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Abstract: With advances in scanner technology, postprocessing techniques, and the development of
novel positron emission tomography (PET) tracers, the applications of PET for the study of coronary
heart disease have been gaining momentum in the last few years. Depending on the tracer and
acquisition protocol, cardiac PET can be used to evaluate the atherosclerotic lesion (plaque imaging)
and to assess its potential consequences—ischemic versus nonischemic (perfusion imaging) and
viable versus scarred (viability imaging) myocardium. The scope of this review is to summarize the
role of PET in coronary heart disease.
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1. Introduction

PET has been increasingly used in the medical field since its discovery, in the sixth
decade of the last century, due to both technological advances and the expansion of indi-
cations. Fifty years after its development, the number of detectors increased from 64 to
19,000 and the spatial resolution of the exam from 14 mm to 4 mm [1]. These detectors
measure the total energy deposited by the two annihilation photons moving in opposite
directions produced after positron emission from a radionuclide-tagged tracer molecule [2].
The tracer molecule is part of the biochemical process that we are interested in quantifying
and as such, the radionuclide should ideally only interact with that molecule [3]. The raw
data acquired is then corrected for attenuation and finally reconstructed to provide an
estimate of the in vivo tracer distribution [2].

The evolution of PET has had a huge impact in the study of cardiovascular disease,
including coronary heart disease, heart failure, cardio-inflammatory disease, valvular heart
disease, and assessment of cardiac devices and cardiac tumors.

Coronary heart disease is defined as an inadequate blood flow to an area of my-
ocardial tissue due to blockage of the blood vessels that supply it, most often by an
atherosclerotic plaque [4].

PET can be used to evaluate the atherosclerotic lesion (plaque imaging) and to assess
its potential consequences—ischemic versus nonischemic (perfusion imaging) and viable
versus scarred (viability imaging) myocardium [5].

2. Plaque Imaging

Although coronary atheromatous plaques are often present in older patients, in most
cases their development is silent and will not result in a cardiovascular event. In contrast,
some atherosclerotic plaques will rupture and cause myocardial infarction. Identifying
these “vulnerable” plaques before they rupture and differentiating them from their “stable”
counterparts is therefore a key objective for a cardiac imaging technique [6].
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PET scanners have the capacity to assess any biochemical process occurring in the
atherosclerotic plaque, if the appropriate surrogate tracer molecule is used.

2.1. Imaging Inflammation with 18F-Fluorodeoxyglucose (FDG)

FDG is overall the most used radioligand in PET imaging. It is a glucose analog that
enters cells via facilitated glucose transporter member (GLUT) 1 and 3 and undergoes
phosphorylation to become (18)F-FDG-6-phosphate, which cannot exit the cell before ra-
dioactive decay. Therefore, signal intensity correlates with cellular glucose uptake and
phosphorylation, which indicates high metabolic activity. In the case of the atherosclerotic
plaque, metabolic activity appears to be related to the concentration of proinflammatory
macrophages, as demonstrated in animal models [7]. In humans, serum levels of myeloper-
oxidase were associated with carotid plaque FDG uptake [8].

Aortic FDG uptake was independently associated with cardiovascular risk factors
such as increased low-density lipoprotein and total cholesterol, and with the presence of
metabolic syndrome [9–11]. On average, patients with myocardial infarction (MI) were
shown to have higher aortic FDG uptake compared with stable angina patients [12]. Visceral
adipose tissue uptake of FDG was associated with systemic inflammatory status, and with
the presence of metabolic syndrome components [13]. Additionally, it was independently
associated with the severity of CAD and with the occurrence of AMI [14].

Regarding the assessment of pharmacological treatment, statins were shown to re-
duce the arterial FDG signal in a dose-dependent manner and pioglitazone was shown to
attenuate vascular FDG uptake [15–17]. In contrast, the novel antidyslipidemia drugs Dal-
cetrapib (cholesteryl ester transfer protein inhibitor) and Rilapladib (lipoprotein-associated
phospholipase A2 inhibitor) did not have any effect on vascular FDG activity [18,19].

There is, however, no current evidence to support the implementation of FDG-PET for
atherosclerotic risk stratification in clinical practice.

2.2. Imaging Microcalcification with 18F-Sodium Fluoride (NaF)

NaF has been used to detect bone metastases and it is known to replace the hydroxyl
group of hydroxylapatite in areas of calcification [20,21]. Regarding vascular calcification,
two processes occur in a continuum in the atherosclerotic plaque as a healing response to the
necrotic core inflammatory mediators: microcalcification, followed by macrocalcification.
The stage of microcalcification renders the plaque unstable and more predisposed to
rupture, making its identification an interesting surrogate marker for detecting “vulnerable”
plaques. NaF-PET was shown to be able to identify microcalcification in atherosclerotic
plaques in a consistently different pattern of uptake to the macroscopic calcium observed
on computer tomography (CT) [22] (Figure 1).

Different groups have proposed that NaF uptake could be used as a maker of cardio-
vascular risk by demonstrating its correlation with various validated clinical scores for
cardiovascular disease burden [23–26]. Our group showed that in a high cardiovascular risk
population, NaF atherosclerotic plaque uptake was related to the burden of cardiovascular
risk factors and thoracic fat volume, but there was no association between coronary uptake
and calcium score [27].

In the context of acute coronary syndrome patients, the culprit plaques associated with in-
fracted myocardium were shown to display greater NaF uptake than “non-culprit” plaques [28].

In perhaps the most significant clinical study with NaF-PET, patients with known
coronary artery disease underwent NaF-PET/CT and were followed up for fatal or nonfatal
myocardial infarction over 42 months. Total coronary NaF uptake predicted MI indepen-
dently of age, sex, risk factors, segment involvement and coronary calcium scores, presence
of coronary stents, coronary stenosis, REACH and SMART scores, the Duke coronary artery
disease index, and recent myocardial infarction [29].
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Figure 1. Fusion 18F-NaF-PET-CT images, depicting NaF uptake in the descending aorta (arrow, 
right picture). In the left picture, corresponding to the raw CT image, one can observe that the NaF 
uptake matches an area without macroscopic calcification. NaF was injected 60 min before image 
acquisition. Image source: Institute for Nuclear Sciences Applied to Health (ICNAS). 
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In perfusion imaging, stress and rest myocardial perfusion image sets are compared 

in order to determine the presence, extent, severity, and reversibility of stress-induced 
perfusion defects [30]. 

Similarly to single-photon emission computerized tomography (SPECT), PET can 
provide a visually graded qualitative assessment of relative perfusion defects (Figure 2). 
However, PET also allows quantitative assessment of myocardial blood flow (MBF) dur-
ing the different stages of the exam, which allows the calculation of myocardial flow re-
serve (MFR)—the ratio of MBF in a hyperemic state and at rest (Figure 3). Quantification 
of absolute MBF and MFR appears to add prognostic value to the qualitative assessment 
[31–33]. 

Figure 1. Fusion 18F-NaF-PET-CT images, depicting NaF uptake in the descending aorta (arrow,
right picture). In the left picture, corresponding to the raw CT image, one can observe that the NaF
uptake matches an area without macroscopic calcification. NaF was injected 60 min before image
acquisition. Image source: Institute for Nuclear Sciences Applied to Health (ICNAS).

3. Perfusion Imaging

In perfusion imaging, stress and rest myocardial perfusion image sets are compared
in order to determine the presence, extent, severity, and reversibility of stress-induced
perfusion defects [30].

Similarly to single-photon emission computerized tomography (SPECT), PET can
provide a visually graded qualitative assessment of relative perfusion defects (Figure 2).
However, PET also allows quantitative assessment of myocardial blood flow (MBF) during
the different stages of the exam, which allows the calculation of myocardial flow reserve
(MFR)—the ratio of MBF in a hyperemic state and at rest (Figure 3). Quantification of abso-
lute MBF and MFR appears to add prognostic value to the qualitative assessment [31–33].
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Figure 3. Quantitative assessment of myocardial perfusion with 13N-ammonia-PET of the same pa-
tient represented in Figure 2. Note that myocardial flow during stress is decreased in the RCA ter-
ritory. LAD—left anterior descending artery, LCX—left circumflex artery; RCA—right coronary ar-
tery. Image source: Institute for Nuclear Sciences Applied to Health (ICNAS). 

3.1. Imaging Myocardial Perfusion with Rubidium-82 (Rb) 
Rb myocardial uptake is proportional to MBF, as was demonstrated for the first time 

more than half a century ago [34]. It is the most widespread tracer used for PET 

Figure 2. Assessment of myocardial perfusion with 13N-ammonia-PET. Top rows represent stress
acquisition and lower rows rest acquisition. Myocardial perfusion is markedly decreased in the
inferior wall during stress, compatible with ischemia in this territory. Image source: Institute for
Nuclear Sciences Applied to Health (ICNAS).
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Figure 3. Quantitative assessment of myocardial perfusion with 13N-ammonia-PET of the same
patient represented in Figure 2. Note that myocardial flow during stress is decreased in the RCA
territory. LAD—left anterior descending artery, LCX—left circumflex artery; RCA—right coronary
artery. Image source: Institute for Nuclear Sciences Applied to Health (ICNAS).

3.1. Imaging Myocardial Perfusion with Rubidium-82 (Rb)

Rb myocardial uptake is proportional to MBF, as was demonstrated for the first time
more than half a century ago [34]. It is the most widespread tracer used for PET myocardial
perfusion imaging (MPI), since it does not require a cyclotron on-site. It has a half-life of
78 s and an extraction fraction in comparison to MBF of around 60% [35].

Compared with conventional MPI with SPECT, Rb-PET showed improved image
quality, higher diagnostic accuracy, less radiation dose to patient and staff as well as rapid
examinations time [36]. It has also shown better sensitivity for the detection of multivessel
disease, which in cases of balanced ischemia may present as a false negative in SPECT [35].
A recent meta-analysis compared the diagnostic performance of cardiac magnetic resonance
(CMR), SPECT, and PET imaging for the identification of CAD and concluded that both
CMR and PET were superior to SPECT [37]. However, a randomized study comparing the
clinical effectiveness of pharmacologic SPECT and PET MPI in symptomatic CAD patients
(n = 322) showed no significant differences between the two groups in subsequent rates of
coronary angiography, coronary revascularization, or health status at 3-, 6-, and 12-month
follow-ups [38].

In a cohort of 16,029 consecutive patients undergoing Rb rest–stress PET MPI, patients
with higher degrees of ischemia had a survival benefit from early revascularization [39].

3.2. Imaging Myocardial Perfusion with 13N-Ammonia

13N-ammonia is uptaken by the cardiomyocytes, after which it is irreversibly trapped
inside the cell. It has a half-life of 9.8 min and an extraction fraction in comparison to MBF
of around 80% [35].

There are no studies that directly compare the diagnostic accuracy of 13N-ammonia
PET with SPECT, although it may have higher sensitivity relative to Rb due to its higher
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myocardial extraction [35]. In unselected patients with indication for MPI, cardiac perfusion
findings in 13N-ammonia PET were strong predictors of long-term outcome [40].

3.3. Imaging Myocardial Perfusion with 15O-Water

Oxygen-15-labelled water is a freely diffusible and metabolically inert tracer, and is
considered the best tracer for quantitative studies [41]. It has a half-life of 2.4 min and an
extraction fraction in comparison to MBF of around 95% [35].

A prospective clinical study involving 208 patients with suspected CAD who un-
derwent CCTA, technetium 99 m/tetrofosmin–labeled SPECT, and 15O-water PET with
examination of all coronary arteries by fractional flow reserve, revealed that PET exhibits
the highest accuracy for diagnosis of myocardial ischemia [42]. Although not FDA ap-
proved and mainly used in research, routine clinical use of 15O-water PET with a bedside
generator and infusion solution has proven to be reliable and efficient [43].

4. Viability Imaging

As previously described, one important objective of perfusion imaging is differentiat-
ing between ischemic myocardial tissue and myocardial scar. This task may be challenging
with conventional perfusion imaging in the presence of myocardial hibernation. Hiber-
nated myocardial tissue is in a state of metabolic downregulation in response to chronic or
repetitive ischemia that can potentially be recovered with coronary revascularization [30].

Imaging Myocardial Viability with 18F-Fluorodeoxyglucose (FDG)

The biochemical properties of this tracer have been previously described. Demon-
stration of preserved glucose metabolism by FDG is a marker of myocardial viability.
While reduced perfusion combined with reduced glucose metabolism suggests scarred my-
ocardium, reduced perfusion combined with preserved or increased metabolism (mismatch)
suggests hibernating myocardium.

From a theoretical point of view, management of hibernated myocardial tissue should be
straightforward—revascularization. However, some studies have questioned this assumption.

In the PARR-2 (PET and recovery following revascularization) trial, patients with
severe left ventricular dysfunction were randomized to revascularization decision managed
by FDG-PET versus standard care. Management by FDG-PET did not result in reduction of
death, MI, or recurrent hospital stay at 1 year compared with standard management [44].
However, in a post hoc analysis of a group of patients belonging to a more experienced
center with ready access to FDG-PET and integration with imaging, heart failure, and
revascularization teams, a significant reduction in cardiac events was observed in patients
with FDG-PET-assisted management [45].

In the viability sub study of the STICH (surgical treatment for ischemic heart failure)
trial, there was no significant association between myocardial viability and outcome on
multivariable analysis [46].

In light of the described evidence, the most recent European Guidelines on myocardial
revascularization give the use of noninvasive stress imaging for the assessment of myocar-
dial ischemia and viability in patients with heart failure and coronary heart disease before
the decision on revascularization a Class IIB recommendation [47].

5. Final Remarks

PET is a powerful tool for the diagnosis of coronary heart disease. Compared with the
most commonly used nuclear exam, SPECT, it has a higher diagnostic accuracy and the
addition of quantitative information yields incremental prognostic value. Cardiac PET can
comprehensively assess all aspects of coronary heart disease, from coronary atherosclerotic
plaque to the myocardial tissue characterization. However, how this information can
be transferred to real-world practice and help to guide decision making is still a hot
topic of research.
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