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Abstract: Given the prosperity of video media such as TikTok and YouTube, the requirement of short
video recognition is becoming more and more urgent. A significant feature of short video is that
there are few switches of scenes in short video, and the target (e.g., the face of the key person in the
short video) often runs through the short video. This paper presents a new short video recognition
algorithm framework that transforms a short video into a family of feature curves on symmetric
positive definite (SPD) manifold as the basis of recognition. Thus far, no similar algorithm has been
reported. The results of experiments suggest that our method performs better on three changeling
databases than seven other related algorithms published in the top issues.

Keywords: feature curve; region of interest; motion estimation; SPD manifold; Riemannian manifold;
short video recognition; face recognition

1. Introduction

Video, especially short video, has become the mainstream information medium on
the Internet. Facing the huge daily output and segmented production of short videos,
however, review and recommendation of short video still highly dependent on tag-based
and manual recognition. In order to achieve more intelligent and efficient content audit,
short video recognition algorithms are in great demand. Since the first step of recognition
is feature extraction, many feature extraction methods based on static image have been
established. However, their application to video data still faces great challenges. Meanwhile,
Riemannian manifolds have been proven to be robust in extracting video features under
different imaging conditions and therefore have been successfully employed in many
branches of video recognition, including face recognition and action recognition.

In particular, symmetric positive definite (SPD) matrices are widely used in video
representation because of second-order statistical information provided. Moreover, the
space of all SPD matrices possessing the Riemannian metric is called SPD manifold [1,2].
In general, existing SPD-based methods for video recognition construct an SPD matrix to
represent each video and then take the resulting SPD manifold into account for recognition;
for example, modeling video as covariance matrix [3], kernel matrix [4,5], and Gaussian
model [6,7].

Moreover, dimensionality reduction (DR) techniques can effectively extract valid
information from the original SPD matrix and reduce the calculation cost drastically with
regard to the dimension of SPD matrix. One of the DR approaches directly extracts feature
vector, which is in the Euclidean space, from the original SPD matrix, taking the notions of
Riemannian geometry [8]. Or, to maintain SPD geometry, the bilinear DR [9,10] aims to learn
a mapping that transforms the original manifold into a new manifold. This new manifold
possesses a lower dimension and a more discriminative metric. Metric learning on SPD
manifolds learns a more discriminative function that narrows the similarity between SPD
matrices from different categories while expanding the similarity between SPD matrices
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from the same category. Metric learning on SPD manifold usually projects the original SPD
manifolds to their tangent space [11,12], or embeds the SPD manifolds to a subspace of
reproducing the kernel Hilbert space (RKHS) [13–15]. The tangent space and subspace of
RKHS are isomorphic with Euclidean spaces that possess the same dimension.

It is obvious that the SPD-based methods introduced above regard the whole video
as an image-set-based SPD matrix but without considering temporal correlation between
frame images. Moreover, the experiments of these methods are based on databases com-
posed of segmented video clips. These video clips are actually short videos. Through the
benefit of the few transitions in short videos, tracing the trajectories of regions of interest
(ROIs) through video is available. Moreover, in order to extract both spatial and temporal
features from video, the authors of [16,17] adopted space-time geometric representations of
human landmark configurations. Inspired by the work in [16,17], we propose a framework
for short video recognition that models the spatiotemporal trajectories of ROIs as a family of
feature curves on SPD manifold in this paper. The main steps of our short video recognition
framework are as follows:

(1) According to the practical application, a key frame is extracted from the short video
to determine the spatial feature blocks (i.e., ROIs) of the target.

(2) Using motion estimation [18] in video encoding, each ROI in the key frame is traced
forward, backward, or two-way to string time series of ROIs through the short video.
The resulting family of time series of ROIs represent the temporal and spatial feature
of short video.

(3) Each ROI is transformed into an SPD matrix by regional covariance descriptor (RCD).
Hence, the family of time series of ROIs is transformed into a family of time series
of SPD matrices. Each obtained time series of SPD matrices is a curve on the SPD
manifold. The family of curves is the feature curves of the short video, which is the
basis of short video recognition.

(4) Using the dynamic time warping (DTW) [19] with Riemannian metrics [1,2,20] and
divergences [21,22] on the SPD manifold, the similarity measure between curve
families on the SPD manifold is established, so as to realize the recognition of short
video.

Taking face recognition as an example, the overview of our framework is shown in
Figure 1. Thus far, no similar algorithm has been reported. The experiments on three
databases show that our framework is superior to seven other related algorithms published
in the top issue in recent years. The main contributions of this paper are as follows:

(1) Proposing a short video recognition framework feasible for different applications, as
well as providing optional strategies for stringing time series of ROIs, constructing
RCDs, and providing recognition between families of feature curves.

(2) Different from viewing a video as an image set-based SPD matrix, which ignores the
temporal correlation of features across image frames, our framework models each
video as a family of feature curves on the SPD manifold, considering both temporal
and spatial features of video.

(3) ROI and motion estimation in video encoding are applied in our framework to reduce
computational burden due to redundancy across image frames. Compared with
using global frame images, ROIs convey more accurate spatial features. Moreover,
tracing ROI with motion estimation can effectively reduce the computation of feature
detection.

(4) Encoding major spatial features by ROI-based covariance descriptors helps to build
SPD geometry and provides a discriminant Riemannian metric for recognition.
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Figure 1. Overview of the proposed framework. Taking face video as example, the four boxes of 
red, yellow, blue, and green in (a) show the regions of interest (ROIs) on human face and time series 
of ROIs stringed through motion estimation. The regional covariance descriptors (RCDs) are com-
puted for each region in (b). Hence, a family of feature curves on symmetric positive definite (SPD) 
manifold are built in (c). 

The programming of this paper is as follows. In Section 2, we present notations and 
preliminaries. In Section 3, several related works are introduced. Section 4 provides the 
details of our proposed framework. Section 5 introduces the application of our proposed 
framework in face recognition from video. Section 6 introduces seven SPD-based 
video/image set recognition algorithms in recent years as comparison algorithms. Section 
7 shows the experimental results on three datasets with seven comparison algorithms. 
Conclusions are given in Section 8. 

2. Preliminaries 
In this section, we first provide a notation throughout this paper and then introduce 

geometry of SPD manifold, including the Riemannian metrics on SPD manifold and di-
vergence of SPD matrices. In addition, we provide an introduction about motion estima-
tion in video compression coding. 
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Figure 1. Overview of the proposed framework. Taking face video as example, the four boxes of red,
yellow, blue, and green in (a) show the regions of interest (ROIs) on human face and time series of
ROIs stringed through motion estimation. The regional covariance descriptors (RCDs) are computed
for each region in (b). Hence, a family of feature curves on symmetric positive definite (SPD) manifold
are built in (c).

The programming of this paper is as follows. In Section 2, we present notations and pre-
liminaries. In Section 3, several related works are introduced. Section 4 provides the details
of our proposed framework. Section 5 introduces the application of our proposed frame-
work in face recognition from video. Section 6 introduces seven SPD-based video/image
set recognition algorithms in recent years as comparison algorithms. Section 7 shows the
experimental results on three datasets with seven comparison algorithms. Conclusions are
given in Section 8.

2. Preliminaries

In this section, we first provide a notation throughout this paper and then introduce
geometry of SPD manifold, including the Riemannian metrics on SPD manifold and diver-
gence of SPD matrices. In addition, we provide an introduction about motion estimation in
video compression coding.

2.1. Notation

In this paper, vectors are denoted by lower case letters, e.g., x; matrices are represented
by upper case letters, e.g., X; and the set of matrices are represented by X = {X1, · · · , XN}.
RD is the Euclidean space. SymD

++ is the SPD manifold, which will be formally defined
later. TX

(
SymD

++

)
is the tangent space to the SPD manifold at X ∈ SymD

++. Gr(d, D) is the
Grassmannian manifold, i.e., the set of d-dimensional subspaces of RD. GL(D) is the general
linear group, i.e., the set of all invertible D× D matrices. SymD

+ is a positive semidefinite
cone, i.e., the set of all D× D positive semidefinite matrices. H is the reproducing kernel
Hilbert space.

2.2. The Geometry of SPD Manifold

The D × D dimensional matrix X is symmetric and positively definite if XT = X
and the scalar vTXv > 0 for any non-zero column vector v ∈ RD. The space of all D× D
dimensional SPD matrixes is expressed as SymD

++. If SymD
++ is given a Riemannian metric,

the space of the SPD matrix becomes a Riemannian manifold. Namely, the SPD manifold is
defined as

SymD
++ =

{
X ∈ RD×D

∣∣∣XT = X, vTXv > 0 f or ∀v ∈ RD
}

. (1)
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For all X ∈ SymD
++, its tangent space of symmetric D× D matrices with logarithm

mapping LogX : SymD
++ → TX

(
SymD

++

)
:

TX

(
SymD

++

)
=
{

Φ
∣∣∣Φ ∈ RD×D, ΦT = Φ

}
. (2)

The geometry of SPD manifolds is usually learned through Riemannian metrics ω.
The Riemannian metric defines the inner product on tangent space. For any X ∈ SymD

++

and Φ, Θ ∈ Tx
(
SymD

++

)
,

ω(Φ, Θ) = 〈Φ, Θ〉X . (3)

And the inner product reflects the length of the curve between corresponding points on
SPD manifold SymD

++. The curve with the shortest distance is the geodesic between two
elements on SymD

++. The length of the geodesic is called the geodesic distance.
The affine invariant Riemannian metric (AIRM) [1] is the most frequently used Rie-

mannian metric. For all Φ, Θ ∈ Tx
(
SymD

++

)
, the AIRM is defined as

〈Φ, Θ〉X =
〈

X−1/2ΦX−1/2, X−1/2ΘX−1/2
〉

F
, (4)

where 〈A, B〉F = tr
(

ABT) and X ∈ SymD
++. 〈·, ·〉X are an inner product and its smoothing

over SymD
++, respectively. The logarithm mapping projecting X2 ∈ SymD

++ to tangent space
TX1

(
SymD

++

)
is defined as

LogX1(X2) = X
1
2
1 log

(
X−

1
2

1 X2X−
1
2

1

)
X

1
2
1 . (5)

For any given pair X1, X2 ∈ SymD
++, the unique geodesic [23] induced from AIRM

connecting ΓX2
X1

(0) = X1 with ΓX2
X1

(1) = X2 is given by

ΓX2
X1

(t) = X
1
2
1 exp

(
t logX−

1
2

1 X2X−
1
2

1

)
X

1
2
1 , t > 0. (6)

The geodesic distance between X1, X2 ∈ SymD
++ induced from AIRM is as follows:

δ2
AIRM(X1, X2) = ‖log

(
X−1/2

1 X2X−1/2
1

)
‖

2

F
, (7)

where ‖A‖2
F = 〈A, A〉F is the Frobenius norm of a matrix. The AIRM possesses a property

of invariance to affine transformations, i.e., δ2
AIRM(X1, X2) = δ2

AIRM
(

AX1 AT , AX2 AT) for
∀A ∈ GL(D).

For all Φ, Θ ∈ Tx
(
SymD

++

)
, the log-Euclidean metric (LEM) [2,20] is defined as

〈Φ, Θ〉X = 〈DXlog(Φ), DXlog(Θ)〉, (8)

where X ∈ SymD
++ and DXlog(Φ) denote the directional derivative of log(Θ) at X. The

logarithm mapping projecting X2 ∈ SymD
++ to tangent space TX1

(
SymD

++

)
is defined as

LogX1(X2) = D−1log(X1)[log(X2)− log(X1)]. (9)

Hence, the distance between X1, X2 ∈ SymD
++ induced from LEM is as follows:

δ2
LEM(X1, X2) = ‖log(X1)− log(X2)‖2

F. (10)
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2.3. Bregman Divergences

In addition to the distance generated by the Riemannian metric, the divergence of the
SPD matrix based on Bregman divergence can also be used as the distance metric of the
SPD matrix. For all X1, X2 ∈ SymD

++, the Bregman matrix divergence [24] is defined as

δΦ(X1, X2) = Φ(X1)−Φ(X2)−
〈
∇Φ(X2)

, X1 − X2

〉
F
, (11)

where Φ : SymD
++ → R is a strictly convex function, and∇Φ(X2)

is the gradient of Φ at point
X2. Bregman divergence is similar to distance measure, which does not satisfy trigonometric
inequality and symmetry. To symmetrize Bregman divergences, different seed functions
Φ are used. Among them, the Stein divergence [21] and Jeffrey divergence [22] play an
important role in computer vision.

For any given pair X1, X2 ∈ SymD
++, the Stein divergence adopting Φ(X) = −log det(X)

and Jensen–Shannon symmetrization is defined as

δ2
S(X1, X2) = log det

(
X1 + X2

2

)
− 1

2
log det(X1X2). (12)

For any given pair X1, X2 ∈ SymD
++, the Jeffrey divergence adopting Φ(X) = −log det(X)

and direct symmetrization is defined as

δ2
J (X1, X2) =

1
2

tr
(

X−1
1 X2

)
+

1
2

tr
(

X−1
2 X1

)
− D, (13)

where D is the dimension of manifold. In the same way as the AIRM, the Stein divergence
and Jeffrey divergence are affine invariant.

2.4. Motion Estimation

The similarity between adjacent frames brings inter-frame redundancy. Using motion
estimation [18], only the changing parts of adjacent video frames would be encoded to
reduce the amount of data and reduce the inter frame redundancy. In motion estimation,
a frame image is segmented into M× N or more commonly used N × N pixel block. At
the matching window of (N + 2p)× (M + 2p) size, the current block is compared with
the corresponding block in the previous frame. This ‘p’ referring to pixels adjacent to the
ROI is called the search parameter. On the basis of the matching criteria, the best match is
found, and the alternative position of the current block is obtained.

There are various matching criteria, including the mean absolute difference (MAD):

MAD =
1

MN

M

∑
i=1

N

∑
j=1
| fk(i, j)− fk−1(i, j)|, (14)

mean squared error (MSE):

MSE =
1

MN

M

∑
i=1

N

∑
j=1

[ fk(i, j)− fk−1(i, j)]
2

, (15)

and normalized cross correlation (NCC):

NCC =

1
MN

M
∑

i=1

N
∑

j=1

(
fk(i, j)− fk(i, j)

)(
fk−1(i, j)− fk−1(i, j)

)
√

1
MN

M
∑

i=1

N
∑

j=1

(
fk(i, j)− fk(i, j)

)2
√

1
MN

M
∑

i=1

N
∑

j=1

(
fk−1(i, j)− fk−1(i, j)

)2
, (16)
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where fk(i, j) are the pixels in the current M× N block and fk−1(i, j) are the pixels in the
matching block in the frame k− 1. When MSE or MAD is the smallest, it means that the
matching between the two blocks is the best. The difference is that NCC measures the
similarity between the two blocks in the range of [−1, 1]. The closer the NCC is to 1, the
closer the two blocks are to have a linear relationship.

3. Related Works

In this section, we introduce relevant literature that have modeled the temporal
evolution of video as curves on the Riemannian manifold. In addition, we also introduce
classification and alignment methods of time series.

3.1. Modeling of Video as Curve on Riemannian Manifold

The key point here is to account for the temporal features and spatial features of
video simultaneously. Profiting from explicit landmark configurations, several recent
works modeled each sequence of facial expressions in video as a curve or a trajectory on
Riemannian manifolds. Taheri et al. [25] represented a sequence of faces as a sequence of
facial landmarks. Since landmark configuration on each face is a full rank D× d matrix
encoding d dimensional coordinates of D landmarks, a sequence of facial expression can
be considered as a curve on the Grassmannian manifold Gr(d, D) with the neutral face
as the starting point. To classify the curves modeled, the linear discriminant analysis
(LDA) and multi-class SVM are applied. Taking texture information into consideration,
Otberdout et al. [16] encoded deep convolutional neural network features extracted from
human faces by covariance descriptors so as to model the temporal revolution of facial
expression as trajectory on SPD manifolds.

Besides its role in the field of facial expression recognition, temporal modeling
based on landmarks on Riemannian manifolds can extend to action recognition [17,26–29].
Kacem et al. [17] represents each D× d landmark matrix of skeleton by a D× D positive
semidefinite Gram matrix. By doing so, the temporal evolution of skeletons is represented
by a time series of their corresponding Gram matrices, which can be considered as a tra-
jectory connected by pseudo-geodesics [23] on positive semidefinite cone SymD

+. Devanne
et al. [26] used square-root velocity function to construct trajectories in a n-dimensional
space representing skeleton sequences. Tanfous et al. [27] represented the landmark con-
figuration sequence as the trajectory in Kendall shape space and encoded the trajectory
through the dictionary learned in the sample set to generate Euclidean sparse time series.

However, all these works rely on geometric information from landmarks. These
methods not only consume too much to detect landmarks in each frame, but also are not
friendly to video without clear landmarks. Moreover, features extracted from pixel-level
landmarks are limited. Distinct from works introduced above, in this paper, we focused
on modeling curves of ROIs. By determining the pattern of ROIs, different applications
of video recognition can be realized, but not only facial expression recognition and action
recognition.

3.2. Dynamic Time Warping

The classification methods of time series can be roughly divided into four categories,
namely, deep learning (e.g., fully convolutional networks [30]), feature learning method
(e.g., time series forest [31]), ensemble methods (e.g., elastic ensemble [32]), and distance
learning methods [19,33–36] with dynamic time warping (DTW) as a development basis.

DTW [19] was originally used in the field of speech recognition, elongating or short-
ening (compresses) the unknown speech until it is consistent with the length of the ref-
erence template. In this process, the time axis of the unknown speech will be distorted
or bent so that it can correspond to the standard pattern. This is given two time series
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T1 =
{

a1, · · · , aL1

}
and T2 =

{
b1, · · · , bL2

}
with lengths of L1 and L2, respectively. A pair

of warping paths β = (β1, β2) between T1 and T2 need to meet the following constraints:

1 = β1(1) ≤ · · · ≤ β1(q) = L1, (17)

1 = β2(1) ≤ · · · ≤ β2(q) = L2, (18)

q ≤ max(L1, L2) ≤ L1 + L2 − 1. (19)

The optimal path between T1 and T2 is given by

β∗ = arg min
β∈Γ

|β|

∑
i=1

δ
(

T1β1(i), T2β2(i)

)
, (20)

where Γ is the set of all possible paths and δ(·, ·) is a distance metric. The DTW distance is
given by

δDTW(T1, T2) =
|β∗|

∑
i=1

δ
(

T1β∗1(i)
, T2β∗2(i)

)
. (21)

To sum up, searching for an optimal DTW path β∗ is equivalent to finding the optimal
solution from all possible warping paths according to minimizing the cumulative distance
cost. The recurrence of cumulative distance matrix Π with Π(0, 0) = 0 in DTW can be
written as

Π(i, j) = δ(ai, bj) + min{Π(i− 1, j− 1), Π(i− 1, j), Π(i, j− 1)}. (22)

Developed from DTW, the 1NN-DTW model [19,33], which is the combination of
1NN classifier and DTW, variant DDDTW [34], which is based on derivative distance,
and constructing kernel function using DTW distance [35,36] are widely used in time
series classification. Utilizing DTW distance instead of Euclidean distance for calculating
Gaussian RBF kernel, Bahlmann et al. proposed the Gaussian DTW (GDTW) kernel [35].
However, since DTW distance is not symmetric, the GDTW kernel is also not a symmetric
kernel. To overcome this limitation, global alignment kernels (GAK) [36] used in [16] need
to calculate all the alignments, despite the huge computational cost.

4. A Framework for Feature Curves on SPD Manifold

In this section, we provide the formulation of short video recognition firstly, then
present our framework, which represents short video as a family of feature curves on the
SPD manifold. Specifically, our framework involves three parts: stringing time series of
ROIs based on motion estimation, feature curve modeling with RCDs, and the classification
methods of feature curves.

4.1. Formulation of Short Video Recognition

Video recognition is to identify the corresponding label of a query video Vquery based
on a number of sample videos {V1, · · · , Vn} labeled with

{
lV
1 , · · · , lV

n
}

, which covers face
recognition, scene classification, action recognition, and other different application direc-
tions. For example, the recognition of surveillance video in the field of the public is to match
a query video Vquery against the video library obtained by the monitoring system. The
target to be recognized in the video can be the person, car, or even license plate involved in
the case.

This paper focuses on short video recognition. Short videos are now popular in social
media with their high-frequency output and strong participation. Hence, video media have
high requirements for content audit, information screening, and content recommendation.
It is necessary to promote the research of short video recognition. To extract features for
recognition, static images are normally described in terms of feature vectors, and videos
are regarded as image sets. However, image set ignores the temporal feature of video.
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Spatial features in video dynamically change in the time dimension, and adjacent frames
share similar spatial features. Different from long video, such as movies, the transition
or conversion in short video between paragraphs and scenes are minor, which means the
significant spatial features, i.e., ROI, may run through the whole short video. To extract
spatial-temporal features from short videos, we proposed a framework focusing on the
short video recognition model spatiotemporal trajectory of ROI in video as a family of
feature curves on the SPD manifold.

4.2. Stringing Time Series of ROIs Based on Motion Estimation

Given a k-frames video F = {F1, · · · , Fk}, where Fi is the image matrix, the spatial
features of video are reflected within the frame image of a video. Our proposed framework
takes the ROIs of the frame image as the major spatial feature of video. ROI is originally a
concept in video encoding. In video encoding, the image quality of non-concerned regions
can be sacrificed, and only high-resolution coding can be carried out for key regions, i.e.,
ROI, to meet the requirements of users’ high-definition video monitoring, while saving
network bandwidth, processing time, and video storage space. ROI can be square, round,
irregular shape, and so on. In our framework, we first extract a key frame from video,
then determine a group of ROIs as a pattern. The ROI possesses semantic features and
varies according to specific applications. As an algorithm framework, the solution of ROI
selection and ROI detection are open. Meanwhile, the weight and number of ROIs can be
adjusted to optimize the algorithm.

The temporal features of video are reflected in the temporal correlation between
video frames. Given a pattern of m ROIs {ROIi}m

i=1, our proposed framework takes the m
corresponding time series of ROIs as the spatiotemporal feature of video. Moreover, we use
the motion estimation method in video compression coding to trace ROIs. Tracing can be
forward, backward, or bidirectional, depending on the position of key frames in the frame
sequence. Taking backward tracing as an example, we introduced a specific strategy for
stringing time series of ROIs in the following, including the continuous frame extraction
strategy and inter-frame extraction strategy.

Let ROIi,1 represent the i-th ROI in the key frame Fs(1 ≤ s ≤ k). For the continuous
frame extraction strategy, we take Fs as starting frame for motion estimation and trace
the region closest to ROIi,1 in the next frame Fs+1(s ≤ s + 1 ≤ k) as ROIi,2. The difference
between regions can be calculated by Equations (14)–(16). Then, frame Fs+1 becomes the
new starting frame for next motion estimation, and so on. Each ROI traced is preserved in
a time series of ROIs.

However, the ROIs between adjacent frames may be too similar in some smoothly
changing videos and preserving ROIs per frame will cause data redundancy. To tackle this
problem, we employed an inter-frame extraction strategy. This strategy still traces ROIs
per frame, but if the differences between the traced ROI and ROIi,1 in Fs is below a certain
lower limit τ, the traced ROI is not preserved and the starting frame is kept at Fs. Only
when the differences between the traced ROI in Fs+η and ROIi,1 exceed τ can the traced
ROI be strung into the time series as ROIi,2; then, the starting frame is replaced by Fs+η for
next motion estimation.

Since both strategies will face the distortion of the prediction result due to the accumu-
lation of error caused by each estimation, our proposed framework stops motion estimation
in the ending frame Fe where the error accumulates to an upper limit µ. Thus far, we call it a
cycle of motion estimation. After a cycle, we go back to the space domain to detect the ROIs
in {Fe+1, · · · , Fk} and redefine the starting frame to repeat a new cycle of motion estimation.
By looping the cycle until the end of the video to find all the i-th ROIs on the video timeline,
we can construct a time series of the i-th ROIs ROIi =

{
ROIi,1, · · · , ROIi,Li

}
(1 ≤ i ≤ m),

where Li is the length of the i-th time series. Therefore, the whole video can be repre-
sented by a family of time series of ROIs {ROIi}m

i=1 =
{

ROIi,1, · · · , ROIi,Li

}m
i=1, where m

represents the number of ROIs in the pattern.
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It should be noted that the length Li, upper limits µ, lower limit τ, starting frame Fs and
ending frame Fe of each time series can be different. Moreover, the most important factor
is by stringing time series of ROIs, our proposed framework combines spatial-temporal
features of short videos and transforms task of short video recognition to the recognition
between families of time series of ROIs.

4.3. Features Curves on SPD Manifold

Although ROI is a semantic feature region in a frame image, such a feature region
is directly composed of image pixels. From the perspective of image recognition, such
features are original and rough. Our proposed framework uses a regional covariance
descriptor to extract the SPD feature matrix from ROI, so as to transform a family of time
series of ROIs into a family of feature curves on the Riemannian manifold. The specific
methods are as follows:

For a square ROI ROI = [r1, r2, · · · , rd] ∈ RD×d, we can simply compute the corre-
sponding RCD by

C =
1
d

d

∑
i=1

(ri − µ)(ri − µ)T , (23)

where C ∈ RD×D, µ = 1
d

d
∑

i=1
ri.

When the ROI is no longer square, or the size is not uniform and the shape is irregular,
we use each pixel of the ROI to generate a feature vector to calculate the covariance matrix.
For a ROI with λ pixels, each pixel generates a D-dimensional vector. The ROI can be
represented as {v1, · · · , vλ} ∈ RD×λ, and the corresponding RCD is given by

C =
1
λ

λ

∑
i=1

(vi − µv)(vi − µv)
T , (24)

where C ∈ RD×D, µv = 1
λ

λ

∑
i=1

vi. The method of generating feature vectors is open and can

vary with different applications. For example, each pixel can generate a nine-dimensional
feature vector, which is composed of RGB values and the first order gradients of RGB
values in X and Y directions, respectively. By doing so, no matter how different the shape
and size of ROI are, the size of the SPD feature matrix generated by RCD is certainly 9× 9.
In this way, all the resulting curves are on the SPD manifold shared the same dimension,
avoiding the influence of sizes of original ROIs.

Following [3], to avoid the singularity, we adjusted the original RCD as C∗ = C + ξ I,
where I is an identity matrix and ξ is 10−3 × tr(C). Then, we followed the information
geometry theory [37] to transform the Gaussian model N (µ, C∗) into a (D + 1)× (D + 1)
dimensional SPD matrix as the final RCD:

N (µ, C∗) ∼ X =

[
C ∗+µµT µ

µT 1

]
, (25)

which means the space of D-dimensional Gaussian models has been embedded into the SPD
manifold SymD+1

++ . By doing so, one ROIi,j becomes an SPD matrix Xi,j, and a family of time
series of ROIs {ROIi}m

i=1 =
{

ROIi,1, · · · , ROIi,Li

}m
i=1 are transformed as a family of time

series of their embedding SPD matrices
{
XRi

}m
i=1 =

{
XRi ,1, · · · , XRi ,Li

∣∣∣Xi,j ∈ SymD+1
++

}m

i=1
.

Consider that the geometry of RCD generated from ROI is a point on SPD mani-
fold. A time series of SPD matrices X = {X1, · · · , XN} can be defined as a feature curve
Γ(t)0≤t≤N−1 on the SPD manifold that passes through all SPD matrices belonging to X in
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sequence from Γ(0) = X1 to Γ(N − 1) = XN . Among them, two adjacent SPD matrices are
connected by geodesics:

CΓ(t)→Γ(t+1) ← Γ
Xt+2
Xt+1

, t = 0, · · · , N − 2, (26)

where Γ
Xt+2
Xt+1

(T) = X
1
2
t+1exp

(
T logX−

1
2

t+1Xt+2X−
1
2

t+1

)
X

1
2
t+1, 0 < T ≤ 1. In other words, the

feature curve representing a time series of ROIs is spliced by multiple geodesics one by one.
Using this strategy, each time series of ROI can be modeled as a curve on the SPD manifold:

ROIi =
{

ROIi,1, · · · , ROIi,Li

}
⇒ XRi =

{
XRi ,1, · · · , XRi ,Li

}
⇒ ΓRi (t). (27)

Thus, a short video can be modeled as a family of curves on the SPD manifold:

{ROIi}m
i=1 =

{
ROIi,1, · · · , ROIi,Li

}m
i=1 ⇒

{
XRi

}m
i=1 =

{
XRi ,1, · · · , XRi ,Li

}m
i=1 ⇒

{
ΓRi

}m
i=1, (28)

where the SPD manifold is proven to be a Riemannian manifold and this family of curves
is the family of spatial-temporal feature curves of the video. Algorithm 1 summarizes the
steps of computing the family of feature curves.

Algorithm 1 Computing a Family of Feature Curves
{

ΓRi (t)
}m

i=1 on SymD+1
++

Input: A family of time series of ROIs {ROIi}m
i=1 =

{
ROIi,1, · · · , ROIi,Li

}m
i=1 from video

Output: A family of feature Curves
{

ΓRi (t)
}m

i=1
/* Compute the SPD matrices of ROIs */
for i← 1 to m

for j← 1 to Li do

XRi ,j ←
[

C∗
i,j
+ µi,jµ

T
i,j µi,j

µi,jµ
T
i,j 1

]
end
/* Compute the geodesic between SPD matrices */
ΓRi (0)← XRi ,1

for t← 0 to Li − 2 do
CΓ(t)→Γ(t+1) ← Γ

Xt+2
Xt+1

as Equation (26)
end

end
Return A Family of feature Curves

{
ΓRi (t)

}m
i=1

4.4. Rcognition between Famlies of Features Curves

In our proposed method, time series of ROIs are extracted from short video. The
comparison of similarity between short videos is transformed into the comparison between
families of time series. The length of two time series may not be equal. Moreover, different
frame rate, variable durations, and arbitrary starting/ending intensities of video also bring
about obstacles. To tackle this problem, we adopted dynamic time warping (DTW) to find
an alignment between the two videos.

DTW needs to define appropriate metrics for recognition. As we introduced in
Section 4.3, the time series of ROIs are transformed as feature curves in SPD manifolds,
which introduces discriminative Riemannian metrics and divergence. Given two feature
curves Γ1(t) and Γ2(t) concatenated by L1 and L2 SPD matrices, respectively, and a pair of
warping paths β = (β1, β2) between Γ1(t) and Γ2(t), similar to the optimal path between
time series introduced in Section 3.2, the optimal path in the set of all possible paths Γ
between two feature curves Γ1(t) and Γ2(t) is

β∗ = arg min
β∈Γ

q

∑
i=1

δ(Γ1(β1(i)), Γ2(β2(i))) , (29)
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where δ(·, ·) can be defined as Riemannian metrics/divergence in SPD manifold. Simi-
larity measure between two feature curves Γ1(t) and Γ2(t) under the optimal path can be
defines as

δDTW(Γ1, Γ2) =
1
q

q

∑
i=1

δ(Γ1(β∗1(i)), Γ2(β∗2(i))) . (30)

Then, the similarity measure between two video needs to fuse information provided
by each curve of its curve family. The classification strategy can also be divided into two
types. One is an overall classification strategy that is suitable for situations where the

number of ROIs m in a pattern is smaller. Given a family of feature curves
{

Γ
query
Ri

(t)
}m

i=1

extracted from query video Vquery and sample families of feature curves
{{

Γ
j
Ri
(t)
}m

i=1

}n

j=1

from sample videos {V1, · · · , Vn}, the i-th feature curve Γ
query
Ri

(t)(1 ≤ i ≤ m) in Vquery

is independently compared with all the i-th feature curves
{{

Γ
j
Ri
(t)
}}n

j=1
(1 ≤ i ≤ m)

in sample videos. This approach extends to each feature curve of Vquery to obtain the
m× n similarity measure matrix Ψ using DTW distance. The average similarity measure
1
m

m
∑

i=1
Ψi,j(1 ≤ j ≤ n) of all feature curves from Vquery represents the similarity measure

between query video and sample videos. Taking the KNN classifier as an example, the
steps of overall classification method are shown in Algorithm 2.

Algorithm 2 Classification of a Family of Feature Curves
{{

Γ
j
Ri
(t)
}m

i=1

}n

j=1
on SPD Manifold

with Overall Classification Strategy.

Input: n sample families of feature curves
{{

Γ
j
Ri
(t)
}m

i=1
, lV

j

}n

j=1
with their corresponding labels

of each family, a family of feature curves
{

Γ
query
Ri

(t)
}m

i=1
of query video Vquery.

Output: Predicted label lquery of Vquery
/* Compute DTW distances among sample and query feature curves */

for i← 1 to m
for j← 1 to n do

Ψ(i, j) = δDTW

(
Γ

query
Ri

(t), Γ
j
Ri
(t)
)

end
end

/* Compute average DTW distance matrix ψ*/
for k← 1 to m do

ψ(1, k) = 1
m

m
∑

i=1
Ψi,k

end
/* Testing phase */

lquery ← KNN classifier using average DTW distance matrix ψ

Return Predicted label lquery of Vquery

The other is the pre-classification strategy suitable for the number of ROIs m in the
pattern being larger. Each feature curve of query video Vquery is pre-classified independently
according to each row of similarity measure matrix Ψ. On the basis of the law of large
numbers [38], the label with the highest frequency among

{
lquery
1 , · · · , lquery

m

}
is regarded

as the label of the query video Vquery. Taking the KNN classifier as an example, the steps of
the pre-classification method are shown in Algorithm 3.
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Algorithm 3 Classification of a Family of Feature Curves
{{

Γ
j
Ri
(t)
}m

i=1

}n

j=1
on SPD Manifold

with Pre-classification Strategy

Input: n sample families of feature curves
{{

Γ
j
Ri
(t)
}m

i=1
, lV

j

}n

j=1
with their corresponding labels

of each family, a family of feature curves
{

Γ
query
Ri

(t)
}m

i=1
of query video Vquery.

Output: Predicted label lquery of query video Vquery
/* Compute distances among sample and query feature curves */

for i← 1 to m
for j← 1 to n do

Ψ(i, j) = δDTW

(
Γ

query
Ri

(t), Γ
j
Ri
(t)
)

end
end

/* Testing phase */
for k← 1 to m do

lquery
k ← KNN classifier using the k-th row of distance matrix Ψ

end
Return Mode of

{
lquery
1 , · · · , lquery

m

}
as predicted label lquery of Vquery

In summary, our proposed framework focuses on short video recognition. The few
transitions of short videos help to trace the coherent trajectory of ROI with motion estima-
tion. Moreover, stringing time series of ROIs extracts both spatial and temporal features
from short video. Furthermore, modeling time series of ROIs as feature curves on the SPD
manifold via RCDs introduces the Riemannian geometry. Finally, our framework provides
different strategies for stringing time series of ROIs, constructing RCDs, and classifying
between families of curves, improving the universality and stability of our framework.

5. Application to Face Recognition

For face recognition in short video, where video F = {F1, · · · , Fk} can be considered
as a sequence of face images, we take the first frame with clear facial features as the
key frame and define four square ROIs {ROIi}4

i=1 located in the four regions around
the two eyes, nose, and mouth as a pattern (see Figure 1a). Using the continuous frame
extraction strategy to trace ROI backward, we can string four time series of ROIs {ROIi}4

i=1,
where ROIi =

{
ROIi,1, · · · , ROIi,ri

}
(1 ≤ i ≤ 4), with embedding SPD matrices

{
XRi

}4
i=1

employing Equations (23) and (25). At the same time, in order to combine the global spatial
features, we also take the global face G1 in the key frame as the starting point, and link
the next two nearest face images in time. For the time series of global spatial features
{G1, G2, G3}, we have time series of their embedding SPD matrices XG =

{
XG1 , XG2 , XG3

}
.

Then, we extend time series of ROIs and global faces extracted from one short video to a
family of feature curves

{
ΓG,
{

ΓRi

}4
i=1

}
on the SPD manifold.

We basically set the weight of the four ROIs and the whole face as equal and we
adopted a pre-classification strategy with KNN-DTW to classify feature curves in the
SPD manifold. Given that a query video consists of a family of five feature curves{

Γ
query
G ,

{
Γ

query
Ri

}4

i=1

}
and training curves

{{
Γ

j
G,
{

Γ
j
Ri

}4

i=1

}
, lV

j

}n

j=1
from sample videos

{V1, · · · , Vn} with their associated labels, taking δDTW as a similarity measure in KNN

classifier, each feature curves in
{

Γ
query
G ,

{
Γ

query
Ri

}4

i=1

}
is pre-classified independently. For

one query curve Γquery, we found out the K training curves closest to the query curve and
defined the set of K training curves as NK(Γ). Solving the label of query curve Γquery,

lquery = max
l

∑
Γ∈NK(Γ)

I
(

l, lV
i

)
i = 1, · · · , K, (31)
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where I(l, li) =

{
1, if l = lV

i
0, if l 6= lV

i
, lV

i is the label of K closest curves Γ ∈ NK(Γ). Then, the

final decision is based on
{

lquery
G ,

{
lquery
Ri

}4

i=1

}
with the law of large number.

6. Comparison Algorithms

To prove the availability of our framework, we utilized seven related SPD-based image
set/video classification methods for comparison, including two covariance descriptor
learning methods: Riemannian covariance descriptors (RieCovDs) [39] and approximate
infinite-dimensional covariance descriptors (AidCovDs) [40]; metric learning methods:
cross Euclidean-to-Riemannian metric learning (CERML) [41]; and four dimensionality
reduction methods: log-Euclidean metric learning (LEML) [42], SPD manifold learning
(SPDML) [43], SPD similarity learning (SPDSL) [44], and discriminative analysis for SPD
matrices on lie groups (DALG) [45].

6.1. RieCovDs

Given an image set includes n images, RieCovDs divides each image into m partially
overlapping regions, that is, the image set is divided into m region sets, and each region
set contains n regions. RieCovDs modelling each region belong to the image set with a
Gaussian model. For a region set, the Gaussian model set is mapped to a SPD matrix set

X =

{
X1, · · · , Xn

∣∣∣∣Xi =

[
Ci + µiµ

T
i µi

µT
i 1

]}
⊆ SymD

++, where µi is mean vector and Ci

is covariance matrix. Finally, for each SPD matrix belonging to the image set, RieCovDs
calculates a Riemannian local difference vector (RieLDV) [46]:

ζ
(
Xp, E(X)

)
= δ

(
Xp, E(X)

) ∇E(X)δ
2(Xp, E(X)

)
‖∇E(X)δ

2
(
Xp, E(X)

)
‖

, p = 1, · · · , n. (32)

Moreover, the generate Riemannian covariance descriptor

Covij =
1

n− 1

n

∑
p=1

ζ
(
Xi,p, E(Xi)

)T
ζ
(
Xj,p, E

(
Xj
))Ti, j = 1, · · · , m (33)

between m region sets represents this image set for recognition.

6.2. AidCovDs

AidCovDs proposes a framework representing image sets with approximate infinite-
dimensional covariance descriptors (CovDs) based on Riemannian kernel and the Nyström
method [47,48]. Given an image set includes n images, AidCovDs first calculates a covari-
ance matrix of SIFT or Gabor features of each image as X = {X1, · · · , Xn} ⊆ SymD

++. The
infinite-dimensional CovDs in RKHS for X is given by

CH = ϕ(X)Jn JT
n ϕ(X)T . (34)

where Jn = n−
3
2
(
nIn − 1n1T

n
)
, 1n is a column vector of n ones, ϕ(X) = ϕ[ϕ(X1), · · · , ϕ(Xn)],

and ϕ : SymD
++ → H is a Riemannian kernel mapping.

Considering a training set Y = {Y1, · · · , Ym} ⊆ SymD
++, the approximation of Rie-

mannian kernel matrix KY =
[
kY
(
Yi, Yj

)]
m×m ∈ Rm×m of the training set can be written

as KY ∼= ZTZ = VE1/2E1/2VT , where Z =E1/2VT ∈ Rd×m, with E being the diago-
nal matrix of top d eigenvalues of KY and V being the matrix of corresponding eigen-
vectors. On the basis of the Nyström method, the approximation of ϕ(X) in RKHS is
Z(X) = [Z(X1), · · · , Z(Xn)] ∈ Rd×n, where Z(Xi) = E−

1
2 VT(kY(Xi, Y1), · · · , kY(Xi, Ym))
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∈ Rd. The approximate infinite-dimensional CovDs in RKHS for an image set can be
written as

CZ = Z(X)Jn JT
n Z(X)T . (35)

6.3. CERML

Given n videos, CERML fuses both Euclidean data (i.e., feature means) X = {x1, · · · , xn}
⊆ RD and the Riemannian representations (i.e., SPD matrices) Y = {Y1, · · · , Yn} ⊆ SymD

++

from videos. Data are transformed from the original Euclidean space and Riemannian
space into RKHS via two transformation matrices Wx ∈ Rn×d, Wy ∈ Rn×d. Transformed

data in RKHS can be defined as XR =
{

xR
1 , · · · , xR

n

∣∣∣xR
i = WT

x Kx
iCol

}
⊆ Rd and YR ={

yR
1 , · · · , yR

n

∣∣∣yR
i = WT

y Ky
iCol

}
⊆ Rd, where Kx

iCol ∈ Rn×n and Ky
iCol ∈ Rn×n are the i-th

column of RBF kernel of X = {x1, · · · , xn} ⊆ RD and Y = {Y1, · · · , Yn} ⊆ SymD
++,

respectively.
The first constraint is to minimize the distances between data with the same label, and

maximize distances between data with different labels:

D1
(
Wx, Wy

)
=

n

∑
j=1

n

∑
i=1

aij‖xR
i − yR

j ‖
2
, aij =

{
1 lx

i = ly
j

−1 others
. (36)

The second constraint aims to keep Euclidean and Riemannian geometric relations
in RKHS:

D21(Wx) =
n

∑
i=1

n

∑
j=1

bij‖xR
i − xR

j ‖
2
, bij =


wx

ij lx
i = lx

j &Λ1
(
xi, xj

)
−wx

ij lx
i 6= lx

j &Λ2
(

xi, xj
)

0 others

, (37)

D22
(
Wy
)
=

n

∑
i=1

n

∑
j=1

cij‖yR
i − yR

j ‖
2
, cij =


wy

ij ly
i = ly

j &Λ1
(
yi, yj

)
−wy

ij ly
i 6= ly

j &Λ2
(
yi, yj

)
0 others

, (38)

where Λ1, Λ2 are neighborhood number. Then, the objective function with balancing
parameters λ1 > 0, λ2 > 0 can be written as

min
Wx ,Wy

λ1D1
(
Wx, Wy

)
+ λ2

(
D21(Wx) + D22

(
Wy
))

D21(Wx)
(
Wy
)

+λ3‖WxKx‖2 + λ3‖WyKy‖2

Subject to WT
x KxWx = Id; WT

y KyWy = Id

(39)

6.4. LEML

Given n videos and their corresponding SPD matrices X = {X1, · · · , Xn} ⊆ SymD
++,

let F : SymD
+ → Symd

+(d ≤ D) be a mapping between manifolds, X ∈ SymD
+ be the high-

dimensional SPD matrix, and F(X) ∈ Symd
+ be the lower-dimensional matrix. LEML aims

to learn a tangent mapping DF(X) : TX
(
SymD

++

)
→ TF(X)

(
Symd

++

)
, where TX

(
SymD

++

)
is the tangent space of SymD

+ and TF(X)

(
Symd

++

)
is the tangent space of Symd

+. LEML

uses a transformation matrix W ∈ RD×d to define tangent mapping as DF(log(X)) =

WTlog(X)W. The geodesic distance DQ
le
(
Ti, Tj

)
= tr

(
Q
(
Ti − Tj

)(
Ti − Tj

))
on the new SPD

manifold Symd
+ is obtained by substituting W into the logarithmic Euclidean distance

on SymD
+, where Q =WWTWWT , Ti = log(Xi). LEML defines how points are similar if

Dle
(
Ti, Tj

)
≤ u and dissimilar if Dle

(
Ti, Tj

)
≥ l, where Dle(·, ·) is geodesic distance, u is the

upper limit, and l is the lower limit.
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Finally, the objective function is given by

min
Q,V

DLogDet(Q, Q0) + ηDLogDet(diag(V), diag(V0))

subject to δijD
Q
le
(
Qi, Qj

)
≤ ξij

(40)

where Dld is the LogDet divergence, Q0 is an initialization of Q, Dld(Q, Q0) = tr
(
QQ0

−1)−
log det

(
QQ0

−1) − d is a vector of slack variables, and DLogDet(Q, Q0) = tr
(
QQ0

−1) −
log det

(
QQ0

−1)− D. If the pair of samples come from the same class, δij = 1; otherwise,
δij = −1, where ξ is a vector of slack variables.

6.5. SPDML

Given n videos and their corresponding SPD matrices, X = {X1, · · · , Xn} ⊆ SymD
++

with labels {l1, · · · , ln}. SPDSL aims to learn a DR mapping F : SymD
++ → Symd

++(d < D)
between manifolds with full rank matrix W ∈ RD×d.

On the new manifold, the data points belonging to the same class should be as close
as possible, and the points belonging to different classes should be as far away as possible.
SPDML make use of notions of within-class similarity gw(·, ·) and between-class similarity
gb(·, ·):

gw
(
Xi, Xj

)
=

{
1,
0,

Xi ∈ Nw
(
Xj
)
or Xj ∈ Nw(Xi)

else
, (41)

gb
(
Xi, Xj

)
=

{
1,
0,

Xi ∈ Nb
(
Xj
)
or Xj ∈ Nb(Xi)

else
, (42)

where N(Xi) is the collection of neighbors of Xi, Nw(Xi) is the collection of neighbors
belonging to the same class with Xi, and Nb(Xi) is the collection of neighbors belonging to
the different classes with Xi. The affinity function is defined as α

(
Xi, Xj

)
= gw

(
Xi, Xj

)
−

gb
(
Xi, Xj

)
. Moreover, the loss function is L(W) =

n
∑

i, j = 1
i 6= j

α
(
Xi, Xj

)
δ
(
WTXiW, WTXjW

)
,

where δ is a distance metric on SPD manifold. To perform dimensionality reduction, the
objective function is given by

min
W∈RD×d

L(W)

s.t.WTW = Id
(43)

6.6. SPDSL

Given n videos and their corresponding SPD matrices X = {X1, · · · , Xn} ⊆ SymD
++

with labels {l1, · · · , ln}, where li = [0, · · · , 1, · · · , 0] ∈ Rc, and where the k-th element
is 1, indicating that Xi belongs to the k-th class of c total classes, inspired by SPDML,
SPDSL adopts the same full rank matrix W ∈ RD×d to define the dimensionality reduction
mapping, within-class similarity gw(·, ·), and between-class similarity gb(·, ·) as SPDML.

Utilizing the supervised criterion of centered kernel target alignment [49,50], the
objective function of SPDSL is given by

min
W∈RD×d

J(W) =
〈UG◦k(W)U,G◦(LLT)〉F

‖UG◦k(W)U‖F

s.t.WTW = Id

(44)

where ◦ denotes the Hadamard product, G = gw + gb, U = In − 1n1T
n

n , L = [l1, · · · , ln]
T ,

kij(W) = exp
(
−αδ2(F(Xi), F

(
Xj
)))

, α = 1
σ2 , and σ is set to the mean distance of pairs in

the training set.
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6.7. DALG

DALG aims to learn a mapping that transforms a high-dimensional Lie group (LG)
into a more discriminative, low-dimensional one. X = {X1, · · · , Xn} ⊆ SymD

++ and
Y = {Y1, · · · , Yn} ⊆ Symd

++ (d < D) are points on two LGs. X =
{

X1, · · · , Xn
}
⊆

TID

(
SymD

++

)
and Y =

{
Y1, · · · , Yn

}
⊆ TId

(
Symd

++

)
are their corresponding Lie alge-

bras in the unit tangent space mapped by logarithmic mapping. Then, DALG defines
the transformation DF(X) : TID

(
SymD

++

)
→ TId

(
Symd

++

)
between unit tangent spaces as

DF(X) : Yi = WT X iW, i = 1, · · · , n with matrix W ∈ RD×d. On the basis of the exponen-
tial and logarithmic mappings between the LGs and their unit tangent space, transformation
F : SymD

++ → Symd
++ is given by

F : Yi = exp
(

WTlog(Xi)W
)

. (45)

To maximize the similarity between points belonging to the same class and minimizing
similarity between points from different classes in low-dimensional LG, optimized W is as
follows:

min
W∈RD×d

d1 = ∑
i,j

δ2
LEM

(
Yi, Yj

)
gw
(
Yi, Yj

)
, (46)

max
W∈RD×d

d2 = ∑
i,j

δ2
LEM

(
Yi, Yj

)
gb
(
Yi, Yj

)
, (47)

where gw(·, ·) and gb(·, ·) are shown in Equations (41) and (42). Combining both constraints,
the overall objective function is

min
W∈RD×d

(d1 − d2). (48)

6.8. Summary

In all the comparison algorithms introduced above, each video is regarded as an image
set, and then the whole is represented by one SPD matrix without considering frame-to-
frame correlation. Geometrically, a video is represented as a point on the SPD manifold.
However, our proposed framework is proposed for short video. In our framework, each
short video is represented as a family of feature curves on the SPD manifold connected by
geodesic.

7. Experimental Studies
7.1. Database

The YouTube Celebrities (YTC) database [51] contains a large series of videos on
YouTube of 47 celebrities. Each individual has three different long videos, and each long
video is segmented into several video clips. In all, there are 1910 clips in the YTC database.
Some examples are shown in Figure 2. Since all videos are encoded in MPEG4 at a 25 fps
rate with low resolution, the noise and poor imaging leads to the much more challenging
recognition task.

We extracted gray-scale features (pixel values) of the face detected in each frame and
resized it to 48 × 48. Then, histogram equalization was used for each face image. We
conducted 10 cross-validation experiments and selected 20 individuals each time. Each
person had six stochastically selected videos in the gallery/training set and three in the
probes/testing set in an experiment.
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ICT-BBT [52] contains large-scale video collections parsed from the whole first season
of the TV Big Bang Theory (BBT). The BBT is a situation comedy, in which most scenes are
shot in bright rooms (see Figure 3 for example).
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Moreover, the ICT-PB [52] is parsed from the TV show Prison Break (PB). Differently,
the shooting scenes of the ICT-PB (see Figure 4 for example) are changeable, which results
in large changes in lighting conditions and more facial obstructions such as shadows and
railings. The frame sequence in each video clip is cut and resized into an image set with
a size of 150 × 150 for each image. The same as the YTC database, the size of each face
is unified into 48 × 48 and a histogram equalization is utilized for each face image. For
each character, both the gallery/training set and the probes/testing set are composed of 10
randomly selected videos. We repeated the experiment 10 times and finally averaged the
accuracy.
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7.2. Method Setting

In our experiments, the sizes of ROIs were unified as a square of 16× 16, and the
search parameter was set to 7 pixels. Since MAD does not require multiplication, we took
it as the matching criteria. With a full search algorithm, all the 16× 16 size regions in the
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searching window were compared to find the best matching one. The difference value
needed to be calculated 15× 15 times. Then, we needed to control the cumulative error

1
256

16

∑
i=1

16

∑
j=1

∣∣ fs+η(i, j)− fs(i, j)
∣∣ ≤ µ. (49)

Once the cumulative error exceeds the upper limit µ, motion estimation will not
continue. Moreover, the setting standard of upper limit µ is based on making sure the
number of ROIs in most cycles is less than 15. We only ran one cycle of motion estimation
for each video.

To be fair, the parameters in comparison algorithms were set according to the original
literature. For RieCovDs, CovDs was calculated by IE-RieLDV-G. The sliding window was
16× 16, and the step size was 8 in the horizontal direction and vertical direction, α = 1 and
β = 0.5. For AidCovDs, the features were extracted using SIFT, and target dimensionality
D = 40. For CERML, λ1 was set to 0.01, λ2 was set to 0.1, k1 was set to 1, k2 was set to
20, σs was the mean distance of training data, and the iteration number was set to 20. For
LEML, the parameters η and ζ were set as 10 and 0.1, respectively. For SPDML and SPDSL,
the upper limit of the number of iterations was set to 50, vw was the minimum number of
samples in one class, and vb was set by cross-validation. In DALG, vw and vb were set as
5 and 20, respectively. For the DR methods, the reduced dimensionality was searched in
{20, 30, 40, 50, 60, 70, 80, 90}, and only the best results are shown. Except for the fact that
CERML, DALG, and LEML are based on the LEM according to the original works, other
comparison algorithms adopted two best performing metrics/divergences.

7.3. Result and Analysis

In this section, we show the experimental comparison between different metrics/divergences
within our proposed methods, as well as a comparison of our proposed methods and seven
SPD-based comparison algorithms.

Since the feature curves we proposed were based on SPD geometry, the choice of
metric/divergence in the SPD manifold, which derived the distance matric in DTW, was
especially important. Hence, the AIRM, the LEM introduced in Section 2.2, and the Stein
and Jeffrey divergences introduced in Section 2.3 combined with the KNN classifier were
applied for the comparative experiments. Table 1 shows the average accuracies using these
four metrics/divergences on the SPD manifold. It is obvious that our method with AIRM
achieved the highest recognition accuracies on two databases. It should be noted that the
AIRM defines a true geodesic distance. Although the LEM was confirmed to be much more
efficient than the AIRM in [21], the LEM did not perform well in our proposed method. This
might have been the case because the LEM is not an affine invariant. In addition, the LEM
does not really reflect the geometric relationship between two points on an SPD manifold.

Table 1. Recognition result on our proposed method with different metrics/divergences.

Method
Database

YTC [51] ICT-BBT [52] ICT-PB [52]

Ours—Jeffrey 44.50% 65.40% 36.83%
Ours—LEM 62.67% 73.20% 48.60%
Ours—Stein 79.00% 86.80% 71.17%

Ours—AIRM 82.33% 87.80% 68.20%

Moreover, as we introduced in Section 5, we utilized global spatial features (global
faces) as the companion to regional spatial features (ROIs). To prove the improvement
made by the global spatial features, we compared three situations in our method, namely,
regional spatial features (ROIs) only, global spatial features (global faces) only, and the
combination of both. As shown in Table 2, extracting regional spatial features only and
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global spatial features only from short videos underperformed in most cases. However, the
combination of ROIs and global faces provided more plentiful information and achieved
better accuracy than the first two.

Table 2. Recognition results with global spatial features and regional spatial features.

Method Spatial Features
Database

YTC [51] ICT-BBT [52] ICT-PB [52]

Ours—Jeffrey
Regional 36.33% 57.60% 37.50%
Global 38.33% 67.80% 22.50%

Combination 44.50% 65.40% 36.83%

Ours—LEM
Regional 50.33% 64.00% 40.67%
Global 67.33% 79.60% 47.33%

Combination 62.67% 73.20% 48.60%

Ours—Stein
Regional 73.00% 76.80% 61.83%
Global 76.00% 92.60% 65.67%

Combination 79.00% 86.80% 71.17%

Ours—AIRM
Regional 69.50% 75.00% 59.83%
Global 76.83% 82.00% 62.50%

Combination 82.33% 87.80% 68.20%

The face recognition tests compared with seven SPD-based algorithms on three internet
video face databases are summarized in Table 3. As can be seen from Table 3, our framework
with AIRM performed best on both ICT-BBT and ICT-PB databases and highly approached
CREML on the YTC database. The DR methods LEML, SPDML and SPDSL showed similar
performance, maybe because set-based SPD matrix representations encode approximate
information of global variations of videos. In contrast, the DALG, the CERML, and our
proposed method were generally outperformed by the other SPD-based video recognition
methods on the both databases. This may have been because the DALG utilized the
geometry of LGs, which provides high-order information, and the CERML fuses the
Euclidean representation and Riemannian representation from videos while our proposed
method fuses both major spatial features and temporal features of video.

Table 3. Recognition results of comparison algorithms.

Method
Database

YTC [51] ICT-BBT [52] ICT-PB [52]

RieCovDs—AIRM [39] 69.33% 66.65% 58.33%
RieCovDs—LEM [39] 69.63% 68.60% 56.67%

AidCovDs—AIRM [40] 73.94% 54.90% 61.67%
AidCovDs—LEM [40] 77.12% 61.10% 57.67%

LEML [42] 74.00% 78.20% 49.33%
SPDML—AIRM [43] 74.67% 78.20% 52.00%
SPDML—Jeffery [43] 75.00% 79.20% 52.33%

SPDSL—LEM [44] 78.33% 75.20% 55.31%
SPDSL—AIRM [44] 80.50% 72.40% 57.50%

DALG [45] 78.67% 86.89% 56.83%
CERML [41] 82.63% 85.00% 66.77%

Ours—Stein 79.00% 86.80% 71.17%
Ours—AIRM 82.33% 87.80% 68.20%

However, the accuracy sharply decreased in the ICT-PB database, which may have
been due to complex imaging conditions and facial occlusion. Only the CERML, the Aid-
CovDs, and our proposed method performed most consistently. This further demonstrates
the effectiveness and robustness of fusing temporal and spatial features by temporal mod-
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eling of ROIs in our proposed method. Moreover, focusing more on ROIs but not global
information helps in reducing interference from facial obstructions. By controlling the cu-
mulative error of motion estimation, ROIs will be skipped in time when encountering facial
obstructions. Although RieCovDs also extract features from image regions, the position
and numbers of regions is unchangeable, ignoring the dynamic change of the recognition
target in the video. Moreover, although RieCovDs is based on image regions, it actually still
extracts global information from frame images with regions covering the whole picture.

8. Conclusions and Future Work

In this paper, we propose a short video recognition framework that models temporal
evolution of ROIs in short video as a family of feature curves on the SPD manifold, which
fuses spatial and temporal features of video. In this framework, the time series of ROIs
are traced by motion estimation, which effectively saves vast computing cost compared
with feature detection per frame and provides a degree of information filtering. More-
over, by characterizing each ROI with the RCD, an effective transformation from original
video recognition to family of feature curves on SPD manifold recognition is established.
Finally, the Riemannian metrics and divergences on the resulting SPD manifold can derive
appropriate distance in DTW to define similarity measures between feature curves. Our
extensive comparative experiments show that the proposed framework achieves advanced
and effective results on three challenging video-based face databases.

For future work, combined with feature detection methods, the study of how to expand
the proposed framework to different short video recognition tasks would be interesting.
Moreover, on the basis of the geometry of the Riemannian manifold, it is necessary to
explore the novel time series recognition method.
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