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Abstract: Diffractive optical elements (DOEs) are difficult to apply in natural scenes imaging cov-
ering the visible bandwidth-spectral due to their strong chromatic aberration and the decrease in
diffraction efficiency. Advances in computational imaging make it possible. In this paper, the image
quality degradation model of DOE in bandwidth-spectral imaging is established to quantitatively
analyze its degradation process. We design a DDZMR network for a single-lens diffractive lens
computational imaging system, which can simultaneously perform image restoration and image
super-resolution reconstruction on degraded images. The multimodal loss function was created to
evaluate the reconstruction of the diffraction imaging degradation by the DDZMR network. The
prototype physical prototype of the single-lens harmonic diffraction computational imaging sys-
tem (SHDCIS) was built to verify the imaging performance. SHDCIS testing showed that optical
chromatic aberration is corrected by computational reconstruction, and the computational imaging
module can interpret an image and restore it at 1.4 times the resolution. We also evaluated the
performance of the DDZMR model using the B100 and Urban100 datasets. Mean Peak Signal to Noise
Ratio (PSNR)/Structural Similarity (SSIM) were, respectively, 32.09/0.8975 and 31.82/0.9247, which
indicates that DDZMR performed comparably to the state-of-the-art (SOTA) methods. This work can
promote the development and application of diffractive imaging systems in the imaging of natural
scenes in the bandwidth-spectrum.

Keywords: harmonic diffractive optical element; computational imaging; image restoration; image
super-resolution

1. Introduction

The most important advantages of planar DOE are their light weight and simple
structure, which allow for the simplified design of optical systems. DOE can also be
transplanted to film substrates to provide large-aperture thin-film optical imaging, which
is valuable for the development of large-aperture high-resolution optical imaging pay-
loads [1]. Broad bandwidth spectral imaging is difficult to implement in modern optical
sensor systems using single-lens DOE [2]. The two main reasons for this are that the
diffraction efficiency for all light waves deviating from the design center wavelength drops
sharply [3,4], and strong chromatic aberration that varies with wavelength [5–7]. Chromatic
aberration is caused by the dispersion of light waves of different wavelengths on the surface
of a medium. Chromatic aberration is eliminated in the conventional solution by placing
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the an inverse power DOE with the same dispersion in the aberration correcting lens
group [1]. However, this complicates the system for and makes it difficult for widespread
low-cost applications. Emerging computational imaging techniques enables replace com-
plex lens group for the task of correcting aberrations, which encourages the development
of single-lens DOE imaging. Accordingly, researchers are increasingly interested in the
field of simple DOE imaging applying computational imaging techniques [2–4,6–12].

Harmonic diffractive optical elements (HDOE) have more unique performance than
ordinary DOEs in bandwidth spectral imaging. When the wavelength of the light wave is
equal to the central wavelength or the harmonic wavelength, the diffraction efficiency of
the harmonic diffractive optical element can reach 100% [10]. From this point of view, it is
more advantageous to apply in broadband spectral imaging.

Chromatic aberration is inevitable for single-lens DOE bandwidth imaging systems [8].
It is, therefore, necessary to combine computational imaging reconstruction algorithms to
suppress chromatic aberration and improve image quality [11]. Traditional deconvolution
methods are not robust in using natural image priors when dealing with the challenging
large blur kernels of diffractive systems [13,14]. Algorithms based on data-driven self-
similarity show more promising image restoration or reconstruction performance [4,6–8,10,15].
Cross-channel priors combined with a feed-forward deep convolutional neural network
deconvolution algorithm for reconstructing images from diffraction imaging can effectively
eliminate artifacts and blur caused by chromatic aberration [10]. Although the above algo-
rithm can restore and reconstruct diffraction imaging to eliminate the influence of chromatic
aberration, it is still not robust enough for single-lens diffraction wide-spectrum imaging.
The recovery of image details and the removal of stray light noise need to be improved.

Image super-resolution (ISR) processing algorithms can increase the resolution of an
imaging system without upgrading the imaging system hardware. Fusion of the single-
frame image ISR algorithm into the computational imaging module can improve imaging
systems’ performance. Deep learning models have become more widely used in ISR algo-
rithms because they offer significant improvements over conventional algorithms [16–23].
Recent ISR Networks employ a residual learning framework [17,18] to learn high-frequency
image details, which are then added to the input low resolution(LR) images to produce
super-resolution images. Data-driven deep learning network model ISR algorithms vary
in their architectural design. Other network techniques that produce ISR images include
compressed sensing [19], densely connected networks [20], Laplacian deep convolutional
networks [21], multiple attention mechanisms [22], and generative adversarial networks
(GAN) [23].

In this study, we analyzed HDOE focusing performance in wide-bandwidth spectral
applications. The imaging degradation caused by chromatic aberration and diffraction
efficiency reduction in HODE wide-spectrum imaging is analyzed. We described improve-
ments made to the computational imaging module by combining the image restoration
algorithm with the image super-resolution algorithm. We design a DDZMR network for
simultaneous image restoration and image super-resolution, and customize a multimodal
objective function based on the HDOE image quality degradation model. We also built
a demonstration prototype of the application of a SHDCIS in the visible spectrum, as
shown in Figure 1. The results of the experiments show that the imaging capability of the
prototype can reach the level of photographic imagery and it produced satisfactory results
for deblurring, correcting chromatic aberration and ISR.
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Figure 1. Schematic diagram of SHCIS: degraded low-resolution images are measured by single-
lens HDOE and color RGB detectors.The DDZMR network performs image restoration and image
super-resolution on degraded images to generate high-quality images.

2. Analysis of Imaging Properties of HDOE in Wide-Bandwidth Spectrum

The focus blur of visible spectrum bandwith is a long-standing problem in diffractive
lens [2]. The research on the imaging characteristics of HDOE in the bandwidth spectrum
and the quantitative analysis of its image quality degradation are of great benefit to the
construction of its image post-processing algorith. In this section, the spectral characteristics
of HDOE were firstly analyzed, and then the image quality degradation model of HDOE
under bandwidth spectrum was constructed.

2.1. Analysis of Spectral Characteristics of HDOE

HDOE has the same optical power at multiple discrete harmonic wavelengths and
can achieve 100% diffraction efficiency, which is more advantageous than ordinary DOE
in imaging in the bandwidth spectrum. Then, the HDOE was designed using commercial
optical design software to achieve diffractive imaging in the full spectral range of visible
light. We set the design center wavelength to the median of the visible light spectrum
(λ0 = 555 nm), to which the human eye is most sensitive, and set the diffraction order of the
center wavelength to the 10th order (m = 10). The purpose of this is to generate enough
harmonics to cover the visible spectrum. The phase function of the HDOE is optimized
as a continuous and increasing higher-order term function in commercial optical design
software, which can be expressed as:

ϕ(r)= m
N

∑
i=1

Air2i, (1)

where m is a constant that represents the diffraction design order of the center wavelength,
N is the order of the phase function, Ai is the corresponding coefficient of the order
i, and r is the radial coordinate of HDOE. A more detailed description is given in the
Supplementary File.

The diffraction efficiency of HDOE at wavelength λ is given by the following for-
mula [24]:

ηHDOE(λ)= sin c2
(

mλ0

λ
− k
)

, (2)

where λ0 is the central spectral wavelength and k = 1, 2, 3, 4 · · · is the diffraction order that
occurs. The diffraction efficiency curve of the diffractive lens in the visible spectrum is
shown in Figure 2a.

The image captured by the detector of SHDCIS has a color cast phenomenon, which
is caused by two reasons; one is that the diffraction efficiency of HDOE varies in the
broadband spectrum, which means that the ability of HDOE to focus different light waves
is different; the other one is that the quantum efficiency of the sensor varies with the light
wave. The quantum efficiency of the sensor is the detection efficiency of the sensor to light
waves, which is expressed as ηQE. Since the absorption efficiency of the optical signal by
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the semiconductor material is wavelength dependent, ηQE varies with the wavelength.
The curve of ηQE is calibrated and measured by the detector manufacturer, as shown in
Figure 2b, where the horizontal axis is the wavelength and the vertical axis is the percentage.
The spectral response efficiency to light waves of different wavelengths can be calculated by
multiplying the diffraction efficiency of the HDOE by the quantum efficiency of the detector:

ηSHDCIS(λ) = ηHarmonic(λ) · ηQE(λ). (3)

Next, the response efficiency for the light passing through the optical system on the
three RGB channels of the detector can be calculated:

κSHDCIS=

λ2∫
λ1

ηSHDCISdλ, (4)

where (λ1, λ2) is the wavelength response range of one of the sensor’s RGB channels.
The calculated response efficiency ratio of the three channels of RGB was 1:1.3324:1.1123,

and the contrast shift ratio of the image measured by the experiment was 1:1.2983:1.1006.
The calculated value was approximately consistent with the experimentally measured value.
The slight deviation may have been due to the HDOE fabrication error or the quantum
efficiency measurement error of the sensor.

Figure 2. (a) The diffraction efficiency of the HDOE designed in this study with λ0 = 555 nm and
m = 10 in the full spectrum of visible light; (b) the quantum response efficiency curve of the sensor;
(c) the proposed harmonic diffractive lens with diameter 32 mm and focal length 275 mm that was
fabricated from polymethyl methacrylate (PMMA) using diamond single-point machining; (d) the
built diffraction imaging system consisting of a single harmonic diffraction lens, a lens barrel, and a
visible light RGB three-channel detector with 512 × 512 pixels; (e) SHDCIS optical structure diagram
and HDOE surface structure detection results.
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2.2. Analysis of Image Quality Degradation of HDOE Imaging

The imaging degradation of HDOE is mainly caused by strong chromatic aberration
and decreased diffraction efficiency. The effect of chromatic aberration can be analyzed
in the impulse response function of the main order diffraction of the light wave in the
HDOE. When the diffraction efficiency of the light wave decreases, a part of the energy will
be scattered and dispersed on the image plane, forming stray light background radiation.
Then, the effect on the reduction of diffraction efficiency can be analyzed by the impulse
response of the light wave diffracted in the non-design order.

According to the Fresnel diffraction theory, a light wave with an amplitude of 1 on the
HDOE plane(x′, y′) passes through the HDOE; the complex amplitude expression of the
wave field on the image plane (x, y) with distance z is [8]:

Uλ(x, y, z) =
eikz

iλz
·
∫∫

tHDOE,λ(x′, y′)e
ik
2z [(x−x′)2+(y−y′)2]dx′dy′, (5)

where λ is the wavelength of light, i is the wave number, and i = 2π/λ, tHDOE,λ is the
complex amplitude transmittance function of HDOE. The complex amplitude transmittance
function is defined as the ratio of the complex amplitude of the outgoing light field to the
complex amplitude of the incident light field on the plane of the element, which can express
the influence of the element on the incident wavefront. tHDOE,λ = ei[φHDOE,λ(x′ ,y′)], φHDOE,λ
is the phase delay function of HDOE, which can be derived from the phase function ϕ(r).
For a detailed derivation see the supplementary File.

Thus, the impulse response function of the main order diffraction of the light wave on
the image plane is:

h1(x, y) = |U(x, y)|2 (6)

When the diffraction efficiency is lower than 100%, the light waves are diffracted in
other non-design orders, and a part of the energy is not concentrated in the focus, resulting
in the background radiation of stray light. Consquently, the light field intensity function
of the HDOE imaging system can be written as the superposition of the focusing impulse
response h1(x, y) and the background impulse response hBG:

I(x, y) = |h1(x, y)|2 + |hBG(x, y)|2 (7)

The point spread function of HDOE is a normalized representation of the light field
intensity function, and the normalization process can be expressed as:

h(x, y) = |I(x, y)|1 =
∣∣∣|h1(x, y)|2 + |hBG(x, y)|2

∣∣∣
1

(8)

A further simplified approximation can be obtained:

h(x, y) = ηHDOEh1(x, y) + (1− ηHDOE)hBG(x, y), (9)

where hBG(x′, y′) =
∫ ∞
−∞

∫ ∞
−∞(1− η1 )δ(x− x′, y− y′)dx′dy′, δ(·) is the unit impulse func-

tion. For a detailed derivation, please refer to the Supplementary File.
Thus, the imaging degradation model of HDOE in the bandwidth spectrum can be

expressed as:
g = [ηHDOEh1(x, y) + (1− ηHDOE)hBG(x, y)] ∗ f + n (10)

The image quality degradation model includes various influencing factors that affect
diffraction imaging, where (1− ηHDOE)hBG(x, y) represents the influence of stray light
caused by the diffraction of light waves in non-design orders, ηHDOE represents the influ-
ence of diffraction efficiency, and h1(x, y) represents the influence of chromatic aberration.
This model comprehensively and accurately describes the image degradation process of
diffraction imaging and provides a useful reference for further image restoration research.
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The distribution of the PSF of the SHDCIS on the focal plane was calculated according
to the design value, as shown in Figure 3a. The real PSF of the SHDCIS was measured and
calculated according to the method provided in [25], as shown in Figure 3c. The figure
shows that the PSF of the SHDCIS is basically close to the design value. The PSF has
obvious spatial variation, and there is a clear difference in the PSF between the central
and off-axis fields. Consequently, off-axis fields of view will show more aberration than
central fields of view. This means that the computation and reconstruction of images in
the central and off-axis fields of view differ in the intrinsic process of image restoration.
This conclusion provided inspiration for the design of the regional division and channel
selection module in the DDZMR network.

Figure 3. (a) The PSF distribution of the harmonic diffractive lens with a wavelength of 500–600 nm
on the focal plane; (b) PSF estimation experiment of harmonic diffraction imaging system; (c) The
PSF distribution of the imaging system measured experimentally.

3. Deep Dense Zoned Multipath Residual Network for Image Restoration and
Simultaneous Super-Resolution Image Reconstruction
3.1. Deep Dense Zoned Multipath Residual Network

In SHDICS, we built a multi-task network model for image restoration and super-
resolution, in order to recover the degradation of diffraction imaging and improve the imag-
ing capability of the system, because data-driven image restoration and super-resolution
processing have the same inherent process. The process is to find the optimal intrinsic rela-
tionship in the pixel-to-pixel correspondence of the input image with the output image and
to remove only the unwanted content, while carefully preserving the desired spatial details.
Therefore, we reconceptualized image restoration and super-resolution reconstruction as
two tasks performed simultaneously within a process.

Accordingly, the imaging degradation procedure in SHDCI can be expressed as:

L = h⊗ (H↓s) + n, (11)

where L is the low quality image captured by the sensor, H is the ground truth, h is the
degradation function of HDOE derived in Section 2.2, which can also be called fuzzy kernel,
↓s represents the downsampling process, and n is noise generated by the system.

The residual network framework can build very deep networks to perform multi-
image tasks [16,26]. Consequently, based on the residual network and the image quality
degradation model of HDOE, we designed the deep dense zoned multipath residual
(DDZMR) network. The main components of DDZMR network are: the image regional
division and channel selection module; the double residual tandem spatial attention block
(DRTSAB); the residual dense concatenation block (RDCB); an upsampling module. These
components are combined in an end-to-end architecture for DDZMR learning; the network
model is shown in Figure 4.
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The image regional division and channel selection module divides the image into 25
128× 128 pixel subimages. The pixel overlap for adjacent subimages is 32 pixels. Each
subimages learns a subregion-specific degradation process along its own independent
channel. Since the performance of PSF in HDOE is different on different field of views,
the region partitioning strategy can make the DDZMR network better learn the sub-image
computational reconstruction process. The subimages maintain the original resolution fea-
tures along the network hierarchy, thereby minimizing the loss of precise spatial detail. The
reconstructed subimages are finally stitched together into a reconstructed full-frame image.

Figure 4. Deep dense zoned multipath residual network.

DRTSAB consists of two sets of convolutional (Conv) and spatial attention module
(SAM) layers, as shown in Figure 5, and the input and output of each layer are connected to
subsequent layers for local residual learning.The SAM is connected to the residual block to
filter out blur caused by chromatic aberration and loss of detail caused by stray light, and
optimize the network size. The SAM independently applies global average pooling and
max pooling operations to feature extraction in the channel dimension, and concatenates the
outputs to form feature maps. It aims to exploit the spatial interdependence of convolutional
features to generate spatial attention feature maps, which are used to recalibrate the
incoming feature space [26].

Figure 5. Double residual tandem spatial attention block (DRTSAB).
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The components of RDCB are three dense skip-connected DRTSABs to propagate
low-level features to subsequent residual blocks. The purpose of the dense skip connections
is to further facilitate the back propagation of gradients, to reuse low level features to
increase the potential of the final reconstructed features [26], and to facilitate information
flow during learning. We utilized a 1× 1 Conv layer for each dense skip connection to
adaptively modulate low-level features in different layers.

The DDZMR network takes L as input and first uses a 3× 3 Conv layer to capture
shallow features; one DRTSAB is used to learn nonlinear high-level features; then, three
RDCBs are concatenated to learn to utilize various information from the L image space
so that the network can access richer information; finally, the feature maps are input to
DRTSAB for final feature selection and filtering. Residual blocks have been used in various
state-of-the-art architectures [18,20,26–28], as they have been shown to improve training.
Residual learning is applied to each block to facilitate information flow through skip
connection paths.

In the upsampling module, the subpixel convolution strategy proposed in [28] was
used. This consisted of a 3× 3 Conv layer and a Shuffle layer to rearrange the data in the
channels to different spatial locations to enlarge the features. Finally, the upsampled feature
maps are sent to convolutional layers to reconstruct the final three-channel RGB image.

3.2. Multimodal Loss Function

According to the analysis in Section 2.2, it can be concluded that the degradation
of HDOE imaging is a complex process, including blurring and edge artifacts caused by
chromatic aberration, and stray light pollution caused by non-design order diffraction of
light waves. Consquently, four loss function components are tailored to supervise learning
various aspects of HDOE image degradation.

The learning function is G : L→ H, where L is the low-quality image captured by the
detector and H is the ground truth. Therefore, this process can be expressed as Ĥ = G(L),
where Ĥ is the high-quality image generated by the DDZMR. The loss function of the
DDZMR network is formulated as follows:

LDDZMR = λiLinformation + λc1Lcolor + λc2Lchromatic + λsLstray−light (12)

The image information and detail loss function was composed of the standard cross
entropy function [29], which quantifies the difference in pixel intensity distribution between
the reconstructed image Ĥ and the ground truth H. For a total of NH pixels in Ĥ, Linformation
is calculated as:

Linformation =
1

NH

NH

∑
i=1

[−HilogĤi − (1− Hi)log(1− Ĥi)] (13)

The contrast evaluation loss function evaluates and calculates the overall similar-
ity of the real measurement values in the RGB space of the reconstruction Ĥ and H,
respectively [30]. The images captured by SHDCIS have contrast differences between the
three RGB channels and the real image. This difference is quantified by expressing ∆r,
∆g, and ∆b as the per-channel numerical difference between Ĥ and L. Thus, the contrast
evaluation loss function is expressed as:

Lcolor =
∥∥∥4(∆r− ∆g)2 + (∆r + ∆g− 2∆b)2

∥∥∥
2

(14)

The chromatic aberration loss function designed to evaluate artifacts and blurring
at the edges of images, which are mainly caused by the chromatic aberration of HDOE.
Local image gradients get used to measure the effect of chromatic aberration correction in
DDZMR network output images. The standard 3× 3 Sobel operator to calculate the spatial
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gradient of image I is expressed as: ∇I =
√

I2
x + I2

y [31]. Thus, the chromatic aberration
loss functions are defined as [32]:

Lchromatic =
∥∥∥|∇H|2 −

∣∣∇Ĥ
∣∣2∥∥∥

1
(15)

The purpose of the stray light loss function is to force the image generated by the
network to restore the feature content similar to the ground truth, and remove the haze-like
noise pollution, which is caused by the stray light pollution formed by the non-design order
diffraction of the light wave on the HDOE. The haze-like noise pollution measurement
function is defined as the high-level features extracted by the last convolutional layer
of the pre-trained VGG-16 network [33]. Consequently, the stray light loss function is
expressed as:

Lstray−light =
∥∥ΦVGG(H)−ΦVGG(Ĥ)

∥∥
2 (16)

4. Imaging Experiment and Analysis
4.1. Network Training Details

The computational imaging processing module is deployed on a workstation computer
equipped with an Intel i7-1070k CPU at 5.1 GHz, 32 GB memory, an Nvidia GeForce
RTX 3060 Ultra W 12G, operating on Windows 10. The training set of images used for
network training was acquired in a laboratory darkroom, following the method described
in [4]; high-resolution real images H were projected onto the screen; and images were
captured by SHDCIS to obtain low-resolution degraded images. The training dataset
contained 1800 images. The DDZMR network is built based on Python3.8, PyTorch1.9.0,
and CUDA10.2. The network optimizer used the Adam algorithm, with β1 = 0.9, and the
initial learning rate was set to 1× 10−14. Furthermore, the learning rate was then halved
every 10 k iterations. It took about 45 h to train the network and about 431 milliseconds (ms)
to reconstruct an image using DDZMR. We have accelerated training using a CUDA-linked
graphics processing unit (GPU). It is necessary to use a GPU in deep learning networks to
improve the operation speed, which can improve the learning efficiency of the network in
massive data.

4.2. Imaging and Computational Reconstruction

The SHDCIS outdoor imaging test is shown in Figure 6. The image captured directly
by the sensor has strong blur, artifacts, noise, and chromaticity differences, as we analyzed,
shown in Figure 6a,d. After the calculation and reconstruction of the DDZMR network, the
degradation of the optical system imaging had been effectively recovered, and the image
quality had been restored, as shown in Figure 6c,f. Furthermore, this was compared with
the computational reconstruction algorithm proposed in [10], as shown in Figure 6c,f. It
can be easily judged by the human eye from the enlarged detail images that the DDZMR
network performs better in detail recovery and removal of blur and artifacts. Therefore, the
experiments show that the DDZMR network model successfully replaces the secondary
mirror group responsible for complex aberration correction; the SHDCIS imaging per-
formance is satisfactory; and the DDZME network can additionally improve the system
capability for image super-resolution.

In order to verify the super-resolution performance of SHDCIS, we carried out a
photographic experiment on the resolution test target table in the darkroom laboratory.
As shown in Figure 7, after the reconstruction of the DDZER network, the resolution
target has become very clear, and the smallest target that can be clearly photographed has
increased from the No. 5 target in the fourth group to the No. 1 target in the fifth group.
After calculation, it can be seen that the resolution of the system is increased to 1.412 times
of the original after the calculation and imaging module. This inspiring capability improves
the performance of imaging systems with unchanged hardware, which is worth extending
to other imaging systems.
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Figure 6. SHDCIS outdoor imaging experiment; (a,d) are the raw images captured by the detectors
taken outdoors by SHDCIS; (b,e) are the processed results using the convolutional neural network
proposed in [10]; (c,f) are the reconstructed images calculated by the DDZMR network model.

4.3. Ablation Study Evaluation

We conducted ablation experiments to verify the effectiveness of the multimodal loss
function and the image regional division and channel selection module. The multimodal
loss function was removed, making the loss function LDDZMR = Linformation. The network
was then trained with the same parameters, and the effectiveness of the trained network was
tested, as shown in Figure 8, the chroma-specific contrast of the image was not recovered,
and the blur and haze of the image were not effectively removed. Next, the regional
division and channel selection module was removed, and the same steps were used to test
the configuration. As shown in Figure 9, image restoration was minimal, and the edge
artifacts of the image were more noticeable than before processing.



Appl. Sci. 2022, 12, 4753 11 of 16

Figure 7. SHDCIS imaging test of resolution target; (a) is the image captured directly by the detector;
(b) is the image reconstructed by the DDZMR network.

Figure 8. (a,d,g) are the original images captured by the sensor; (b,e,h) are the images after process-
ing when the multimodal objective function was replaced by the standard cross-entropy function;
(c,f,i) are the results of normal processing by the DDZMR network model.

Figure 9. (a,d,g) are the original images captured by the detector; (b,e,h) are the paths of 25 regions
replaced with a 1-block area; (c,f,i) are the results of normal processing by the DDZMR network model.

A quantitative comparison of the Ablation testing is shown in Table 1. Peak Signal to
Noise Ratio (PSNR) and Structural Similarity (SSIM) enable quantitative objective evalua-
tion of reconstructed images. PSNR mainly evaluates the ratio of the maximum possible
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power of the real signal of the image to the destructive noise power that affects its represen-
tation accuracy. SSIM evaluates the quality of the image from three aspects: Luminance,
Contrast, and Structure. The PSNR and SSIM of images processed by the DDZMR network
are improved by 12% and 4% compared to the ablation component, and the training time of
the network is shortened by 33%. Consquently, experiments show that the multi-modal loss
function customized according to the HDOE imaging image quality degradation model
is effective for SHDCIS, which can make the DDZMR network restore the image quality
better. When the degree of image degradation in the image plane space under different
off-axis fields of view is inconsistent, the image regional division and channel selection
module can help the network to better learn the degradation process of images at different
positions, and improve the convergence speed of the network.

Table 1. Quantitative comparison of ablation multi-modal loss function and area division and channel
planning modules.

Method PSNR SSIM Training
Time (h)

Processing
Time (ms)

DDZMR 28.69 0.7045 45 413

DDZMR without the multimodal loss function 25.57 0.6754 53 402

DDZMR without the image regional division and channel selection module 26.78 0.6842 67 425

4.4. Application of the DDZME Network in Normal Image Super-Resolution Tasks

To evaluate the performance and robustness of the DDZMR network for image super-
resolution, we tested it with the publicly available benchmark datasets B100 [34] and
Urban100 [35] data, and compared it with the state-of-the-art networks. B100 [34] contains
various animals, plants, and other natural scenes, and Urban100 [35] contains only scenes
of urban buildings and roads. We quantified the performance of each dataset on a common
test set; according to [20], PSNR and SSIM quantify the reconstruction quality and structural
similarity of the generated images relative to the ground truth. Some qualitative compar-
isons are shown in Figure 10. Bicubic often suffers from oversaturation and VDSR [20]
does not perform well in tonal correction. In comparison, LapSRN [21], CARN [18], and
DDZMR were generally better in terms of color restoration, contrast, and image detail
enhancement after super-resolution. The images created by DDZMR network, in addition
to achieving comparable color recovery and tone correction, were also reasonably clear and
the network performed excellently.

A quantitative comparison of PSNR and SSIM for each network image super-resolution
performance is shown in Table 2. As with the intuitive judgment of images, VDSR [20]
has the lowest PSNR and SSIM values, LapSRN [21] and CARN [18] perform well, and
DDMZR networks are also competitive, generally performing better in PSNR and SSIM.

Table 2. Quantitative comparison of existing methods on the B100 [34] and Urban100 [35] datasets.

Method B100:PSNR B100:SSIM Urban100:PSNR Urban100:SSIM

Bicubic 27.86 0.6909 26.41 0.6195
VDSR [20] 31.52 0.8873 29.65 0.9048

LapSRN [21] 31.69 0.8929 30.40 0.9107
CARN [18] 32.04 0.8963 31.72 0.9234

DDZMR (Ours) 32.09 0.8975 31.82 0.9247

Although DDZMR has only a little performance improvement in super-resolution
processing compared to CARN, DDZMR has the ability to simultaneously restore degraded
images, which is a capability that CARN and other networks do not have. The image in
HDOE imaging is severely degraded. Because CARN cannot effectively restore degraded
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images, it is very ineffective in super-resolution processing of images captured by SHDCIS.
See the supplementary File for specific image processing details.

Figure 10. (a) Comparison of the performance of DDZMR networks and the state-of-the-art networks
on dataset B100 [34]; (b) Comparison of the performance of DDZMR networks and the state-of-the-art
networks on dataset Urban100 [35].

5. Test Results

In the experiments in this work, the performance of the DDZMR network in computa-
tionally reconstructing the degraded images of HDOE is first tested based on the prototype
SHDCIS. Compared with the cross-channel convolutional neural network proposed in [10],
DDZMR performs better on degraded diffraction images, and it can also perform 2× image
super-resolution simultaneously. Then, the enhancement effect of DDZMR network on
SHDCIS imaging resolution was tested in the dark room, which showed that DDZMR
could improve the resolution by 1.412 times. Next, an ablation study is performed on the
DDZMR component, which verifies the effectiveness of the image regional division and
channel selection module and multimodal loss function. Finally, we test the robustness of
the ISR capability of the DDZMR network using publicly available datasets and compare it
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with the SOTA method; DDZMR shows excellent performance, and it has image restoration
performance that other ISR networks do not have.

6. Conclusions and Discussion

The imaging degradation of DOE in the visible spectral bandwidth caused by chro-
matic aberration and reduced diffraction efficiency is a long-standing problem, which
limits the development and application of DOE imaging systems [36]. The application
of computational imaging enables single-lens diffractive lenses to achieve high-quality
imaging in the visible light bandwidth [37]. It is an essential step to analyze the image
quality degradation of diffraction imaging with a wide-bandwith spectrum and to design a
suitable high-performance computing imaging algorithm. In this paper, we have analyzed
the image quality degradation model of HDOE imaging, and based on the analysis, we
designed a DDZMR network model that performs image restoration and image super-
resolution reconstruction simultaneously as the computational imaging component of
SHDCIS. The SHDCIS physical prototype achieved high-quality imaging, and the ISR effect
was able to improve 1.412 times. Furthermore, the DDZMR network showed excellent
robustness in non-specific super-resolution tasks and denoising tasks.

Therefore, the DDZMR network can also be applied in other imaging fields, such as mi-
croscopic imaging. In microscopic imaging, the object distance of an objective is no longer
considered infinite, but rather a very short distance. Subtle objects produce an inverted,
magnified image close to the focal point of the objective. Accordingly, the image degrada-
tion process for microscopic imaging is different compared to that of ordinary photographic
lenses. Adjusting the loss function according to its degenerate model characteristics can
make the DDZMR network get better performance. It is worth mentioning that the region
division and channel planning modules that perform multi-path partitioning will play a
great role in performing image restoration tasks, where the blur kernel changes greatly
with position changes. This module can be generalized to more image restoration tasks,
such as out-of-focus image restoration tasks, computational imaging tasks for imperfect
optical systems, and deblurring tasks. With appropriate changes to the DDZMR network,
it can also handle grayscale images, since there is no cross-channel specific operation for
the three RGB channels involved in the DDZMR network framework.

The subsequent research plan is to study the effect of complex environmental condi-
tions (such as changes in temperature and air pressure) on diffraction imaging. Research
on computational imaging algorithms to adapt to more complex degraded images, so that
SHDCIS can still have good performance under complex environmental conditions.
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//www.mdpi.com/article/10.3390/app12094753/s1.
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Abbreviations
The following abbreviations are used in this manuscript:

DOE Diffractive optical elements
HDOE Harmonic diffractive optical element
MDL Multi-order diffractive lens
DDZMR Deep dense zoned multipath residual
SHDCIS Single-lens harmonic diffraction computational imaging system
PSF Point spread function
OTF Optical transfer function
DRTSAB Double residual tandem spatial attention block
RDCB Residual dense concatenation block
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