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Abstract: The simple and labor-intensive tasks of workers on the job site are rapidly becoming dig-
ital. In the work environment of logistics warehouses and manufacturing plants, moving goods to 
a designated place is a typical labor-intensive task for workers. These tasks are rapidly undergoing 
digital transformation by leveraging mobile robots in automated warehouses. In this paper, we 
studied and tested realistically necessary conditions to operate mobile robots in an automated ware-
house. In particular, considering conditions for operating multiple mobile robots in an automated 
warehouse, we added more complex actions and various routes and proposed a method for im-
proving sparse reward problems when learning paths in a warehouse with reinforcement learning. 
Multi-Agent Reinforcement Learning (MARL) experiments were conducted with multiple mobile 
robots in an automated warehouse simulation environment, and it was confirmed that the proposed 
reward model method makes learning start earlier even there is a sparse reward problem and learn-
ing progress was maintained stably. We expect this study to help us understand the actual operation 
of mobile robots in an automated warehouse further. 

Keywords: Multi-Agent Reinforcement Learning; mobile robot; warehouse environment; sparse  
reward; Reward Shaping 
 

1. Introduction 
In order to operate a mobile robot in an automated warehouse, the following realistic 

conditions must be considered. First, it is necessary to solve the Multi-Agent Path Finding 
(MAPF) problem, in which multiple mobile robots work simultaneously in an automated 
warehouse to find the optimal path for given tasks [1]. Second, we have to deal with the 
Multi-Agent Pickup and Delivery (MAPD) issue [1]. The actual operation of the mobile 
robots is not simply departure and arrival. In automated warehouses, mobile robots per-
form a more complex and sequential series of actions to deliver goods to a designated 
location. 

Reinforcement learning algorithms are widely used to solve various decision making 
problems in complex environments. Recently, the demand for multi-agent environments 
has been rapidly increasing, as is interest in Multi-Agent Reinforcement Learning (MARL) 
algorithms [2]. In general, MARL aims to simultaneously train multiple agents to perform 
a given task in a shared environment [3]. In this paper, we use a Multi-Agent Reinforce-
ment Learning (MARL) algorithm to handle additional conditions for mobile robots in a 
warehouse. 

We simulate the environment of an automated warehouse and used a MARL algo-
rithm to simulate multiple mobile robots. The movement of a mobile robot is not a simple 
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operation; it is complex. We are also trying to increase the usability of training by allowing 
mobile robots to learn from a variety of positions rather than from a fixed position. 

Reinforcement learning can proceed efficiently when the agent is smoothly rewarded 
for the actions performed. However, in some reinforcement learning experiments, there 
is no learning because of sparse rewards. In this paper, we experimentally verify that mul-
tiple mobile robots can perform realistic operations in an automated warehouse. In par-
ticular, we propose a method to improve the sparse reward problem of the learning path 
with multiple mobile robots in automated warehouses and named it the Dual Segmented 
Reward Model. 

The Dual Segmented Reward Model method expects contributions to the following 
items: 
1. A reward model is proposed so that learning can proceed efficiently and stably in an 

environment where the sparse reward problem of reinforcement learning has be-
come serious. 

2. The proposed reward model induces and supports reinforcement learning efficiently 
and stably by using the reward model without modifying the reinforcement learning 
algorithm or changing the environment. 

3. It is meaningful as a practical case study that confirms learning efficiently and stably 
despite the sparse reward problem in a simulation experiment environment similar 
to an actual automated warehouse. 
The paper consists of the following contents. Section 2 reviews the types of reinforce-

ment learning algorithms and briefly reviews the meaning of Model-Free, Model-Based, 
Value-Based, and Policy-Based. For Multi-Agent Reinforcement Learning (MARL), we re-
view the differences between single agents and multiple agents, their algorithms, types 
based on agent relationship, and types of learning and execution. The algorithms to be 
used in the experiment are reviewed, as well. We also briefly review methods to amelio-
rate the sparse reward problem. In Section 3, we explain the idea and definition of the 
proposed “Dual Segmented Reward Model.” Section 4 describes the simulation environ-
ment, experimental methods and cases, detailed modeling information of the proposed 
method, the parameters to be used for the experiment, and the experimental results. Sec-
tion 5 presents general conclusions and opinions, as well as directions for future research. 

2. Related Work 
2.1. Reinforcement Learning Types 
2.1.1. Model-Based vs. Model-Free 

Reinforcement learning algorithms can be classified into Model-Free and Model-
Based types. These types can be classified by whether the environment model can be de-
fined or not. If the environmental model can be defined in terms of external changes and 
states, a plan can be established accordingly. 

The Model-Based type means planning is possible. In other words, if agents can pre-
dict how their actions will change the environment, they can anticipate changes before 
taking action and plan and execute optimal actions, allowing agents to act much more 
efficiently. Under this assumption, when an action is taken in a specific state, the algo-
rithm form that defines the probability of the next state and probabilistically predicts the 
change of the environment according to the action is called the Model-Based type [4,5]. 
However, it is difficult to predict the exact model of the environment, and if the model 
does not properly reflect the environment, the agent behaves incorrectly. Model-Based 
reinforcement learning algorithms are Alpha Zero, Imagination-Augmented Agents 
(I2A), Model-Based Model-Free (MBMF), Model-Based Value Expansion (MBVE), Dyna, 
etc. [4,6]. 

In the Model-Free type, the agent seeks to find the future value of the reward as a 
policy function by means of its actions. Since this algorithm does not know about the en-
vironment, it passively obtains the next state and reward informed by the environment. 
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The algorithm has to explore because it no longer knows how the environment will be-
have. It is a method that gradually learns policy functions by means of trial and error 
during such exploration [4,5]. Model-Free Reinforcement Learning can be divided into the 
Value-Based and Policy-Based types. We will briefly review these types. 

Figures 1 and 2 illustrate the Model-Free and Model-Based types. 

 
Figure 1. Model-Free Reinforcement Learning [7]. 

 
Figure 2. Model-Based Reinforcement Learning [7]. 

2.1.2. Value-Based vs. Policy-Based 
The value function calculates the value of a specific state, and it is used when calcu-

lating the experienced state and behavior information by storing it in memory. However, 
this value function has limitations with storage space and operation time needed to store 
and manage all values, such as states and actions that are increased when the environment 
becomes more complex [4,5]. There are Q-Learning [4], State Action Reward State Action 
(SARSA) [4], Deep Q-Networks (DQN) [8,9], Double Deep Q-Networks (DDQN) [10], Du-
eling Double Deep Q-Networks (DDDQN) [11], Prioritized Experience Replay (PER) [12], 
etc., as Value-Based Reinforcement Learning algorithms. 

The Policy-Based method approximates a policy by using parameters without storing 
all experiences. Convergence is better than that of Value-Based algorithms and can handle 
both discrete and continuous action spaces. However, it has disadvantages, such as large 
variance, which makes learning unstable, requires more samples, and is highly likely to 
find a local optimum [4,5]. There are REINFORCE [13], Vanilla Policy Gradient (VPG) 
[14], Trust Region Policy Optimization (TRPO) [15], and Proximal Policy Optimization 
(PPO) [16] as Policy-Based Reinforcement Learning algorithms. 

Actor-Critic is a mixture of the Value-Based and Policy-Based types. The basic con-
cept is that an Actor selects and performs an action when a state is given, and a Critic 
checks the action performed by the Actor and evaluates it [4,5]. It is a method to induce 
learning so that the Actor works better by using the Critic. Asynchronous Advantage Ac-
tor-Critic (A3C) [17], Advantage Actor-Critic (A2C) [18], and Deep Deterministic Policy 
Gradient (DDPG) [19] are Actor-Critic types of reinforcement learning algorithms. 
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2.2. Multi-Agent Reinforcement Learning (MARL) 
2.2.1. Concept of Multi-Agents and MARL Algorithm 

In reinforcement learning, if the agent can know everything about its environment, 
it can be defined as a Markov Decision Process (MDP), which consists of state S, action A, 
probability P, reward R, and discount factor γ, and single agent is defined based on MDP. 
MDP has fully observable characteristics of the state [4,20]. As the learning target of rein-
forcement learning expands from single to multiple, the MDP must change based on sto-
chastic games, and the components expand with the number of agents n, state S, actions 𝐴ଵ…௡, probability P, rewards 𝑅ଵ…௡, and discount factor γ [19]. In stochastic games, an agent 
performs an action, and the agent’s combination of actions determines the next state and 
reward. Agents make different observations because of partially observable characteris-
tics [20,21].  

Figure 3 shows the difference between components and interactions for a single agent 
or multiple agents of reinforcement learning. 

 

 
(a) (b) 

Figure 3. Components and Interactions of Reinforcement Learning: (a) Single Agent; (b) Multiple 
Agents [22,23]. 

There are Independent Q-Learning (IQL) [24–27], Advantage Actor-Critic (IA2C) 
[24,28], Independent Proximal Policy Optimization (IPPO) [24,29], Multi-Agent Deep De-
terministic Policy Gradient (MADDPG) [24,30], Counterfactual Multi-Agent Policy Gra-
dients (COMA) [24,31], QMIX [24,32], and Shared Experience Actor-Critic (SEAC) [24,33] 
as MARL algorithms. 

2.2.2. MARL Setting Types 
MARL setting types can be generally divided into three types based on the task’s 

characteristics and the relationships between agents. 
• Cooperative Type [20,34,35] 

In the cooperative type, all agents work together to achieve a common goal. In gen-
eral, there is a common reward model and a team-average reward model. The common 
reward model is described in Equation (1) and the team-average reward model is de-
scribed in Equation (2) [20]. 𝑅ଵ = 𝑅ଶ = ⋯ = 𝑅ே = 𝑅 (1) 



Appl. Sci. 2022, 12, 4703 5 of 21 
 

𝑅ത(𝑠, 𝑎, 𝑠ᇱ): = 𝑁ିଵ ⋅ ෍  ௜∈𝒩 𝑅௜(𝑠, 𝑎, 𝑠ᇱ) (2) 

• Competitive Type [20,34,35] 
The competitive type is most often described as an environment in which two agents 

compete against each other, where one agent gains and the other agent loses. It is usually 
modeled as a zero-sum game as in Equation (3) [20]. ෍  ௜∈𝒩 𝑅௜(𝑠, 𝑎, 𝑠ᇱ) = 0 (3) 

• Mixed Type [20] 
The mixed type is a hybrid form of cooperative and competitive types and is rela-

tively less restrictive and more flexible [20]. 

2.2.3. MARL Learning and Execution Types 
The MARL algorithm uses reinforcement learning techniques to train agents on 

multi-agent systems. MARL can be broadly classified into the following types in terms of 
learning and execution. 
• Centralized Training Centralized Execution (CTCE) 

The CTCE paradigm assumes that immediate information exchange between agents 
is possible without constraints. With centralized learning, a common policy is learned for 
all agents, and each agent can directly use the policy set for multi-agents [36]. During 
training, agents affect each other, which can make learning inefficient [36]. 
• Centralized Training Decentralized Execution (CTDE) 

The CTDE paradigm allows agent-to-agent communication to exchange information 
during training. Agents can use the same learning model, share a common goal, and share 
a learning model or experience with other agents. This method is a policy method based 
on parameter sharing [27,36,37]. However, even if an agent owns the same policy network, 
different agents perceive it differently, which may result in different behavior [27,36,38]. 
• Distributed Training Decentralized Execution (DTDE) 

In the DTDE paradigm, agents cannot see the information of other agents and are 
unaware that they are collaborating. From the point of view of a single agent, the environ-
ment is constantly changing and perceived as independent [36–38]. Distributed learning 
is limited in scaling the number of agents because of the complexity [36–38]. 

Figure 4 explains the training patterns of CTCE, CTDE, and DTDE. 

  

(a) (b) 
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(c) 

Figure 4. Training Types of Multi-Agent Environment: (a) CTCE; (b) CTDE; (c) DTDE [36]. 

2.3. Review of Algorithm for Experiment 
2.3.1. Deep Q-Networks (DQN) 

The most representative algorithm of the Value-Based method is Deep Q-Networks 
(DQN), which uses a deep neural network as a value function [8,9]. The optimal action-
value function follows the Bellman Equation. If the optimal value Q*(s, a) for all actions is 
known, the optimal expected value is a method of selecting behavior a′ that maximizes r 
+ γQ*(s′, a′) as shown in Equation (4) below [8]. 𝑄∗(𝑠, 𝑎) = 𝔼௦ᇲ∼ℰ ቂ𝑟 + 𝛾𝑚𝑎𝑥௔ᇲ  𝑄∗(𝑠ᇱ, 𝑎ᇱ) ∣ 𝑠, 𝑎ቃ (4) 

Nonlinear function estimation is possible by approximating the action-value function 
by using a deep neural network. The neural network function approximator with weight 
θ, called Q-Network, learns by finding the minimum of the loss function 𝐿௜(𝜃௜) [8]. yi is 
the target value of iteration i and 𝜌 is the probability distribution of state s and action a 
as a behavior distribution. 

The formula for the loss function of a Q-Network is Equation (5) [8]. 𝐿௜(𝜃௜) = 𝔼௦,௔∼ఘ(⋅) ቂ൫𝑦௜ − 𝑄(𝑠, 𝑎; 𝜃௜)൯ଶቃ (5) 

The optimal θ is obtained by means of learning, and this process is shown in Equation 
(6) [7]. ∇ఏ೔𝐿௜(𝜃௜) = 𝔼௦,௔∼ఘ(⋅);௦ᇲ∼ℰ ቈቆ𝑟 + 𝛾𝑚𝑎𝑥௔ᇲ  𝑄(𝑠ᇱ, 𝑎ᇱ; 𝜃௜ିଵ) − 𝑄(𝑠, 𝑎; 𝜃௜)ቇ ∇ఏ೔𝑄(𝑠, 𝑎; 𝜃௜)቉ (6) 

2.3.2. Double Deep Q-Networks (DDQN) 
If the Q-Value of the DQN becomes very large, the performance of the Q-Network 

may deteriorate. To solve this problem, the Double DQN algorithm uses two Q-Networks, 
which select an action from the current Q-Network and evaluate it using the old Q-Net-
work [10]. The target network has the same structure as the DQN network but is com-
posed of different parameters 𝜃௧ି . 

The formula of DQN’s target network is expressed as Equation (7), and the Double 
DQN is changed as in Equation (8) [10]. 𝑌௧ୈ୕୒ ≡ 𝑟௧ାଵ + 𝛾𝑚𝑎𝑥௔  𝑄(𝑠௧ାଵ, 𝑎; 𝜃௧ି ) (7) 

𝑌௧DoubleDQN ≡ 𝑠௧ାଵ + 𝛾𝑄 ൬𝑠௧ାଵ, argmax௔ 𝑄(𝑠௧ାଵ, 𝑎; 𝜃௧), 𝜃௧ି ൰ (8) 

2.3.3. Independent Q-Learning (IQL) 
The basic concept of the Independent Q-Learning (IQL) algorithm is to maximize the 

joint reward by observing local information, and an individual agent judges other agents 
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as part of the environment. Early IQL was implemented, where an agent executes the Q-
Learning algorithm as a value function. Recently, it has been expanded to the Deep Q-
Network (DQN) or Deep Recurrent Q-Network (DRQN) by using a deep neural network 
[25–27]. When using a deep neural network, each agent calculates a loss value based on 
local information and updates the parameter values of the Q-Network [26]. 

2.4. Sparse Reward and Improvement Methods 
Reinforcement learning often does not go well because of the sparse reward problem. 

Because the rewards are sparse, the agent spends most of its learning time on meaningless 
searches and is not even rewarded during any part of the training. In addition, even if an 
agent achieves a goal with difficulty in a sparse reward situation, if the success rate is very 
low, it is likely that the learning level for the final goal will not be reached. 

A representative method for improving the sparse reward problem, which is a 
chronic problem of reinforcement learning, has been reviewed [39]. 
• Reward Shaping 

Reward Shaping is a technique for defining an additional intermediate reward value 
considering the domain knowledge of the agent’s behavior and environment. 
• Transfer Learning 

Transfer Learning is a way to train agents with easier tasks first and transfer the 
knowledge learned from the training by means of a value function later. 
• Curriculum Learning 

In Curriculum Learning, an agent is trained in an easier environment at the begin-
ning of learning, and then the difficulty is increased to a more complex environment to 
enable learning in an environment similar to the real environment. 
• Curiosity-Driven Learning 

Curiosity-Driven Learning efficiently explores unknown states using prediction er-
ror and visit count as intrinsic reward values. In particular, an Intrinsic Curiosity Module 
(ICM) is proposed to solve the exploring problem by selecting a task with a small predic-
tion error for an agent’s curiosity. 
• Hierarchical Reinforcement Learning (HRL) 

When it is difficult to train directly, Hierarchical Reinforcement Learning (HRL) 
trains by reorganizing the task into a hierarchical agent structure. For the policy, it can be 
defined as a main policy and some auxiliary policies. 

3. MARL Methodology in a Warehouse Environment 
As seen in the latest trends in MARL algorithms discussed above, algorithms that 

consider various reward methods and techniques were being developed to improve the 
performance and efficiency of reinforcement learning algorithms in a multi-agent envi-
ronment. In this paper, we propose and verify a method for improving learning perfor-
mance and sparse reward problems by modeling reward values with a simple MARL al-
gorithm that considers the behavioral characteristics of mobile robots in a warehouse. 

3.1. System Architecture 
Figure 5 describes the software architecture using MARL and the reward model pro-

posed in this paper in an automated warehouse where multiple mobile robots are oper-
ated. 
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Figure 5. Multi-Agent Mobile Robot Framework Architecture in a Warehouse [22]. 

3.2. Proposed Reward Model 
We decided to use the MARL algorithm to operate multiple mobile robots in a ware-

house. However, the target experimental environment is a high-dimensional grid-type 
warehouse and has sparse rewards [24]. Therefore, it is necessary to ameliorate the sparse 
reward problem for better learning performance, and we propose a reward model to do 
so. 

3.2.1. Basic Rules to Define the Proposed Reward Model 
To define a reward model, we need the following basic rules: 

1. Define Full Actions and Partial Actions 
The mobile robot moves to the location of the inventory pod, takes the object, and 

delivers it to the final destination. A mobile robot performs a series of partial actions to 
accomplish the complete task; that is, full actions are composed with partial actions to 
complete the task. Full actions and partial actions can be expressed as in Equation (9). Full 
actions can be Ai and are composed of n partial actions 𝑎௜ଵ, 𝑎௜ଶ, …, 𝑎௜௡. 𝐴௜ = 𝑎௜ଵ ∪ 𝑎௜ଶ ∪ 𝑎௜ଷ ∪ … ∪ 𝑎௜௡ (9) 

2. Define the Maximum Reward Value 
In order to fairly evaluate the training, one must limit the maximum reward value. 

The sum of the reward values of all partial actions should equal the reward values of the 
entire action and should not exceed the maximum reward value. The reward value for the 
full actions is R, and the reward value for the partial action is r, which can be expressed 
as Equation (10). 𝑅௜ = r௜ଵ + r௜ଶ + r௜ଷ + ⋯ + r௜௡, (𝑅௜ ≤  Maximum Reward Value ) (10) 
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3.2.2. Define Reward Settings Based on Agent Relationship 
Multi-agent environments can be classified into three types according to the relation-

ships between agents: Competitive, Cooperative, and Mixed [20]. The Competitive type 
has zero-sum characteristics, and agents perform tasks in a competitive relationship. We 
considered only Cooperative and Mixed types in this paper because the Competitive type 
may not be suitable for the task of mobile robots in a warehouse. 
1. Cooperative Type [20] 

In a multi-agent environment, agents work in partnership. When an agent achieves 
a goal, all agents receive the same reward. The Cooperative type does not deal with com-
petition between agents for a common goal, but it is limited by not being able to distin-
guish between agents that have achieved the goal and agents that have not.  

Figure 6 and Equation (11) explain the reward method for the Cooperative type. 

 
Figure 6. Reward Method Logic for the Cooperative Type. 

 Evenly Divided Reward Value =  Maximum Reward Value 
 Number of Agents . (11)

2. Mixed Type [20] 
In a multi-agent environment, we can mix cooperative and competitive relationships 

between agents. When an agent achieves a goal, it gives a bigger reward to the agent who 
achieves the goal and a smaller reward to the agent who does not achieve the goal. This 
type is expected to ameliorate the learning problem when the workload is concentrated 
on a single agent in a competitive environment or when there is no difference in rewards 
between agents that achieve a goal and those that do not. The ratio of the reward given to 
agents that achieve the goal and those that do not are controlled by a weight w (1 ≥ w ≥ 0). 
Figure 7 and Equations (12) and (13) explain the reward method for the Mixed type. 

 
Figure 7. Reward Method Logic for the Mixed Type. 
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 Reward Value for Achieving Goal =  Maximum Reward Value × 𝑤, (0 ≤ 𝑤 ≤ 1) (12) 

 Reward Value for Not Achieving Goal =  (Maximum Reward Value × (1 − 𝑤)) Number of Agents − 1  (13) 

3.2.3. Proposed Reward Model Dual Segmented Reward Model 
We propose the following method as a reward model for the experiment. The pro-

posed method can be a kind of Reward Shaping to learn the optimal path of multiple 
mobile robots in a warehouse. 
1. Define Segmented Reward Model 

First, it is necessary to define the Segmented Reward Model. In reinforcement learn-
ing, some studies divide the task into partial actions and distribute the reward values 
[40,41]. The definition of the Segmented Reward Model proceeds in a similar way. The 
reward value is defined by dividing the total reward value of full actions and distributing 
it to partial actions. Depending on the definition of the reward values for partial actions, 
the degree of learning can be affected.  

Figure 8 shows the concept of segmented actions and distributed reward values. 

 
Figure 8. An Example of Splitting the Full Actions. 

2. Define Dual Reward Model based on Segmented Reward Models 
By observing the behavioral patterns of agents in simulation experiments, we real-

ized that using the same reward strategy from start to finish in a single episode might not 
be advantageous. Since the maximum reward value is fixed to a specific number and the 
reward value is divided into very small pieces for partial actions, it is difficult to improve 
the learning. In addition, we confirmed that the importance of partial actions may depend 
on the learning period. We found that important partial action can be different in the first 
half or the second half of an episode. In the early stage of learning, it is advantageous to 
increase the reward value for early partial actions. As the learning progresses gradually 
and the number of episodes increases, it is advantageous to increase the weight for the 
latter half of the partial actions to increase the number of tasks completed. Therefore, we 
proposed to divide the training interval of the episode in half and define the split reward 
model for the first half and the second half as a dual reward model, which Figure 9 de-
scribes. The two reward models are composed of the same actions, but the weight of the 
reward value can be different. For example, Reward Model No. 1 defines higher reward 
values for initial actions of entire procedure, and Reward Model No. 2 defines higher re-
ward values for the latter actions of entire procedure. 
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Figure 9. Dual Reward Model Logic. 

We also added the Reward Decay method to maintain the learning efficiency more 
robustly as learning progresses by adjusting the reward weight. 

Equation (14) describes the Reward Decay method. The total reward value of full 
actions is denoted by R, and the reward value of a partial action is denoted by r; n is the 
number of partial actions, m is the number of episodes currently being learned, and λ is 
the reward decay rate. 𝑅௜ = 𝑟௜,ଵ𝜆௠ + 𝑟௜,ଶ𝜆௠ + ⋯ + 𝑟௜,௡ିଵ𝜆௠ + 𝑟௜,௡    (0 < 𝜆 < 1) 

= ෍  ௡ିଵ
௝ୀଵ 𝑟௜,௝𝜆௠ + 𝑟௜,௡       (14)

4. Experiment and Results 
4.1. Experiment Environment 

The experimental environment of this paper was constructed based on the automated 
warehouse. The warehouse layout was the traditional type, and a simulated environment 
was created in a work environment in which 15 inventory pods and two mobile robots 
were operated. The warehouse simulation used an Open AI-based warehouse-simulation 
open source [3,24]. The layout of experiment warehouse environment is shown in Figure 
10. 

We did the experiments using DQN-based and DDQN-based IQL algorithms open 
source as MARL algorithms [25,26]. 
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Figure 10. Warehouse Layout and Environment for Experiment [22]. 

4.2. Experiment Method 
The mobile robot conducted experiments with the following scenarios: 

1. The mobile robot moves to find the location of the object to be transported. 
2. When the mobile robot arrives at the location of the object, the operator picks up the 

object and places it on the transport tray. 
3. The mobile robot moves to the final destination with the transport tray and delivers 

the object to the final destination. The operator gets the object from the transport tray. 
4. The mobile robot returns the transport tray to its initial position. 

In this test method, the final destination position is fixed and does not change, but 
the starting position and picking position of the mobile robot are continuously changed 
at random, so various starting positions and picking positions of objects can be considered 
for learning. 

4.3. Modeling of the Dual Segmented Reward Model 
For reward setting based on the agent relationship, in order to consider the difference 

between the agent who performs the task and the agent who does not, we conducted the 
experiment with a Mixed type rather than a Cooperative type. However, the weight w 
was set to 0.6, so that the difference in reward values between agents was not too large. 
The definition of the reward values applied to the experiment was as follows: the agent 
who delivered the object received a reward of 0.6, and the agent who failed to deliver the 
object received a reward of 0.4, and the maximum reward value was defined as 1. 

The experiment was basically based on the Mixed type and added the Dual Seg-
mented Reward Model with reward decay. The Segmented Reward Model based on par-
tial actions is separately defined by a Finite State Machine (FSM) technique [42]. 

The procedure of the Dual Segmented Reward Model is as follows (Algorithm 1). 
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Algorithm 1: Dual Segmented Reward Model 
(a) Initialize 
(b) Loop for Episode: 
(c)   Loop for n Steps: 
(c-1)    Get state 
(c-2)    Take action and next state 
(c-3)    If agent does not complete action in the episode, 
           Get reward value via Reward Model No. 1 with Learning Decay Method 
        Else 
           Get reward value via Reward Model No. 2 
(d)      Change next state to state 

For the experiment, the Segmented Reward Models are defined as shown in Figure 
11. 

  

(a) (b) 

Figure 11. Segmented Reward Models: (a) Reward Model No.1; (b) Reward Model No.2. 

4.4. Experiment Parameter Values 
The values of the parameters applied in the test are described in Table 1. 

Table 1. Parameter values for test. 

Parameter Value 
Learning Rate (α) 0.00008 
Discount Rate (γ) 0.99 

Reward Decay Rate (λ) 0.99 

4.5. Experiment Results 
Two algorithms were used in the experiment, a DQN-based IQL algorithm and a 

DDQN-based IQL algorithm. The first experiment was conducted with the algorithm it-
self, and the second experiment was performed with algorithms and the proposed reward 
model together. We did the experiment five times for each test case and visualized the 
experimental results for each agent. 

The experimental results of DQN and DDQN can be seen in Figures 12 and 13. In the 
DQN experiment, rewards started to occur irregularly at various points between 100,000 
and 700,000 steps, and learning began. Once the reward was created, the reward value 
continued to increase and learning progressed. In the DDQN experiment, rewards began 
to occur at various points ranging from 100,000 to 500,000 steps. Comparing the test re-
sults of DQN, the difference is that even after the reward is generated, the increase in the 
reward value sometimes decreases slightly and variably. By means of the experiments of 
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DQN and DDQN, we confirmed that there are rare cases in which rewards do not occur 
occasionally until the end of learning. 

  

(a) (b) 

Figure 12. Test Result of DQN: (a) Agent 1; (b) Agent 2. 

  

(a) (b) 

Figure 13. Test Result of DDQN: (a) Agent 1; (b) Agent 2. 

The experimental results of DQN and DDQN using the proposed Dual Segmented 
Reward Model are shown in Figures 14 and 15. The results of DQN and DDQN using the 
proposed reward model are very similar. The reward occurred between 100,000 and 
200,000 steps, and the learning progressed stably with little deviation. 

In addition, we confirmed that a small reward value was generated from the begin-
ning. This change helped ameliorate the sparse reward problem. In addition, the proposed 
reward model was effective in reducing the learning deviation between each experiment 
and stably maintaining the learning. 
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(a) (b) 

Figure 14. Test Result of DQN with Dual Segmented Reward Model: (a) Agent 1; (b) Agent 2. 

  
(a) (b) 

Figure 15. Test Result of DDQN with Dual Segmented Reward Model: (a) Agent 1; (b) Agent 2. 

In order to check more statistically, the sum of the reward values of Agent 1 and 
Agent 2 was calculated for the results of five experiments, and the minimum, maximum, 
and average reward values for each time step were visualized in Figure 16. The gray area 
represents the range from the minimum reward value to the maximum reward value for 
each step, and the orange line represents the average of five experiments. Comparing the 
visualization diagrams of each test case, the difference between the minimum and maxi-
mum rewards is very large and the gray area is wide in the cases of DQN and DDQN. 
However, when the Dual Segmented Reward Model method is applied with DQN and 
DDQN, the difference between the minimum and maximum rewards is significantly re-
duced and gray area is also narrowed. 
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(a) (b) 

  
(c) (d) 

Figure 16. Reward Summation Analysis of Test Results: (a) DQN; (b) DDQN; (c) DQN with Dual 
Segmented Reward Model; (d) DDQN with Dual Segmented Reward Model. 

The reward values of the experimental results for all test cases are compared in Fig-
ure 17. The reward values of the five experiments were averaged without any agent clas-
sification. In the experiments conducted with the DDQN algorithm, the rewards started 
to increase slightly faster than in the experiments conducted with the DQN, and the re-
wards were also slightly higher. When the proposed reward model was applied, we con-
firmed that the experimental results were consistent and similar regardless of the algo-
rithm DQN or DDQN. Hence, the proposed reward model works better and more stably 
than did the experiment using only the DQN or DDQN algorithm in terms of timing and 
pattern of reward increase. 
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Figure 17. Comparison of Experimental Results by Test Case. 

The difference between the experiment using the algorithm itself and the experiment 
using the Dual Segmented Reward Model is summarized as follows: 

First, the reward generation pattern is different at the beginning of the experiment. 
For experiments on the algorithm itself, little reward occurred until the reward value in-
creased. However, for the experiment to which the proposed reward model was applied, 
a small reward was continuously generated from the beginning of the experiment. Figure 
18 shows the difference. 

  
(a) (b) 

  
(c) (d) 

Figure 18. Comparison of Improvement #1: (a) DQN Test; (b) DQN + Dual Segmented Reward 
Model; (c) DDQN Test; (d) DDQN + Dual Segmented Reward Model. 

Second, there is also a big difference in the time when the reward value starts to in-
crease. For the experiment using the algorithm itself, the starting point of the increase in 
the reward value was not constant and there were many differences between the experi-
ments. However, as a result of applying and testing the proposed reward model, the re-
ward value started to increase consistently at a certain time. Figure 19 shows the changes. 
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(a) (b) 

Figure 19. Comparison of Improvement #2: (a) DQN Test; (b) DQN + Dual Segmented Reward 
Model. 

Third, there is a difference in the pattern of increase in reward value. For the experi-
ment using the algorithm itself, the increase trend of the reward value was not constant 
and the reward value did not increase or decrease intermittently. However, when the pro-
posed reward model was applied and tested, the pattern of increase in reward value was 
stable and consistent, and there was no decrease in the increased reward value. It can be 
confirmed in Figure 20. 

  
(a) (b) 

Figure 20. Comparison of Improvement #3: (a) DDQN Test; (b) DDQN + Dual Segmented Reward 
Model. 

Given these improvements, we judged that it was helpful in improving the sparse 
reward problem. In the experiment using the proposed reward model, there was no case 
of learning failure that was intermittently observed in the experiment using the algorithm 
itself. 

5. Conclusions 
In this paper, we conducted a study considering realistically necessary conditions in 

an automated warehouse. Additional considerations were multiple mobile robots and 
complex movements. In particular, we used a MARL (Multi-Agent Reinforcement Learn-
ing) algorithm for path learning using multiple mobile robots. We did experiments with 
IQL algorithms based on DQN and DDQN. Although the initial experiment was success-
ful, there was a problem in that the experimental results were not stable and the deviation 
was quite large. The target warehouse simulation environment basically has a character-
istic of sparse reward, and it has become a poorer environment for reinforcement learning 
by expanding the warehouse size. It was necessary to ameliorate the sparse reward prob-
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lem for better performance and stability. For this purpose, we proposed the Dual Seg-
mented Reward Model and verified it as a reward model method optimized for ware-
houses. Specially, the proposed reward model is based on two separate reward models 
that split the entire action into partial actions. We defined two segmented reward models 
by observing the actual movement of mobile robots in a warehouse and understanding 
the characteristics of their movement. This improvement method can be a Reward Shap-
ing method. We verified the proposed reward model by means of experiments, and the 
small reward value was continuously generated from the initial learning, the reward 
value increased in a certain time, the learning progressed, and the improvement was con-
firmed that the learning proceeded stably. In addition, there was almost no deviation in 
each experiment, thus confirming that the learning patterns of the experiments were al-
most identical. In this study, learning was performed using a simple MARL algorithm in 
a specific multi-agent environment, and positive results were confirmed with IQL algo-
rithms based on DQN and DDQN, a distributed learning method. In the case of central-
ized learning, the sparse reward problem became more serious, and it was confirmed that 
the learning did not proceed well. The reward model method proposed in this paper has 
a high correlation with the operation of multiple mobile robots in an automated ware-
house. It is specialized for the environment and its conditions. Therefore, as the environ-
ment and operations change, the reward model must be optimized by redefining it ac-
cording to the changed environment and conditions. 

Reinforcement learning is a very attractive and useful topic for solving complex prob-
lems in a variety of environments. As a future research direction, we hope to study com-
plex decision making topics by using reinforcement learning to solve more complex real-
istic problems and find optimal solutions for applications or a systematical improvement 
method for the reward model. 
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