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Abstract: In this paper, we propose a new neural architecture for object classification, made up from a
set of competitive layers whose number and size are dynamically learned from training data using a
two-step process that combines unsupervised and supervised learning modes. The first step consists
in finding a set of one or more optimal prototypes for each of the c classes that form the training data.
For this, it uses the unsupervised learning and prototype generator algorithm called fuzzy learning
vector quantization (FLVQ). The second step aims to assess the quality of the learned prototypes in
terms of classification results. For this, the c classes are reconstructed by assigning each object to
the class represented by its nearest prototype, and the obtained results are compared to the original
classes. If one or more constructed classes differ from the original ones, the corresponding prototypes
are not validated and the whole process is repeated for all misclassified objects, using additional
competitive layers, until no difference persists between the constructed and the original classes or a
maximum number of layers is reached. Experimental results show the effectiveness of the proposed
method on a variety of well-known benchmark data sets.

Keywords: neural networks; classification; fuzzy learning; supervised learning; unsupervised learning

1. Introduction

Machine learning is a form of artificial intelligence that makes it possible to design
systems capable of learning from examples, without explicit programming or direct hu-
man intervention. It is an efficient tool for analyzing highly complex data, such as those
encountered in object recognition and control problems [1–3], in order to extract relevant
information or reveal hidden patterns [4,5]. Machine learning also allows the conversion of
hard optimization problems into satisfaction problems, where the aim becomes the search
for acceptable or satisfactory solutions in reasonable amounts of time. In this work, we are
interested in the machine learning problem of object classification using competitive neural
networks [6]. For this, we propose a new competitive neural network architecture and a
new process for training it to perform object classification tasks.

Training a neural network consists in adjusting its synaptic weights, including biases,
to correctly accomplish a classification, clustering or regression task. In the particular case
of classification tasks, the goal of the training process is to find the set of synaptic weights
that minimizes the classification error rate, which globally measures the difference between
real and network-generated labels of all training examples. In other words, these synaptic
weights can be viewed as parameters that define the separating boundaries between classes
in the data space [7,8]. Mathematically speaking, the training process of a neural network
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on a classification task, using a training data set X, is an optimization process aimed at
minimizing the cost function defined by [9]:

J(X, S) = ∑
xk∈X

d(yk, S(xk)) (1)

where yk is the true label of the input xk; S(xk) is the output of the last layer of the neural
network related to xk; and d is the difference between yk and S(xk) .

For clustering problems, the aim is rather to find a set of prototypes that can be used
as representatives for the c clusters that form the training data set. These prototypes
can then be used for the purpose of labeling new and unseen objects using a decision
rule, such as the nearest prototype rule (1NP) [10–12]. To assess the quality of clustering
results, we generally use objective functions that measure the similarity and separability of
clusters [13–15]. More specifically, a clustering algorithm can be defined as an optimization
process for minimizing the following cost function:

J(X, W) = ∑
xk∈X

c

∑
i=1

u(k, i) d(xk, wi) (2)

where W is the weight matrix of the neural network; u(k, i) is the membership degree of
object k to cluster i; and wi is the weight vector of the neuron that represents the prototype
of cluster i, with 1 ≤ i ≤ c.

One major problem in training neural networks is the initialization of hyper param-
eters, such as the number of layers and neurons per layer, the learning rate, and the
number and size of convolution and pooling filters in the case of convolutional neural
networks [6,9,16]. The goal of this work is to propose a new neural architecture composed
of a set of competitive layers whose number and size can be automatically learned from
data, and for which satisfactory initial values of algorithmic parameters can be easily found.

Each layer in the proposed architecture is a competitive layer composed of a set of
nodes that represent class prototypes and that are trained in unsupervised mode. The synap-
tic weights of each node represent the components of a class prototype in the data space.
Once determined, these prototypes are used as a basis for the nearest prototype rule in
the process of reconstructing the c classes of the training data set. The resulting classes are
then compared to the original classes and all misclassified objects, if any, are submitted to
an additional competitive layer that will try to correctly classify them, and so on, until all
objects are well-classified or a maximum number of competitive layers is reached. This is
why we call the proposed architecture a multi-competitive-layer neural network (MCLNN).
In the next section, we provide more detailed information about the components of this
architecture, starting with a reminder on the concepts of formal neurons, competitive neural
networks, as well as traditional unsupervised algorithms commonly used for training this
particular type of neural network. We then explain how the proposed architecture is built
up from these components, and how it is trained on the task of object classification using
the examples of a training data set.

2. Proposed Method
2.1. Formal Neurons as Cluster Prototypes

Cluster prototypes are represented by formal neurons that form the different competi-
tive layers of the proposed neural architecture. During the training process, for each input
vector x, the activation function used by each neuron or prototype v in the current layer is
the distance measure between x and v defined by the expression:

ϕ(x) = ||v− x||2 =
p

∑
j=1

(
vj − xj

)2 (3)
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where xj and vj denote the jth component of x and v, respectively, and p is the dimension
of the data space, i.e., the number of features per object vector.

2.2. Competitive Neural Networks

A competitive neural network (Figure 1) is comprised of only two layers: an input
layer of p neurons aimed at receiving the input data in the form of p-dimensional object
vectors, and an output or competitive layer composed of c neurons representing each
cluster prototype.

Traditional algorithms for training competitive neural networks, whose state of the art
can be represented by the unsupervised learning vector quantization algorithm (LVQ3) [17],
are based on the principle of the winner takes all (WTA) [17,18]. Meaning that, for each
input vector x presented to the network during its training process, only one output neuron,
called the winner, is adjusted by assigning x to the cluster it represents. It is the neuron
whose weight vector minimizes the distance to x. The performance of such algorithms is
limited to situations where the c clusters are compact and well separated.

For overlapping or not well separated clusters, many generalizations of WTA algo-
rithms are proposed in the literature, including different variants of the fuzzy learning
vector quantization algorithm (FLVQ) [19–21], which can be considered as the state of
the art of these generalizations. FLVQ, whose operating principle is recalled in the next
subsection, is mainly inspired by the well-known fuzzy c-means algorithm, FCM [22].
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Figure 1. Structure of a competitive neural network. {x1, x2 ,. . . , xn} and {y1, y2, . . . , yn} are the
components of input and output vectors of the network, respectively, and {w11, w12, . . . , wcn} are the
synaptic weights of the c output neurons. This structure is the basis of the multi-competitive-layer
architecture we propose in this work.

2.3. The Fuzzy Learning Vector Quantization (FLVQ)

FLVQ is a fuzzy variant of LVQ3 for which all neurons are winners but to different
degrees. It is an optimization procedure that tries to better exploit the structural information
carried by each training example [20] by minimizing the following objective function

Jm(U, V, X) =
n

∑
k=1

c

∑
i=1

(uik)
m‖xk − vi‖2 (4)

where U is a matrix of membership degrees, with uik denoting the membership degree of
the kth object to the ith class; V is the matrix of prototypes, with vi representing the ith class
prototype; m > 1 is a weighting exponent that controls the fuzziness degree of candidate
partitions during the learning process; and n is the total number of training examples.
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Jm can be interpreted as a fuzzy measure of the global error incurred in representing
the n training vectors by the c prototypes. It can be minimized using an alternating
optimization procedure that consists in repeatedly recalculating U and V matrices using
the expressions:

uik,t =

 c

∑
l=1

(
‖xk − vi,t‖2

‖xk − vl,t‖2

) 1
m−1
−1

(5)

and

vi,t =
∑n

k=1(uik,t)
mxk

∑n
k=1(uik,t)m (6)

Hence, starting from a randomly chosen matrix of initial prototypes V0 = {v1,0, v2,0, . . . , vc,0},
if we iteratively recalculate the components of U and V according to (5) and (6), the process
will converge to a point (U∗, V∗) where the c prototypes are stabilized, which means a point
from which the difference ‖Vt −Vt−1‖ becomes insignificant. To evaluate this difference,
we use the expression:

‖Vt −Vt−1‖ = max
1≤i≤c

(
max

1≤j≤p

(
|vij,t − vij,t−1|

))
(7)

Depending on the way m varies throughout iterations, two versions of FLVQ have
been developed: FLVQ↓ and FLVQ↑. In FLVQ↓, m decreases according to the relation

m = mt = mmax −
t

tmax
(mmax −mmin) (8)

and in FLVQ↑, it increases according to

m = mt = mmin +
t

tmax
(mmax −mmin) (9)

where t is the index of iterations and tmax the maximal number of iterations.

2.4. Training Process of the Proposed Architecture

The first step in the training algorithm of the proposed neural architecture is an
unsupervised learning procedure that uses the FLVQ algorithm for representing each
class by one or more prototypes that the procedure tries to learn from the training data
in unsupervised mode, i.e., without using the known labels. The second step uses a
supervised learning procedure for assessing the quality of the learned prototypes in terms
of classification results. For this, the c classes are reconstructed using the nearest prototype
rule, and the obtained results compared to the original classes. If one or more constructed
classes differ from the original ones, the corresponding prototypes are rejected and both
steps are repeated for these classes using additional competitive layers until no difference
persists between the constructed and the original classes, or a maximal number of layers is
reached. For this, all misclassified objects are grouped with those, if any, that present small
membership degrees to all classes in order to form the training data set for an additional
layer of competitive neurons.

As shown in (Figure 2), the resulting architecture is a multi-competitive-layer neural
network (MCLNN). Each of these layers contains cr neurons representing the cr detected
prototypes, and sr possible additional neurons representing the training examples that
could not be correctly classified by this layer. These remaining examples are called “strong
elements” and can be seen as noisy elements for the current layer.
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Figure 2. Multi-competitive-layer neural network. xk is an object vector, p is the dimension of the
data space, i.e., the number of features per object vector, c is the number of clusters that form the
training data set X, Uq is the vector of membership degrees of xk to all classes of layer q, Lq is the
local decision (Equation (12)), and L is the global or the final decision (Equation (13)).

Thus, the ultimate goal of MCLNN is to represent each class by a set of one or more
prototypes. The total number of the resulting prototypes for all layers of the network is
ctot = ∑

q
r=1 cr, with c ≤ ctot. During the learning process of these prototypes, whenever

an object is presented to the input of a layer r, all neurons of this layer are considered
as winners to different degrees, and the membership degrees of the input object to the
corresponding classes are computed using the expression:

uri(xrk) =

[
cr

∑
l=1

(
ϕri(xrk)

ϕrl(xrk)

) 2
m−1
]−1

(10)

where uri(xrk) is the membership degree of the object xrk to the cluster Cri, which is
represented by the ith neuron of the rth layer; cr is the number of neurons in the rth layer;
xrk is the kth object vector of the training data set used to train the rth layer; xrkj is the jth
feature of the object vector xrk; m > 1 is a weighting exponent that controls the fuzziness
degree of candidate partitions during the learning process; and ϕri(xrk) is the activation
function of the ith neuron of the rth layer, defined by the expression:

ϕri(xrk) = ||vri − xrk||2 =
p

∑
j=1

(
vrij − xrkj

)2
(11)

where vrij is the jth synaptic weight of neuron ri, which is also the jth feature of prototype
vri that represents cluster Cri; p is the number of features of the object vectors; i is the index
used to locate a neuron in a competitive layer; and r is the layer’s index.

The first layer is trained using the original training data set X, and each subsequent
one with the set of remaining strong elements Xr. Thus, at the end of the training process
of each layer r, all objects of its training data set Xr are labeled. For this, each object xrk
in Xr is assigned to the cluster Cri represented by the winning prototype, which is the
output neuron that maximizes uri(xrk) while exceeding a certain threshold ζr. The latter
is introduced in this work to ensure a minimum of similarity between each processed
object, and the representative prototype of the class it is assigned to, using the maximum
membership degree rule. Consequently, two possible cases can be distinguished according
to the label Γ(r, i) of xrk: (1) xrk is well classified, if its true label L(xrk) is equal to Γ(r, i),
or (2) xrk is misclassified, if L(xrk) 6= Γ(r, i).
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In the first case, the rth layer is used to recognize xrk, and we say that xrk accepts its
representation by the winning neuron of the rth layer. In the second case, the classification
result is ignored because xrk cannot be represented by the winning neuron. In this case, xrk
is considered as a strong element that leads to the addition of a new neuron to MCLNN
that may better represent it. For this, the p synaptic weights of the newly added neuron are
initialized using the p components of xrk.

In the instance where the membership degree of xrk to the class represented by the
winning prototype in the current layer does not reach its acceptance threshold ζr, we
consider that xrk cannot be classified at the level of this layer and we assign it to a new
training data set that will be used for training the next additional layer, r + 1.

This mechanism can be summarized by the following mathematical expression:

Lr(xrk) =

{−1 i f maxl(url(xrk)) < ζr (12a)

Γ(r, argmaxl(url(xrk))) otherwise (12b)

where Lr(xrk) is the label of the object xrk generated by the rth layer. If Lr(xrk) = −1, xrk
and all similar objects cannot be processed by this layer; argmaxl(url(xrk)) is the maximum
membership degree of xrk to all clusters; Γ(r, i) is the label of cluster Cri represented by
neuron i of layer r; and ζr is the minimum threshold of membership degree for xrk to accept
to be represented exclusively by a neuron of the current layer. Any result of classification
generated by other layers is then ignored.

The number of layers used to form the MCLNN depends on the learning outcomes
of the first layers. Indeed, if the first layers allow the correct classification of all training
examples, there will be no need for additional layers and the training process of MCLNN
is terminated. In the presence of misclassified objects, however, the validation step will
group all these objects with those, if any, that present small membership degrees to all
classes, in order to form the training data set for the next additional layer. This process is
iterated until all objects are well classified or a maximum number of layers is reached. Our
simulation results show that, for all the studied data examples, all objects could be well
classified before reaching the fixed maximum of 20 layers (Table 1).

Table 1. Number of automatically generated layers at the end of training.

Dataset Min Max Average

Breast Cancer (1) 4 10 6
Breast Cancer (2) 3 20 4

Diabetes 4 4 4
German Credit 3 4 3

Ionosphere 15 15 15
Iris 3 17 5

Switzerland 7 9 8
Unbalanced 2 20 4

Va 8 16 11
Vote 2 20 4

Wdbc 3 20 4
Wine 6 8 7
Wpbc 6 6 6

A more formal description of this hybrid learning algorithm is given by the following
pseudo-code:

Given a set of n training examples X = {x1, . . . , xn} ⊂ Rp;

Step 1: Construct a neural network of one competitive layer with c neurons (So far, r = 1,
cr = c and Xr = X);
Step 2: Initialize ζ0 by a value in [0, 1];
Step 3: Initialize the step δ with a value in [0, ζ0];
Step 4: Apply FLVQ to train the layer r using the data set Xr; This step ends with the
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convergence of FLVQ ;
Step 5: Adjust ζr by ζr−1 + (r− 1)δ;
Step 6: For each object xrk of the data set Xr presented to the input of the current layer r:

• Evaluate the activation function of each neuron i (i = 1, . . . , cr) of the layer r using the
Equation (11);

• Evaluate the membership degrees of the object xrk to all clusters represented by the
neurons of the layer r, using the Equation (10);

• Find the maximum membership degree uri(xrk) for i = 1, . . . , cr;
• If maxi(uri(xrk)) ≥ ζr:

– Evaluate the label Lr(xrk) using the Equation (12);
– if Lr(xrk) 6= L(xrk):

* Add a new neuron to the layer r;
* Increase the size of the layer r (cr = cr + 1);
* Write the features of xrk in the weights of the new neuron (vcr+1 = xrk);

• else

– Create the set of examples Xr+1 = φ ⊂ Rp if it does not exist;
– Add the object xrk to the dataset Xr+1;

Step 7: If Xr+1 6= φ:

• Increment r (r = r + 1);
• Allocate cr neurons to form a new layer r;
• Use the data set Xr as training data set for the layer r;
• Go to step 4;

Step 8: Return the final result, which is the global architecture and the synaptic weights of
all of its neurons.

Using the big O notation, the computational complexity of each layer L of the proposed
architecture at each iteration is given by the expression O(cL.p.nL), where cL denotes the
number of classes in the training data set of layer L, which is also the number of neurons in
layer L, and nL is the number of elements of this data set. For the N layers of the whole
network, and the total number of iterations required for convergence, t, this amounts, in the
worst case, to O(t.c2.p.n.N). Remarking that cL < c and N << n, we can conclude that this
is the same order as O(t.c2.p.n), which is the computational complexity of the state of the
art method, FLVQ.

During the exploitation phase, the label assigned to each input object xrk is generated
by the first layer whose result is taken into account by an object x; i.e.,:

L(x) = Lr(x), r = min
l=1,..,q

(l) such as Lr 6= −1 (13)

where q is the number of competitive layers forming MCLNN; L(x) is the final label of the
object x generated by the proposed neural architecture.

The following pseudo-code provides a more formal description of the exploitation process:
For each object x presented to MCLNN for recognition;

Step 1: Initialize the used layer’s index by r = 1;
Step 2: Present the object vector x to the input of the layer r;
Step 3: Evaluate the activation function of each neuron i (i = 1, . . . , cr) of the current layer
using the Equation (11);
Step 4: Evaluate the membership degrees of x to all clusters represented by the neurons of
the current layer using the Equation (10);
Step 5: Evaluate the label Lr(x) using the Equation (12);
Step 6:

• If Lr(x) 6= −1:

– the final label is L(x) = Lr(x);



Appl. Sci. 2022, 12, 4724 8 of 15

• else:

– Increment r (r = r + 1);
– Evaluate

ur,max = max(ur−1,max, max(url(x)l=1,..,cr ));
– If layer r is the last layer:

* L(x) = arg(ur,max);

– else:

* go to step 3;

Step 7: Return L(x).

3. Results and Discussion
3.1. The Used Data Sets

In order to test the robustness of the proposed neural architecture, in this section,
we present the results of its application to a selection of 13 benchmark data sets widely
used in the literature, and we compare these results to those produced by other methods.
The selected data sets differ in nature and size and are related to different application
domains. Each data set was split into two subsets used, respectively, for the training
process and the test of generalization on unseen examples. More information about these
data, including their source and the number of elements in each subset, are provided in
Table 2.

Table 2. Characteristics of the different training and test datasets used in this work.

Dataset Nb. of Elements Nb. of Features Nb. of Clusters Sources

Breast Cancer (1) 250/27 9 2 [23]
Breast Cancer (2) 616/67 9 2 [24,25]

Diabetes 692/76 8 2 [26]
German Credit 900/100 20 2 [27]

Ionosphere 317/34 34 2 [28]
Iris 135/15 4 3 [29]

Switzerland 97/8 10 5 [30]
Unbalanced 771/85 32 2 [31]

Va 121/9 10 5 [30]
Vote 210/22 16 2 [32]

Wdbc 513/56 30 2 [33]
Wine 162/16 13 3 [34,35]
Wpbc 176/18 33 2 [36]

3.2. Examples of Generated Prototypes and Extracted Strong Elements

In order to explain the classification process using MCLNN in a practical way, we use
in this section the Iris data set, and we show by numerical data and graphical diagrams the
positions of the learned prototypes and the extracted strong elements.

The Iris dataset contains 150 examples of Iris flowers originated from three different
classes, each represented by a vector of four measurements. To visually present this dataset,
we choose to use 2D projections (Figure 3).

Regardless of the used projection and the selected features, it is easy to see that one
of the three Iris classes is well separated from the other two, which are very overlapping.
We note that the main difficulty in classifying the Iris data consists in separating the two
overlapping classes.

Among 192,000 simulations carried out by classification of the Iris data, according
to the proposed learning scheme, we select two different simulations giving an error rate
equal to 0 (Table 3), and we illustrate the learned prototypes and the extracted strong
elements. The meaning of the parameters given in Table 3 are: m is the initial value of the
fuzziness factor; ζ is the acceptance threshold for the processed object to be classified by



Appl. Sci. 2022, 12, 4724 9 of 15

the first competitive layer; δ is the acceptance step used to adjust the acceptance threshold
through iterations; Ctot is the total number of neurons in MCLNN; Cr is the number of
neurons of the rth layer; Stot is the total number of strong elements extracted after training
MCLNN; and Sr is the number of strong elements extracted by the rth layer.

(a) (b)

(c) (d)

Figure 3. 2D projections of Iris data using a set of 3 features in different order each time (a) Features
2, 1 and 4 (b) Features 3, 2 and 4 (c) Features 3, 4 and 1 (d) Features 1, 3 and 2.

The first simulation gives five prototypes and 15 strong elements (Table 4), and simu-
lation 2, two more prototypes and only three strong elements (Table 5). The positions of
these prototypes and strong elements are graphically represented in Figure 4.

We note that the well separated class is represented by a single prototype in the
two simulations, while the two overlapping classes are represented by more than one
prototype. Moreover, all strong elements belong exclusively to the two overlapping classes.
In fact, strong elements can be seen as objects that cannot be correctly classified based on
the prototypes directly learned by the layers of MCLNN. These elements are considered as
noisy objects and do not contribute to the adjustment of the prototypes.

Table 3. Two different simulations (with error rate equal to 0) chosen as examples for giving the
positions of prototypes and strong elements.

Simul.
Parameters Results

m ζ δ N Ctot C1 C2 C3 Stot S1 S2 S3

1 1.10 0.990 0.715 2 5 3 2 - 15 12 3 -

2 1.60 0.885 0.260 3 7 3 2 2 3 1 2 0
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Table 4. Prototypes and strong elements according to simulation 1 of Table 3.

Found Prototypes (According to Simulation 1 of Table 3)

Prototypes Network Features Label

1 1 {5.006, 3.418, 1.465, 0.244} 1
2 1 {5.894, 2.745, 4.391, 1.431} 2
3 1 {6.848, 3.075, 5.725, 2.066} 3

1 2 {5.100, 2.500, 3.000, 1.100} 2
2 2 {6.483, 2.833, 5.017, 1.667} 3

Extracted Strong Elements (According to Simulation 1 of Table 3)

Strong Network Features Label

1 1 {6.700, 3.000, 5.000, 1.700} 2
2 1 {5.800, 2.700, 5.100, 1.900} 3
3 1 {4.900, 2.500, 4.500, 1.700} 3
4 1 {5.700, 2.500, 5.000, 2.000} 3
5 1 {6.000, 2.200, 5.000, 1.500} 3
6 1 {5.600, 2.800, 4.900, 2.000} 3
7 1 {6.300, 2.700, 4.900, 1.800} 3
8 1 {6.200, 2.800, 4.800, 1.800} 3
9 1 {6.100, 3.000, 4.900, 1.800} 3

10 1 {6.300, 2.800, 5.100, 1.500} 3
11 1 {6.000, 3.000, 4.800, 1.800} 3
12 1 {5.900, 3.000, 5.100, 1.800} 3

1 2 {7.000, 3.200, 4.700, 1.400} 2
2 2 {6.900, 3.100, 4.900, 1.500} 2
3 2 {6.800, 2.800, 4.800, 1.400} 2

Table 5. Found prototypes and extracted strong elements according to simulation 2 of Table 3.

Found Prototypes (According to Simulation 2 of Table 3)

Prototype Network Features Label

1 1 {5.015, 3.391, 1.526, 0.270} 1
2 1 {5.916, 2.761, 4.405, 1.425} 2
3 1 {6.716, 3.026, 5.552, 1.997} 3

1 2 {6.512, 2.946, 4.810, 1.543} 2
2 2 {6.006, 2.745, 4.878, 1.717} 3

1 3 {5.293, 2.373, 3.659, 1.132} 2
2 3 {7.431, 3.237, 6.290, 2.014} 3

Extracted Strong Elements (According to Simulation 2 of Table 3)

Strong Network Features Label

1 1 {4.900, 2.500, 4.500, 1.700} 3

1 2 {5.900, 3.200, 4.800, 1.800} 2
2 2 {6.000, 2.700, 5.100, 1.600} 2

3.3. Performance Evaluation and Comparison with Other Methods

To evaluate the performance of the proposed architecture in predicting the labels
of new objects based on the learned prototypes, and compare this performance with
other methods, two performance measures are used: (1) the error rate, or percentage of
misclassified objects, which is computed for both training and test datasets, and (2) the
sensitivity to parameter initialization, measured for each parameter by the largest interval
of initial values that lead to the best results.
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(a) (b)

(c) (d)

Figure 4. (a) Positions of learned prototypes (Simulation 1, Table 3) (b) Positions of extracted strong
elements (Simulation 1, Table 3) (c) Positions of learned prototypes (Simulation 2, Table 3) (d) Positions
of extracted strong elements (Simulation 2, Table 3).

For the sake of comparisons, these two performance measures are evaluated on
different benchmark datasets for three well-known other algorithms, namely the learning
vector quantization algorithm, LVQ1, the multilayer perceptron, MLP, and the support
vector machine algorithm, SVM. Like the proposed method, the first algorithm, LVQ1, is
also a prototype generator, while MLP tries to find non-linear separations between the
c classes in the data space, and SVM the best possible separation boundaries among the
c classes.

To evaluate the error rate, we use the expression:

Err =
∑n

k=1 Ek

n
× 100% (14)

where Ek is equal to 1 if the object k is misclassified, and to 0 otherwise; n is the number of
objects of the used dataset.

The best error rate is the smallest value obtained over 192,000 simulations for each
method and each dataset. The algorithmic parameters used during these simulations for
each algorithm are shown in Table 6.

As shown by Table 7, the only algorithm for which the error rate is null for all training
datasets is MCLNN. The second best performance in terms of error rate for the training
datasets is obtained by the SVM algorithm, for which the error rate is different from zero
for only three cases. This is not surprising given the way the prototypes and the separating
boundaries are determined in MCLNN and SVM, respectively.
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Table 6. Numerical values of algorithmic parameters for the four compared methods.

Parameter Values Description

MCLNN m [1.10, 5.00] Fuzziness factor
ζ [0.01, 0.9] Acceptance threshold
δ [0.01, 0.9] Threshold step

SVM C [0.01, 50.00] Penalty parameter of the error
K [‘rbf’,‘sigmoid’, ‘linear’,‘poly’] Kernel function
α [1, 5] Degree of the polynomial kernel function

MLP η [0.01, 0.9] Learning rate
H [1, 2] Number of hidden layers
C1 [1, 30] Number of neurons of the 1st hidden layer
C2 [1, 30] Number of neurons of the 2nd hidden layer

LVQ1 η [0.01, 0.9] Learning rate

Similar results are obtained on the test datasets, for which both MCLNN and SVM out-
perform the remaining two algorithms in the ability to generalize the learned classification
task to correctly predict the labels of new objects, that were not seen during the training
process (Table 8). These are very encouraging results, considering that the proposed al-
gorithm is essentially a prototype generator, and that the generated prototypes are not
necessarily and specifically intended for classification tasks. Indeed, as for other algorithms
of the same category, the generated prototypes can be used for other applications, such as
image and data compression.

Another advantage of the proposed algorithm is its low sensitivity to parameter
initialization, to which we dedicate the next subsection.

Table 7. Comparison of the best error rates given by different techniques and the proposed neural
architecture applied to the training dataset (learning phase).

Dataset LVQ1 MLP SVM MCLNN

Breast Cancer (1) 27.20 28.00 2.40 0.00
Breast Cancer (2) 3.57 7.63 0.00 0.00

diabetes 23.70 34.54 0.00 0.00
german 29.00 30.00 0.00 0.00

ionosphere 15.14 4.42 0.63 0.00
iris 7.41 1.48 0.74 0.00

switzerlan 57.73 55.67 0.00 0.00
unbalanced 1.43 1.43 0.00 0.00

va proc 74.38 66.94 0.00 0.00
vote 9.52 2.86 0.00 0.00

wdbc 13.65 17.35 0.00 0.00
wine 27.78 46.91 0.00 0.00
wpbc 23.30 23.86 0.00 0.00

Table 8. Comparison of the best error rates given by different techniques and the proposed neural
architecture applied to the testing dataset (exploitation phase).

Dataset LVQ1 MLP SVM MCLNN

Breast Cancer (1) 25.93 18.52 14.81 14.81
Breast Cancer (2) 2.99 7.46 1.49 2.99

diabetes 28.95 31.58 27.63 27.63
german 30.00 30.00 28.00 27.00

ionosphere 14.71 0.00 0.00 2.94
iris 6.67 0.00 0.00 0.00

switzerlan 37.50 25.00 12.50 12.50
unbalanced 1.18 1.18 1.18 1.18

va 77.78 55.56 33.33 33.33
vote 4.55 0.00 0.00 0.00

wdbc 10.71 14.29 1.79 7.14
wine 25.00 50.00 0.00 0.00
wpbc 22.22 22.22 11.11 11.11
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3.4. Comparison of the Sensitivity to Parameter Initialization

In this section, we give experimental results which prove low sensitivity of the pro-
posed neuronal architecture to the setting of its parameters, unlike other classification
methods. The parameters considered for each method in this section are η for LVQ1 and
MLP, C for SVM and m, δ and ζ for MCLNN.

What is compared here is the process of fine-tuning the algorithmic parameters,
or hyper parameters, of different methods. The experimental results also show that the
process of hyper-parameter fine-tuning is much easier for the proposed method, for which
optimal results are obtained for much larger intervals of values for these parameters.

For each parameter, we examine the length of the interval of values for which the stud-
ied method provides the best error rate at least once. The bigger the length of this interval,
the lower the sensitivity of the studied method to the chosen parameter. To normalise this
measure for all parameters, we use the mathematical expression:

l =
ẑmax − ẑmin
zmax − zmin

× 100% (15)

where ẑmax and ẑmin are, respectively, the maximal and minimal values of a chosen parame-
ter, which give the best error rate; zmax and zmin are borders of the interval of used values
in all simulations. These values are given in Table 6.

The results generated by LVQ1 and MLP algorithms depend on the variation of the
learning rate in a relatively strong way. In fact, for about two-thirds of the cases, LVQ1 and
MLP give a better result for values in very small intervals. For the proposed architecture
and SVM, it is clear that both of them give the best result for very different values of their
parameters (Table 9).

Table 9. Results of the study of the ease of finding satisfactory parameters for the MCLNN train-
ing algorithm.

LVQ1 MLP SVM MCLNN

Dataset η η C {m, ζ, δ}

Breast Cancer (1) 0.00% 89.80% 59.81% {35.9%, 100% , 100%}
Breast Cancer (2) 97.44% 0.00% 97.67% {100%, 100%, 100%}

diabetes 1.03% 0.00% 98.62% {100%, 100%, 100%}
german 9.23% 2.04% 98.02% {100%, 100%, 100%}

ionosphere 1.03% 0.00% 3.05% {100%, 100%, 100%}
iris 1.03% 68.37% 97.32% {100%, 100%, 100%}

switzerlan 0.00% 0.00% 97.77% {100%, 100%, 100%}
unbalanced 99.49% 100% 93.77% {100%, 100%, 100%}

va 99.49% 0.00% 98.22% {100%, 100%, 100%}
vote 26.67% 1.02% 99.17% {100%, 100%, 100%}

wdbc 92.31% 10.20% 98.72% {100%, 100%, 100%}
wine 4.10% 46.94% 98.77% {100%, 100%, 100%}
wpbc 94.36% 0.00% 98.42% {100%, 100%, 100%}

4. Conclusions

In this paper, we proposed a new neural architecture for object classification, whose
size in terms of the number of layers and neurons is automatically determined from the
learning examples. Each layer of this architecture is a competitive neural network, whose
output neurons represent class prototypes that can be used as a basis for the nearest
prototype decision rule in order to predict the output labels for new examples. The training
process of this classification model is performed using a combination of unsupervised
and supervised modes. The experimental results obtained for a collection of 13 well-
known public benchmark datasets show that the proposed model has good robustness in
classification tasks and low sensitivity to parameter initialization, in comparison with three
classification algorithms, namely LVQ1, MLP, and SVM. Indeed, the proposed method
reaches a zero classification error rate for all training datasets, outperforming the best rival
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algorithm, SVM, that reaches the same error rate only for 10 among the 13 used datasets.
For testing datasets, the best classification error rate is obtained for 10 testing datasets,
which is comparable to the SVM results, despite the fact that the proposed model produces
a set of class prototypes that can be used for other tasks than classification, such as data
compression, whilst SVM tries to find the best separating boundaries among the c classes
in the data space. These encouraging results prompted the application of the proposed
model to real-world problems, and one of our planned projects for the near future concerns
its application to real data collected from a “Partnership for Research and Innovation in the
Mediterranean Area” (PRIMA) project entitled “Intelligent Irrigation System for Low-cost
Autonomous Water Control in Small-scale Agriculture”.
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