learns from other points to gradually eliminate the points that
do not affect the trajectory safety to optimize the trajectory length and smoothness.
Finally, the shortest sequence of key points affecting trajectory safety is obtained.
Therefore, the algorithm optimizes the final trajectory in terms of smoothness, length,
and stability.

This research is structured as follows: Section 2 describes the environment and prob-
lems. Section 3 illustrates the improved adaptive ant colony algorithm. Section 4 describes
the framework and the process of the proposed trajectory optimization algorithm based on
mutual learning in detail. Section 5 presents the steps and flowcharts of a hybrid scheme
using mutual learning and adaptive ant colony optimization. Section 6 discusses the results
of the simulation experiment. Finally, Section 7 concludes the paper.

2. Environment Description and Problem Formulation
2.1. Environment Description

In an uneven environment, the working environment of a mobile robot is a 2D-H grid
map. The grid of the map is divided into grids occupied by obstacles, grids with height
information, and free grids.

In the 2D-H map, the obstacle grid is considered impassable, the free grid is considered
passable, and the height grid affects the quality of trajectories planned by robots. The
height grid is modeled by a normalized method, as shown in Equation (1). H(i) is the color
intensity value of the i-th height grid cell, and the color becomes darker as the value of H(i)
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increases, H(i) ∈ [0, 1]. h is a height function when h(i) > 0 and H represents the intensity
value of green, otherwise H represents the intensity value of blue.

H(i) =


max(h)−h(i)

max(h) , h(i) > 0
min(h)−h(i)

min(h) , h(i) < 0
(1)

Figure 1 shows the modelling process of the 2D-H map. The uneven environment here
is simulated with the peaks function, a probability density function of a binary Gaussian
distribution. Researchers can design other functions to simulate an uneven environment
according to different requirements. Figure 1a shows the three-dimensional model of
the mountain function and the contour mapping on the 2D plane. Figure 1b shows the
2D-H map generated by the peak function and obstacles, where black grid cells represent
obstacles, blue cells represent concave areas, and green cells represent raised areas. Here
the height information in the map and the location of static obstacles are known.
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Figure 1. The modelling process of the 2D-H map. (a) The 3D map of peak function. (b) The 2D-H
map generated by the peak function and obstacles.

2.2. Problem Formulation

Based on the 2D-H map, the problem of trajectory generation and optimization is
described as follows. Given a starting point and an ending point, a robot is expected to
plan an initial trajectory between them. In the trajectory generation stage, the optimization
is to minimize the length, height difference, and number of turns of the trajectory. Then,
in the trajectory optimization stage, redundant nodes of the initial trajectory are further
reduced to obtain a shorter and smoother trajectory.

The robot can only move one grid distance in a time step, the side length of one grid
is set to 1 m, and the height threshold is set to (−1 m, 1 m) to limit the movement of the
robot. The mobile robot is regarded as a mass point and moves at a fixed speed. As shown
in Figure 2, there are eight moving directions of the robot, which point from the center of
the current grid to the center of the adjacent eight grids. Figure 2b shows a trajectory of the
robot moving from the starting point to the target point. The planned trajectory is limited
by the height threshold, so the darkest blue and green grids are bypassed.



Appl. Sci. 2022, 12, 4629 5 of 23
Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 21 
 

 
 

(a) (b) 

Figure 2. (a) The moving direction of the robot; (b) The planned trajectory limited by the height 
threshold. 

3. Improved Adaptive Ant Colony Algorithm 
3.1. Basic Ant Colony Optimization 

Ant colony optimization is a metaheuristic algorithm inspired by the behavior of ants 
in nature. It imitates the foraging behavior of ant colonies to find the optimal trajectory in 
an unknown environment. Two factors determine the next step of ants, which are heuris-
tic information and pheromones. Heuristic information is obtained from the surrounding 
environment, and pheromones are the directional information emitted by the group. In 
the process of food searching, the ants release pheromones on the trajectory they walked 
by, which will attract other ants. As the number of ants on the same trajectory increases, 
pheromones are gradually accumulated, and more ants are attracted to the trajectory. Ac-
cording to the surrounding environment and experience, the transition probability of ants 
can be calculated by Equation (2). 

, ,

, ,,
 A

( ) ( )
,           A 

( ) ( )( )

,                                             A 
i

a

i j i j
iak

i j i ji j
s

i

k

k

t t
j

t tp t

0 j

β

β

τ η

τ η
∈

       ∈   =     

 ∉


 

(2)

where , ( )k
i jp t is the transition probability of the k-th ant from point i to point j at the t-th 

iteration,
, ( )i j tτ is the pheromone concentration from point i to point j, , ( )k

i j tη is the heu-

ristic function of the k-th ant from point i to point j, iA is a set of feasible points adjacent to 
j, and α and β are weights that control the relative importance of ,i jτ  and ,i jη . If the pro-
portion of α is larger, then ants tend to choose the trajectory that most of the previous ants 
have walked. If the proportion of β is larger, ants tend to choose the trajectory to traverse 
based on the heuristic information in the environment. Heuristic function and pheromone 
concentration directly affect the behavior of ants searching for trajectories. The heuristic 
function , ( )k

i j tη can be calculated by Equation (3), where jgd is the Euclidean distance be-
tween the next node j and the end point g. 

, ( )k
i j

jg

1t
d

η =  (3)

When all the ants complete the trajectory search, the pheromones will accumulate on 
the passing trajectory. The pheromone , ( )i j tτ  is updated once per iteration, as shown in 
Equation (4). 

, , ,( ) ( ) ( ) ( )i j i j

m

i j
k 1

kt 1 1 t tτ ρ τ τ
=

+ = − + Δ  (4)

Figure 2. (a) The moving direction of the robot; (b) The planned trajectory limited by the height threshold.

3. Improved Adaptive Ant Colony Algorithm
3.1. Basic Ant Colony Optimization

Ant colony optimization is a metaheuristic algorithm inspired by the behavior of ants
in nature. It imitates the foraging behavior of ant colonies to find the optimal trajectory in
an unknown environment. Two factors determine the next step of ants, which are heuristic
information and pheromones. Heuristic information is obtained from the surrounding
environment, and pheromones are the directional information emitted by the group. In
the process of food searching, the ants release pheromones on the trajectory they walked
by, which will attract other ants. As the number of ants on the same trajectory increases,
pheromones are gradually accumulated, and more ants are attracted to the trajectory.
According to the surrounding environment and experience, the transition probability of
ants can be calculated by Equation (2).

pk
i,j(t) =


[τi,j(t)]

a[
ηk

i,j(t)
]β

∑
s∈ Ai

[τi,j(t)]
a[

ηk
i,j(t)

]β , j ∈ A i

0, j /∈ A i

(2)

where pk
i,j(t) is the transition probability of the k-th ant from point i to point j at the t-th

iteration, τi,j(t) is the pheromone concentration from point i to point j, ηk
i,j(t) is the heuristic

function of the k-th ant from point i to point j, Ai is a set of feasible points adjacent to j, and
α and β are weights that control the relative importance of τi,j and ηi,j. If the proportion of α
is larger, then ants tend to choose the trajectory that most of the previous ants have walked.
If the proportion of β is larger, ants tend to choose the trajectory to traverse based on the
heuristic information in the environment. Heuristic function and pheromone concentration
directly affect the behavior of ants searching for trajectories. The heuristic function ηk

i,j(t)
can be calculated by Equation (3), where djg is the Euclidean distance between the next
node j and the end point g.

ηk
i,j(t) =

1
djg

(3)

When all the ants complete the trajectory search, the pheromones will accumulate on
the passing trajectory. The pheromone τi,j(t) is updated once per iteration, as shown in
Equation (4).

τi,j(t + 1) = (1− ρ)τi,j(t) +
m

∑
k=1

∆τk
i,j(t) (4)

∆τk
i,j(t) =

{
Q/Lk, if ant k visits i and j

0, otherwise
(5)
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Here ∆τk
i,j(t) is the pheromone increment left by ant k after passing the trajectory

between i and j, at the t-th iteration. ρ is the pheromone volatilization factor, which
adjusts the accumulation speed of the pheromone. Moreover, m is the total number of
ants. Generally, ∆τi,j(0) = C, C is the initial pheromone constant. Q is a constant, and
Lk is the total length of the trajectory passed by ant k in this iteration, which is inversely
proportional to ∆τk

i,j(t).

3.2. Improved Heuristic Function

To reduce the blindness of the ants in the early stage and to find a short and smooth
trajectory in an uneven environment, the heuristic function is redesigned. The smoothness
and height factors are added to the heuristic function, as shown in Equation (6). The
comprehensive heuristic function includes length d, a smoothing function s, and a height
function h.

ηi,j(t) = λd(i, j, g) + γh(i, j) + ψsk
i,j(t) (6)

In the heuristic function, the distance function d(i, j, g), height function h(i, j), and
smoothing function sk

i,j(t) are defined as follows. λ, γ, ψ are weight parameters and they
depend on the application.

d(i, j, g) =
dmax(j,g) − dj,g

dmax(j,g) − dmin(j,g) + 0.01
×ω (7)

where d(i, j, g) is the corrected distance from a certain adjacent grid cell j of the current grid
cell i to the target grid cell. d(i, j, g) is designed to enlarge the distance gap between adjacent
grid cells. dmax and dmin are the maximum and minimum distances between adjacent grid
cells and the end point. w is a correction parameter, and 0.01 avoids the situation where the
denominator is 0.

h(i, j) =

{ hmax−|h(i)−h(j)|
hmax−hmin+0.01 ×ω, |h(i)− h(j)| ≤ hc

∞, |h(i)− h(j)| > hc
(8)

where h(i, j) is the corrected height from the current grid cell i to a certain neighboring grid
cell j. h(i, j) is designed to guide ants to visit flatter grid cells. hc is the height constraint
value of the robot, which should meet the limit of the height threshold. hmax and hmin are
the maximum and minimum height differences between adjacent grid cells and the current
grid cell. w is a correction parameter, and 0.01 avoids the situation where the denominator
is 0.

sk
i,j(t) =

{
u, dirk

a,i(t) = dirk
i,j(t)

0.1 ∗ u, otherwise
(9)

where sk
i,j(t) is the smoothness of the trajectory passed by the k-th ant in the t-th iteration.

Generally, ants can move in eight directions adjacent to the current grid. Suppose an ant
reaches the current point i from a, and then goes to the next point j. If the moving direction
of the previous step dirk

a,i is consistent with the moving direction of dirk
i,j, the reward u will

be given, and the value of u is set to 5 in this paper.

3.3. SA-Based Adaptive Adjustment Strategy of Pheromones

In the traditional ant colony algorithm, the pheromone is often a fixed value and will
not automatically adjust with the iteration situation. Ants search blindly in the early stage
due to the low concentration of pheromones. In the later stage, pheromones will accumulate
in a large amount, which will reduce the diversity of trajectory selection. Therefore, the
fixed increase in the pheromones cannot meet the requirements of search efficiency and
will slow down the convergence speed.
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Based on the temperature update function of the simulated annealing algorithm,
this paper proposes a new annealing strategy to dynamically update the pheromone
volatilization factor. The temperature T is an important control parameter in the simulated
annealing algorithm, which determines the annealing direction and the running speed of the
algorithm. As the iteration makes the de-temperature function have linear characteristics,
the running speed of the de-temperature function is further improved. Moreover, a dynamic
pheromone volatilization factor ρ is designed to realize the adaptive update of pheromone.
ρ is set by Equations (10) and (11).

ρ = l − exp(−(µ/Ti)) (10)

T(i) =

 Tend + (Tstart−Tend)∗(Imax−Ii)
Imax

, Ii ≤ Imax
2

Tend + (Tstart−Tend)∗(Imax−(Imax−Ii))
Imax

, Ii >
Imax

2

(11)

where µ is a constant and Ti is the current temperature, which is calculated by the de-
temperature function T(i). Imax is the number of maximum iterations. Tstart is the initial
temperature, and Tend is the final temperature. As the number of iterations increases, the
de-temperature function linearly decreases and then rises to further increase the running
speed of the de-temperature function. To achieve better experimental results, the value
of parameter µ is discussed in this paper. Other parameters are set to: Tstart = 100,
Tend = 0.1, Imax = 50.

In the previous work, many experiments were performed to determine the value of
µ, and finally three possible and suitable values were selected and are discussed in this
paper. The values of µ were set to 33, 50, and 90, respectively, to calculate ρ according to
Equation (10). The adaptive change curve of ρ is shown in Figure 3. In the early stage,
the volatilization factor ρ is small, which is conducive to accumulating pheromones and
improving the directionality of the ants’ search. In the mid-term, ρ becomes larger to speed
up the iteration speed of the algorithm and to avoid falling into the local optimum. In the
later stage, ρ becomes small to accelerate convergence.
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To further test the influence of the value of µ on the convergence of the improved adap-
tive ant colony algorithm (IAACA) proposed in this paper, three benchmark functions were
applied for verification. Other swarm intelligence algorithms including ACO, PSO, Grey
Wolf Optimizer (GWO) [32] were chosen to compare with IAACA in terms of convergence
performance. Table 1 presents the details about the different types of benchmark functions.
The three benchmark functions had a minimum value of 0, the particle dimension was set
to 10, and the value range of x and y was (−5.12, 5.12). Sphere is a unimodal function, while
Rastrigin and Ackley are multimodal functions with many local values and difficult to solve.
These three benchmark functions were suitable for testing the convergence performance of
the algorithm.
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Table 1. Description of benchmark functions.

Functions Function Expressions Range Dim fmin

Sphere F1 =
D
∑

i=1
x2

i
[−5.12, 5.12] 10 0

Rastrigin F2 =
D
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12, 5.12] 10 0

Ackley F3 = −20 exp

(
−0.02

√
1
D

D
∑

i=1
xi

)
− exp

(
1
D

D
∑

i=1
cos(2πxi)

)
+ 20 + e [−5.12, 5.12] 10 0

The convergence curves of PSO, GWO, ACO, and IAACA (µ = 33, µ = 50, µ = 90)
corresponding to the three benchmark functions are shown in Figure 4. It can be seen from
Figure 4 that the convergence performance of IAACA was the best when µ = 33. As shown
in Figure 4a, the convergence performance of IAACA (µ = 33) was better than the other
three algorithms. Although GWO converged rapidly downward, it still did not converge
in the end. In Figure 4b,c, IAACA (µ = 33) and GWO converged at around 50 iterations,
and the convergence performance was better than the other two algorithms. Figure 4b,c
showed that IAACA (µ = 33) and GWO had a better convergence performance, but IAACA
(µ = 33) was more stable from Figure 4a.
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4. Mutual Learning-Based Trajectory Optimization Algorithm

To reduce the redundant nodes of the initial trajectory generated by the adaptive
ant colony algorithm to further optimize the length and smoothness of the trajectory, a
trajectory optimization algorithm based on mutual learning is proposed. Firstly, feature
ablation experiments were carried out for each turning point to obtain the safety feature
sequence of each turning point. Then, each point learns from other points to gradually
eliminate the points that do not affect the trajectory safety to optimize the trajectory length
and smoothness. Finally, the shortest sequence of key points affecting trajectory safety is
obtained. The proposed algorithm achieved a smooth trajectory and minimized the length
of the trajectory. At the same time, the wear of the robot’s steering to follow the planned
trajectory was reduced.

For instance, as shown in Figure 5, the feasible initial trajectory Lold:
S→ N1 → . . .→ N8 → . . .→ E is usually not the best trajectory. After the trajectory
optimization algorithm based on mutual learning is optimized once, the trajectory L1 can
reach the end point without passing through the N1 point. When the optimization is
completed, the final trajectory Lbest can even reach the end point directly through the N8
point. Consequently, Lold is optimized to Lbest: S→ N8 → E , which optimizes the length
and smoothness of the initial trajectory. The algorithm is described as follows.
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Figure 5. The initial trajectory and the trajectory optimized by mutual learning.

The initial trajectory Lold, including the starting point S and the ending point E, can be
represented by a set of all turning points N = {S, N1, N2, . . . , Ni, . . . , Nn, E}, i ∈ [1, n], and
the coordinates of the point set are represented by Equation (12).

R = {(x0, y0), (x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xn, yn), (xn+1, yn+1)} (12)

To learn the collision characteristic of each turning point, it is assumed that there are n
initial individuals Pi represented by the characteristic matrix (13). Then each individual
subjected to a characteristic ablation experiment, and the characteristic zero point is set by
Equation (14).

Pi = [N0, N1, N2, . . . , Ni, . . . , Nn, Nn+1] (13)

Ni =

{
0, Ni is ablated
1, otherwise

(14)

A reward and punishment step are added to determine whether the i-th individual Pi
reaches the target directly from the starting point without collision. The cost function is
Li(Pi) calculated by Equation (15), Lold is the length of the initial trajectory, and Li is the
trajectory length of the current individual.

Li(Pi) =

{
Li , i f Pi no collision
Lold, otherwise

(15)
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Li =
n+1
∑

k=0
dNk ,Nk+1 = dN0,N1 + dN1,N2 + . . . + dNk−1,Nk + dNk ,Nk+1 + . . . + dNn ,Nn+1 , i f (Nr = 0)

= dN0,N1 + dN1,N2 + . . . + dNr−1,0 + d0,Nr+1 + . . . + dNn ,Nn+1

= dN0,N1 + dN1,N2 + . . . + dNr−1,Nr+1 + . . . + dNn ,Nn+1

(16)

dNk ,Nk+1 =

√
(xk − xk+1)

2 + (yk − yk+1)
2 (17)

The current individual Pi learns from each other in turn with other individuals Pj,
and learns the collision characteristics of each other’s nodes to obtain the best individual.
Suppose P1 is the current individual, the mutual learning process is shown in Figure 6.
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In the first stage of initialization, each turning point is subjected to an ablation exper-
iment to obtain the feature and feature sequence of the point, which can be obtained by
Equation (14). In the second stage of mutual learning, individuals start from P1 and learn
from each other in turn. The learning method is to compare the value of the cost function,
and individuals with high values learn from individuals with low values. In the third stage
of the individual update after mutual learning, if the current individual penalty value Li

does not increase, the old individual Pi is updated to the new individual
·
Pi according to

the cost function, otherwise, it is not updated. The individual is updated by Equation (18).

P̂i =

{ .
Pi , i f L̂i

( .
Pi

)
< Li(Pi)

Pi , otherwise
(18)
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The ultimate goal of the mutual learning trajectory optimization algorithm is to
generate an optimized path with fewer turns Dbest and a shorter length Lbest.

Lbest = min
{

L̂1, L̂2, · · · , L̂i, · · · , L̂n
}

(19)

Dbest = length {Pbest 6= 0} (20)

Algorithm 1. The pseudo code for MLTO.

Algorithm 1. Mutual learning-based Trajectory Optimization Algorithm

1: input turning point set N
2: initialize point set N as feature individual Pi by (13)(14)
3: calculate the reward and punishment function Li by (15)(16)(17)
4: for i = 1 to n do
5: for j = 1 to n do
6: if Lj is not more than Li then
7: Pi learns feature zero through Pj, and calculate L̂i
8: Pi will be updated to P̂i by (18)
9: else
10: Pj learns feature zero through Pi, and calculate L̂j
11: Pj will be updated to P̂j by (18)
12: end if
13: end for
14: end for
15: if Lbest is equal to the initial trajectory L then
16: the optimal trajectory is initial trajectory L, number of turns is D
17: else
18: calculate the length of the optimal trajectory and the number of turns by (19)(20)
19: end if
20: output the number of turns: Dbest
21: output the shortest trajectory: Lbest

5. A Hybrid Scheme Using MuL-ACO for Trajectory Generation and Optimization

For the robot to effectively find a short and smooth trajectory while avoiding crossing
steep areas, a hybrid scheme using mutual learning and adaptive ant colony, namely,
MuL-ACO, is presented in this work. Figure 7 shows the flow chart of the scheme.

Step 1: Establish a 2D-H grid map based on the uneven environment and initialize
the parameters. Set the starting point S, the end point E, the number of ants
k, the maximum number of iterations Imax, pheromone heuristic factor α, ex-
pected heuristic factor β, pheromone intensity coefficient Q, and the initial
pheromone τ(0).

Step 2: Trajectory selection. Calculate the heuristic function by Equation (6). The ant is
placed at the starting point and the probability of transferring to the next node
is calculated by Equation (2). All trajectory nodes from the starting point to the
current point are stored in the Tabu list.

Step 3: Determine whether all the ants have completed the trajectory search in this
generation. If it is, go to step 4, otherwise, return to step 2.

Step 4: Record the nodes of the trajectory walked by all ants and find the optimal
trajectory in this iteration.

Step 5: Adjust the pheromone volatilization factor ρ adaptively, according to Equations
(10) and (11). Update the pheromone by Equation (4). Re-zero the taboo table.

Step 6: Determine whether the maximum number of iterations Imax is reached. If it is,
go to step 7, otherwise, return to step 2.

Step 7: Initial trajectory generation. Obtain the optimal trajectory node and total height.
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Step 8: Trajectory optimization. The trajectory optimization algorithm based on mutual
learning, such as Algorithm 1, is used to optimize the initial trajectory. Calculate
the optimal trajectory including length, height, and number of turns.
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6. Experiment

In this section, four sets of simulation experiments were conducted to evaluate the per-
formance of the MuL-ACO scheme. In the first set of experiments, the algorithm proposed
in this paper was compared with other intelligent algorithms, which are the well-known
GA and the novel sparrow search algorithm (SSA) [33]. In the second set of experiments,
the algorithm proposed in this paper was compared with the traditional ACO and other
improved ACO, which are MH-ACO and MF-ACO. Two groups of experiments were
carried out on maps with different sizes and different numbers of obstacles. The third set
of experiments was set with different starting points and ending points on a map, and com-
pared with the proposed algorithm with ACO, MH-ACO, and MF-ACO. To further verify
the effectiveness of the improved algorithm, the fourth set of experiments was simulated in
a dynamic environment. Furthermore, the height threshold of uneven environments was
set to (−1 m, 1 m) to constrain the robot’s trajectory search. The initial trajectory is given
on each map to show the process of trajectory generation and optimization.

To build the environment map of the mobile robot, 2D-H grid maps with differ-
ent sizes, obstacles, and terrains were modeled by the MATLAB simulation platform,
where the blue areas are low terrain areas, and the green areas are high terrain areas.
Obstacles were randomly placed on the map and start and end points were set. All
experiments were performed on the same PC to obtain an unbiased comparison of CPU
time. Parameters of MuL-ACO were set as the following: k = 50, Imax = 50, α = 3, β = 6,
C = 10, Q = 100, u = 5 , w = 8, hc = 1, τ(0) = 20 , µ = 33, λ = γ = ψ = 1.
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6.1. Simulation Experiment A

In this experiment, six maps of 20 × 20 m were selected for simulation, which differed
in the number of obstacles and the shapes of obstacles. Figure 8 shows the optimal
trajectories planned by GA, SSA, and MuL-ACO. To obtain more specific performance
indicators, including length, number of iterations, smoothness, height difference, and
running time, the experiment was performed 30 times to obtain the average value. Table 2
summarizes the qualitative comparison of the performance of MuL-ACO, GA, and SSA.
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Table 2. Simulation results of GA, SSA, and MuL-ACO.

Name Map NO. Length Iterations Turns Height
Difference Time (s)

GA

a 28.7 32 10 5.6 9.2
b 29.7 38 9 5.4 12.5
c 28.5 37 8 4.2 10.7
d 28.1 31 5 5.3 10.4
e 28.6 39 7 6.7 12.6
f 29.0 34 6 4.1 9.5

SSA

a 29.6 28 9 4.3 0.7
b 29.9 25 9 5.7 0.9
c 30.7 26 7 3.1 0.5
d 31.4 37 6 2.8 0.8
e 28.9 21 10 7.2 0.6
f 29.3 23 6 7.5 0.6

MuL-ACO

a 32.4 7 5 0.9 1.4
b 29.8 6 6 1.2 1.3
c 28.0 8 2 0.3 1.5
d 27.9 9 3 0.5 1.7
e 28.7 6 3 0.4 1.3
f 28.2 7 2 2.1 1.6

In Figure 8a–f, the trajectory planning based on MuL-ACO tended to bypass steep or
concave areas and generated a comprehensive optimal target trajectory with good safety,
fewer turns, and a shorter length. The main reason is that MuL-ACO introduces the
height factor in environments into the heuristic function, and the trajectory optimization
algorithm based on mutual learning further optimizes the trajectories. In contrast, the
GA and SSA algorithms do not actively bypass steep or concave areas when generating
trajectories, so mobile robots will incur certain losses when following trajectories and the
quality of trajectories is average. In the case of a small difference in trajectory length,
as shown in Figure 8a,b,e, MuL-ACO can find a flatter and safer trajectory through the
trajectory optimization algorithm based on mutual learning. In Figure 8c,d,f, the trajectories
generated by MuL-ACO were shorter, smoother, and safer than GA and SSA.

As shown in Table 2, compared with GA and SSA, the hybrid scheme of MuL-ACO
proposed in this paper had a large improvement in the convergence performance, which
was about 70% to 85%. The reason is that the SA-based pheromone adaptive adjustment
strategy accelerated the convergence of the algorithm. In terms of the height difference
of the trajectory, the trajectory planned by MuL-ACO tended to avoid passing through
steep uneven areas, so the total height difference of the trajectory was lower than GA
and SSA. Compared with the other two algorithms, the final trajectory generated by the
mutual learning-based trajectory optimization algorithm was better in terms of length and
smoothness. In addition, it can be seen from Table 2 that MuL-ACO had a shorter running
time when planning the trajectory.

6.2. Simulation Experiment B

In this experiment, six maps of 30 × 30 m were selected for simulation, which differed
in the number of obstacles and the shapes of obstacles. Start and end positions were given
randomly, as shown in Table 3. MuL-ACO was compared with ACO, MH-ACO, and
MF-ACO in larger and more complex uneven environments.
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Table 3. Simulation environment description.

Map NO. Name Start Point End Point

1 X-type (0.5, 0.5) (25.0, 23.0)
2 Z-type (1.0, 24.0) (25.0, 10.0)
3 Complex1 (0.5, 0.5) (26.0, 23.0)
4 Complex2 (0.5, 0.5) (29.0, 24.0)
5 Complex3 (1.0, 0.5) (29.0, 27.0)
6 Vortex (28.0, 20.0) (13.0, 15.0)

Figure 9 shows the best trajectory planned by each method. It is obvious that the
trajectory planned by the method proposed in this paper had fewer turns, good smoothness,
and short length, while bypassing steep or concave terrain. In simple scenes, as shown
in Figure 9c,d,e, the trajectory planned by MuL-ACO was smoother and bypassed steep
or concave areas as much as possible. In more complex scenes (Map 1 and Map 6), the
difference in the quality of the trajectories was more obvious. As shown in Figure 9a, the
trajectories planned by ACO and MH-ACO extended along the edge of the obstacle result-
ing in multiple turns. Although the MF-ACO algorithm avoided local traps when planning
trajectories, its trajectory height and smoothness were worse than MuL-ACO. Especially
in Vortex map 6, as shown in Figure 9f, the traditional ACO failed to generate a trajectory
from the starting point to the end point, and MH-ACO often fell into a local trap and could
not escape. Although MF-ACO could work normally, the quality of the trajectory was not
ideal. MuL-ACO had a good performance due to the improved heuristic function and
adaptive pheromone adjustment strategy. Moreover, the trajectory optimization algorithm
based on mutual learning is suitable for different maps. Therefore, the scheme proposed in
this paper is not affected by changeable environments and can plan the trajectory with a
good comprehensive quality.

As shown in Table 4, 30 experiments were performed on six different maps to obtain
the specific average performance metric of the algorithms. Figure 10 shows the performance
comparison of MuL-ACO and the other three algorithms on 6 maps, which more clearly
highlights the advantages of the proposed scheme in terms of length, number of iterations,
number of turns, and the height difference of trajectory. From the specific data and the line
graph, it can be seen that the method proposed in this paper was significantly better than
the other algorithms in the number of iterations and the number of turns, reducing them
by about 66.7%~87.5% and 80%~94.7%. Moreover, compared with other algorithms, the
trajectory length was reduced by about 6%~23.3%. Furthermore, the MuL-ACO scheme
did not choose a steep route to reduce the wear of the mobile robot in uneven terrain. The
height difference of the trajectory was reduced by 15.9%~68.2%. As shown in Table 4, in
Maps 1, 2, 3, and 6, although the running time of MuL-ACO was not the shortest, the gap
between the running time of MuL-ACO and the shortest running time was no more than
0.3 s. In some complex maps (Map4 and Map5), the running time of MuL-ACO was even
about 0.1 s~0.8 s less than other algorithms, which provides the possibility for trajectory
planning in dynamic environments.
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Table 4. Simulation results of ACO, MH-ACO, MF-ACO, and MuL-ACO.

Name Map NO. Length Iterations Turns Height
Difference Time (s)

ACO

1 60.80 40 38 7.59 2.02
2 67.41 39 25 16.71 2.73
3 41.2 38 22 7.36 1.41
4 43.60 32 17 6.48 1.63
5 43.0 30 14 7.45 1.71
6 —— —— —— —— ——

MH-ACO

1 56.82 27 15 2.29 2.30
2 66.30 21 13 9.31 2.53
3 44.21 28 14 6.72 1.54
4 43.40 25 8 5.10 1.72
5 43.60 23 12 1.55 1.74
6 78.40 19 31 8.15 2.57

MF-ACO

1 54.27 15 10 3.44 1.93
2 74.10 12 14 9.98 2.87
3 44.57 23 15 5.54 1.96
4 43.41 18 9 3.33 2.28
5 46.80 13 7 4.38 2.39
6 73.62 16 22 6.93 2.54

MuL-ACO

1 46.38 6 2 1.51 2.11
2 60.21 5 6 5.34 2.65
3 42.88 5 9 2.18 1.61
4 39.70 7 2 0.42 1.52
5 43.10 8 3 1.56 1.55
6 55.93 9 7 5.88 2.83
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6.3. Simulation Experiment C

In this group of experiments, the Complex2 map of simulation experiment B was
selected. Moreover, different starting points and ending points were randomly set to
diversify the experimental results. Figure 11 shows the optimal trajectories planned by
ACO, MH-ACO, MF-ACO, and MuL-ACO. Table 5 summarizes the qualitative comparison
of the performance of algorithms.
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Table 5. Simulation results of ACO, MH-ACO, MF-ACO, and MuL-ACO on the map with different
starting points and ending points.

Name

Map
(with Different
Start and End

Points)

Length Iterations Turns Height
Difference Time (s)

ACO

a 34.80 37 11 6.81 1.51
b 35.80 25 16 7.44 1.40
c 31.62 23 12 3.63 1.53
d 38.60 15 21 11.02 1.52

MH-ACO

a 41.80 23 5 0.34 1.63
b 35.20 17 5 1.49 1.53
c 32.80 14 8 2.65 1.55
d 41.00 11 8 0.38 1.66

MF-ACO

a 36.60 17 7 2.40 2.20
b 36.20 13 6 2.07 2.10
c 32.20 9 4 3.23 2.24
d 40.20 10 4 4.33 2.13

MuL-ACO

a 40.09 11 3 0.39 1.38
b 34.84 9 3 1.49 1.12
c 30.89 10 3 3.04 1.24
d 39.42 6 4 0.38 1.50

In Figure 11a,d, compared with other algorithms, MuL-ACO found a flatter and
smoother trajectory for the robot. Although MH-ACO and MF-ACO also tended to find
flat trajectories, the planned trajectories were not smooth enough. In Figure 11b,c, the
trajectories planned by different algorithms were concentrated in the same area with height.
Moreover, the cost of bypassing this height area was high. The hybrid scheme proposed in
this paper did not completely bypass the height area but planned a shorter and smoother
trajectory with a small height difference.

As shown in Table 5, the MuL-ACO hybrid scheme proposed in this paper had great
advantages in smoothing performance. In terms of the height difference of the trajectories,
the trajectories planned by MuL-ACO tended to bypass uneven areas, and the total height
difference of the trajectories was lower than that of ACO, MH-ACO, and MF-ACO. Further,
compared to other algorithms, MuL-ACO had the least number of iterations and the
shortest running time. The hybrid scheme proposed in this paper runs stably and plans
trajectories with a high comprehensive quality.

6.4. Simulation Experiment D

In this section, the feasibility of the proposed scheme in dynamical environments,
which consisted of 2 dynamic obstacles represented by red blocks and other static obstacles
represented by black blocks, was tested. The starting point of the mobile robot was (3.5, 2.5),
and the end point was set to (28.5, 28.5). The dynamic obstacles moved vertically down and
right at a rate of 2 m per time step and moved a total of 6 steps. Figure 12 shows the process
of MuL-ACO generating the optimal trajectory. In the initial trajectory generation stage,
the planned trajectory avoided steep regions and dynamic obstacles in the environment
and contained several redundant trajectory nodes. In particular, it can be seen that the
planned trajectory actively bypassed the vertical downward moving obstacles and adjusted
the trajectory to reach the end point. In the trajectory optimization stage, the length and
smoothness of the initial trajectory were minimized by a mutual learning-based trajectory
optimization algorithm. The specific length and smoothness of the initial trajectory and
the optimized trajectory are given in Table 6. Clearly, the proposed scheme can stably plan
desired trajectories in dynamic environments.
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Table 6. Simulation results of (un)MH-ACO and MuL-ACO.

Name Map NO. Length Turns

(un)MuL-ACO

a 41.6 7
b 42.0 9
c 40.8 11
d 40.2 8
e 40.8 7
f 42.6 6

MuL-ACO

a 39.2 2
b 39.1 3
c 38.6 4
d 38.3 3
e 39.5 2
f 39.3 2

7. Conclusions

Aiming at the trajectory generation and optimization of mobile robots in an uneven
environment, a hybrid scheme using mutual learning and adaptive ant colony optimiza-
tion (MuL-ACO) was proposed in this paper. The initial trajectory was generated by an
improved adaptive ant colony algorithm, and then a mutual learning-based trajectory opti-
mization algorithm completed the trajectory optimization. The comprehensive heuristic
function and the adaptive method based on the improved temperature reduction func-
tion greatly improved the performance of the ant colony algorithm. Another advantage
is that the proposed scheme had a clear division of labor to stably provide high-quality
feasible solutions.

Experiments conducted in uneven environments of different scenes and sizes modeled
by 2D-H maps showed that the trajectory planned by MuL-ACO was superior to the
other five algorithms in terms of smoothness, height difference, length, and algorithm
convergence. Especially in more complex and larger maps, the MuL-ACO scheme was
more adaptable and could stably plan a trajectory with a higher comprehensive quality. In
the future, the proposed hybrid method may be further optimized and could be applied
to more complex scenarios, such as multi-agent scenarios with multiple objects and social
interaction scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:
ACO adaptive ant colony optimization
MuL-ACO mutual learning and adaptive ant colony optimization
MH-ACO multiple heuristics adaptive ant colony optimization
MF-ACO multi-factor adaptive ant colony optimization
SA simulated annealing
RGB-D Red Green Blue-Depth
APF artificial potential field method
GA genetic algorithms
PSO particle swarm optimization
GWO grey wolf optimizer
IAACA improved adaptive ant colony algorithm
MLTO Mutual learning-based Trajectory Optimization Algorithm
SSA sparrow search algorithm
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