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1. Introduction

Advancements in artificial intelligence (AI) based on machine and deep learning
are transforming certain medical disciplines. When combined with the rapid progress in
high-performance computing, AI-based systems have enhanced the accuracy of diagnostics
and the efficiency of therapeutics in many specializations. Advanced AI algorithms can
extract features from a significant amount of healthcare data and then apply them to clinical
practice. Furthermore, depending on feedback, the algorithm’s accuracy is improved by
its self-correcting abilities. Consequently, an AI-based healthcare support system can help
physicians deliver optimal patient care by reducing diagnostic and therapeutic errors that
unavoidably occur in human-based clinical practice [1]. In addition, such AI-based systems
can extract meaningful information from a large patient population’s data to draw real-time
conclusions related to health risk alarms and health outcome projections.

According to experts, diverse healthcare sectors including chronic illness management
and clinical decision-making can expect to be substantially impacted by AI. While AI
algorithms are still in the early stages of deployment, they show promise in fields including
radiology, pathology, ophthalmology, and cardiology [2]. Such progress poses interesting
questions about whether AI will eventually displace clinicians, enhance their professional
prospects, or some combination of both.

This Special Issue’s objective is to advance research into a wide range of multidis-
ciplinary perspectives on AI theory and its applications in medicine, medically oriented
human biology, and general healthcare. The topics covered include (but are not limited to)
AI in biomedicine and clinical medicine, machine learning-based decision support, robotic
surgery, data analytics and mining, laboratory information systems, and AI in medical
education. We stress the practical aspects of each study, emphasizing the importance of
including a clinical evaluation of the utility and potential impact of the work.

2. Review of Issue Contents

This Special Issue presents ten original papers that cover the latest technologies and
advances in the design of intelligent medical systems and applications. Moreover, each
paper contributes to research that affords insights into the processing of medical data
collected from patients.

Visual acuity (VA) measures the ability to distinguish the shapes and details of objects
at a given distance. However, in some cases, such as unconsciousness or disease e.g.,
dementia, it may be impossible to measure VA using traditional chart-based methods. In [3],
Kim et al. propose a machine-learning-based VA measurement method that determines
VA from fundus images only. Three models, SVM, VGG-19, and EfficientNet-B7, were
ensembled to predict categories. This is a precedent for applying artificial intelligence in
medical practice to measure VA using fundus images.
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Neuroimaging must often process a large amount of data with significantly fewer
cases than the number of variables, which results in overmatching. To prevent this prob-
lem, Belenguer-Llorens et al. [4] propose a new dual Bayesian linear regression model
with feature selection (DBL-FS) that effectively reduces the number of samples with high-
dimensional features. This relies on including an automatic relevance determination prior
(ARD) over the weight matrices, which automatically infers the features’ relevance in
the input feature space by assigning higher/lower relevance values when they contain
more/fewer relevant features.

In addition, the DBL-FS Bayesian approach facilitated prior expert knowledge to guide
the FS process and compensated for the limited number of samples available to train the
model. The advantage of using DBL-FS allowed the detection and characterization of
morphometric brain changes in a schizophrenic rodent model.

Image segmentation is used to analyze medical images quantitatively for diagnosis
and treatment planning. This is because manual segmentation requires considerable expert
effort and time. Ju et al. [5] propose a deep learning tool that easily creates training data to
mitigate this inconvenience. This study was performed using two types of information:
visual features and organ segment locations. The proposed model consists of two submod-
ules: a feature encoder and a kernel function. The kernel function incorporates feature
similarity density and Gaussian kernel density. The tool demonstrates competitive results
when compared to state-of-the-art segmentation algorithms, such as UNet and DeepNetV3.
The tool can be trained with minimal labeled data, uses anchor pixels from user interactions
to segment organs easily, and refines the segmentation results by modifying the thresholds.
Hofmann et al. [6] used machine learning to predict whether patients with schizophre-
nia exhibit aggressive behaviors. Up-sampling was used to process a small number of
categories to balance the data, reduce variables using the random forest algorithm, and
build machine learning models by including the logistic regression, trees, random forest,
gradient boosting, k-nearest neighbor (KNN), support vector machines (SVM), and naive
Bayes approaches. The performance of the SVM model was superior to the other machine
learning algorithms. Negative behavior towards other patients was identified as the most
indicative factor for distinguishing aggressive from non-aggressive patients. Its application
may enable clinicians to identify high-risk patients at an early stage, modify their treatment
accordingly, and prevent aggressive events during hospitalization.

Identifying the locations and extent of brain infarctions is essential for diagnosis and
treatment. In general, deep learning requires large amounts of training data. To overcome
this problem, Yoshida et al. [7] generated pseudo-patient images using CycleGAN, which
performed image transformation without paired images. First, CycleGAN was used for
data augmentation and to generate pseudo-cerebral infarction images from images of
healthy specimens. Finally, U-Net was used to segment the cerebral infarction region
using the CycleGAN-generated images. Regarding extraction accuracy, the U-Net-with-
CycleGAN images showed an improvement over those of U-Net without CycleGAN, were
efficient, and assisted in extracting the infarction area accurately while maintaining the
detection rate.

STHarDNet [8] is a novel segmentation model for magnetic resonance imaging (MRI).
In MRI segmentation, conventional approaches utilize U-Net models with encoder–decoder
structures, segmentation models using vision transformers, or models that combine a vision
transformer with an encoder–decoder model structure. However, conventional models
are large with low computation speeds, and, in vision transformer models, the amount
of computation sharply increases with the image size. To overcome these problems, the
STHarDNet model is proposed, which combines Swin transformer blocks and a lightweight
U-Net-type model that has a HarDNet block-based encoder–decoder structure. To maintain
the features of the hierarchical transformer and shifted windows approach of the Swin
transformer model, the Swin transformer is used in the first skip connection layer of the
encoder, instead of in the encoder–decoder bottleneck.
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STHarDNet improved the accuracy and speed of MRI image-based stroke diagnosis.
In general, combined, the Swin transformer blocks and lightweight U-Net type model
maintained the advantage of hierarchical feature extraction and demonstrated excellent
segmentation performance. The Swin transformer restricts the computation of attention to
each window, and this also maintains high calculation speeds.

The whole-slide image (WSI) is a digitized medical image. Processing WSIs to train
neural networks is often intricate and labor-intensive. Neuner et al. [9] developed an open-
source library dealing with recurrent tasks in the processing of WSIs and helped with the
training and evaluation of neuronal networks for classification tasks. First, a large WSI
is divided into multiple small tiles. Thereafter, the region of interest (ROI) is extracted
using a filtering algorithm that stores each WSI’s dimensions, ROI, and tile information. In
addition, evaluations are available at each level while preserving the hierarchical structure.
Neural network training continues using the fastai library, which applies filtered informa-
tion for learning, reduces storage space, and increases the processing speed. This approach
supplements the clinicopathological diagnoses of brain tumors.

Upper gastrointestinal endoscopy is widely performed to detect early gastric cancers
(GCs). The automated detection of early GCs from endoscopic images involves an object
detection model. However, the reduction of false positives involves challenges in the
detected results. Teramoto et al. [10] propose an object detection model, U-Net R-CNN,
based on a semantic segmentation technique that extracts target objects by performing local
analysis on the images. The candidate regions were extracted using U-Net; however, many
regions were over-detected in the detected candidate regions. Therefore, the candidate
region was cut and input to the CNN to classify the candidate region as a GC or a false
positive. Finally, the regions identified by the CNN were considered candidate regions.
DenseNet169 was used as the convolutional neural network for box classification, which
improved the detection performance compared with the previous method.

In [11] the authors verified that adversarial attacks were not negligible during open-
source development. Open-source deep neural networks (DNNs) for medical imaging are
significant in emergent situations, such as during the COVID-19 pandemic because they
accelerate the development of high-performance DNN-based systems. The COVID-Net
model, an open-source DNN model for detecting COVID-19 from chest X-ray images,
is susceptible to backdoor attacks that modify DNN models and cause misclassification
when a specific input trigger is added. The backdoor attacks are effective against models
fine-tuned from the backdoored COVID-Net models, although non-targeted attacks are
less successful. This indicates that the high-risk backdoored models can be spread by fine-
tuning, thereby becoming a significant security threat. The findings show that protection
must be emphasized during open-source development and in the practical application of
DNNs for COVID-19 detection.

Finally, in [12], Calnares et al. present an automatic system for modeling clinical
knowledge to follow a physician’s reasoning during medical consultation. Instance-based
learning was applied to provide suggestions for electronic medical records. A learning
method was applied to determine the case types that best match the clinical scenarios of
patients being evaluated according to an ad hoc similarity metric. A list of similar case
types was suggested during evaluation whenever the physician modified the patient’s
information. The list of similar case types was updated when introducing or removing any
clinical phase during medical consultation. This learning method can produce suggestions
within a reasonable timeframe, even when processing large volumes of data. It is a novel
tool that helps meet healthcare goals and reminds physicians to record essential data to
fulfill care goals.

3. Conclusions

AI is a frontier where powerfully disruptive computer science advances have the
potential to transform fundamentally the practice of medicine and healthcare delivery. It is
profoundly changing the traditional model of medicine and significantly improving the
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level of medical services to assure various aspects of human health. Ever broader prospects
are anticipated for the development of medical AI. Based on this trend, this special volume
presents new and innovative research addressing some of the many scientific challenges
associated with applying AI in medicine. We emphasize the need for a better understanding
of AI’s ongoing incorporation into routine medical practice. As such, the studies in this
volume provide valuable perspectives on AI’s future in healthcare, describe a roadmap for
building effective, reliable, and safe approaches to AI in medicine, and discuss potential
directions for developing AI-augmented healthcare systems.
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