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Abstract: Most data with a complicated structure can be represented by a tree structure. Parallel
processing is essential to mining frequent subtrees from massive data in a timely manner. However,
only a few algorithms could be transplanted to a parallel framework. A new parallel algorithm is
proposed to mine frequent subtrees by grouping strategy (GS) and edge division strategy (EDS).
The main idea of GS is dividing edges according to different intervals and then dividing subtrees
consisting of the edges in different intervals to their corresponding groups. Besides, the compression
stage in mining is optimized by avoiding all candidate subtrees of a compression tree, which reduces
the mining time on the nodes. Load balancing can improve the performance of parallel computing.
An effective EDS is proposed to achieve load balancing. EDS divides the edges with different fre-
quencies into different intervals reasonably, which directly affects the task amount in each computing
node. Experiments demonstrate that the proposed algorithm can implement parallel mining, and it
outperforms other compared methods on load balancing and speedup.

Keywords: frequent subtree; parallel algorithms; data partitioning; load balancing

1. Introduction

The era of big data has arrived with the advent of massive data. Semi-structured
data [1,2] plays a crucial role in massive data with the non-strict structure feature. Most
data with a complicated structure, including semi-structured data, can be represented
by a tree structure. Data mining methods are used to find hidden relationships among
massive data [3,4]. Frequent subtree mining has become an important field of data mining
research [5–7]. It is the process of mining a subtree set from a given data set that satisfies
user attention (support or frequent degree). Frequent subtree mining can be applied in
many fields. For example, RNA molecule structure can be represented by a tree structure
where, in order to obtain information about a new RNA molecule, the new one must be
compared to the known RNA structures. The function information of new RNA can be
obtained by looking for the same topology [8].

CFMIS (compressed frequent maximal induced subtrees) [9] is an efficient method
for the frequent subtree mining we proposed earlier. The CFMIS algorithm can find
all frequent induced subtrees without throwing solutions in less time. Parallel frequent
subtree mining processing is essential for mining massive volumes of data in a timely
manner. MapReduce is an ideal software framework to support distributed computing
on large data sets on clusters of computers [10,11]. However, not all algorithms could be
transplanted to the MapReduce framework, in fact, only a few algorithms could. Assigning
data into appropriate blocks is crucial for paralleling algorithms in MapReduce [12]. In
this paper, three parallel CFMIS (PCFMIS) algorithms, PCFMIS1, PCFMIS2 and PCFMIS3,
are proposed. PCFMIS1 parallels CFMIS, transplanting CFMIS to MapReduce framework
by GS. Furthermore, PCFMIS2 is proposed by optimizing the compression to reduce the
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running time on each slave node. Based on PCFMIS1 and PCFMIS2, PCFMIS3 is proposed
to achieve load balancing by using an effective EDS.

In summary, the contributions of our work are as follows:

1. A grouping strategy is proposed to achieve effective data partitioning in order to
parallel the frequent subtrees mining method.

2. The compression is optimized by avoiding all candidate subtrees to reduce the mining
time on nodes.

3. An effective edge division strategy is proposed to achieve load balancing.
4. The proposed algorithm PCFMIS3 is outstanding on load balancing and running time.

The rest of the paper is organized as follows: in Section 2, related work is reviewed;
the proposed PCFMIS1, PCFMIS2 and PCFMIS3 are presented in Section 3; in Section 4,
experimental results are displayed and discussed; conclusions are made in Section 5.

2. Related Work

With the extensive application of semi-structured data, the research priority of frequent
pattern mining has expanded from frequent item set mining [13,14] to frequent subtree
mining [15]. L. Wang et al. proposed a novel framework for mining temporal association
rules, which mainly represent the temporal relation among numerical attributes [16]. A
new structure called a frequent itemsets tree is proposed to avoid generating candidate
item sets in mining rules. Building the tree and mining the temporal relation between the
frequent itemset proceed simultaneously. V. Huynh et al. proposed an improved version
for IPPC tree, called IPPC+, to increase the performance of the tree construction [17]. IPPC+
improves the poor performance of IPPC tree in the case of datasets comprising a large
number of distinguishing items but just a small percentage of frequent items. W. Pascal et al.
proposed an algorithm mining probabilistic frequent subtrees with polynomial delay, but
by replacing each graph with a forest formed by an exponentially large implicit subset
of its spanning trees [18]. The algorithm overcomes the drawback that the number of
sampled spanning trees must be bounded by a polynomial of the size of the transaction
graphs, resulting in less impressive recall even for slightly more complex structures beyond
molecular graphs. J. Wang et al. proposed a compression tree sequence (CTS) to construct a
compression tree model and saved the information of the original tree in the compression
tree. CFMIS [9] was proposed based on CTS to mine frequent maximal induced subtrees.
For each iteration, compression could reduce the size of the data set, thus, the traversal
speed was faster than that of other algorithms.

Out of memory and computing resources lead massive data mining to difficulties.
Parallel data mining can be an effective solution to this problem [19–21]. In recent years,
researchers have made some achievements in frequent item mining. S. Shaik et al. presented
a scalable parallel algorithm for big data frequent pattern mining [22]. Three key challenges
are identified to parallel algorithmic design: load balancing, work partitioning and memory
scalability. D. Yan et al. proposed a general-purpose framework PrefixFPM for FPM that is
able to fully utilize the CPU cores in a multicore machine [23]. PrefixFPM follows the idea
of prefix projection to partition the workloads of PFM into independent tasks by divide and
conquer. The state-of-the-art serial algorithms are adapted for mining frequent patterns
including subsequences, subtrees, and subgraphs on top of PrefixFPM. D. Yan et al. extend
PrefixFPM to provide the complete parallel algorithms by adopting four new algorithms
so that a richer set of pattern types are covered, including closed patterns, ordered and
unordered tree patterns, and a mixture of path, free tree, and graph patterns [24]. PrefixFPM
exposes a unified programming interface to users who can readily customize it to mine their
desired patterns. Xun. Y. et al. proposed FiDoop to achieve compressed storage and avoid
building conditional pattern bases [25]. Hong T. P. et al. proposed a parallel genetic-fuzzy
mining algorithm [26] based on the master–slave architecture to extract both association
rules and membership functions from quantitative transactions. C. FB et al. proposed a
frequent itemset mining method using sliding windows capable of extracting tendencies
from continuous data flows [27]. They develop this method using Big Data technologies, in
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particular, using the Spark Streaming framework enabling distribution of the computation
along several clusters and thus improving the algorithm speed. Sicard. N. et al. proposed a
parallel fuzzy tree mining method (PaFuTM) [28]. In some of their approaches, the level-
wise architecture is preserved but tasks are parallelized within each level. All candidates
from each frequent subtree are assigned to specific tasks where they are generated and
tested against the database.

3. PCFMIS Algorithm

In this section, we provide the definitions for some concepts that will be used in the
remainder of the paper. The proposed parallel algorithm will also be explained in detail.

3.1. Prepared Knowledge
3.1.1. Definitions for Concepts

The CFMIS algorithm deals with the tree in which sibling nodes are unordered with
labels and the sibling nodes of the same parent node have no repeats. The ‘tree’ mentioned
below is the same tree as the CFMIS processes, assuming that there is no repeat label in a
same tree. CFMIS focuses on frequent maximal induced subtree mining.

Definition 1. Induced subtree. A tree T′ = (V′, E′, r′) is an induced tree of T = (V, E, r),
denoted as T′ ⊂ T if V′ ⊂ V, E′ ⊂ E, where V is the set of nodes; E is the set of edges in which
(x, y) ∈ E represents that x is the parent of y; r is the root node.

Definition 2. Frequent subtree. D = {T1, T2, . . . , Tn} is a tree set, ε is the frequency thresh-
old, Occ(Ti, T′) represents whether T′ occurs in Ti, if T′ ⊂ Ti, then Occ(Ti, T′) = 1, else
Occ(Ti, T′) = 0. Frq(T′) = ∑n

i=1 Occ(Ti, T′). T′ is frequent subtree if Frq(T′) > ε.

Definition 3. Maximal subtree. F is the frequent subtree set of D. T′ and T′′ are two frequent
subtrees in F, T′ maximize T′′ (denoted as T′′ m−→ T′) if and only if T′′ ⊂ T′, there is no T′′′ in F
to make T′′ m−→ T′′′happen. T′ is called maximal subtree.

Definition 4. Compression tree sequence(CTS). CTS is an ordered sequence composed by nodepd,
CTS = (nodepd0

0 , nodepd1
1 , . . . , nodepdn

n ), pd is the index pointing to the parent node for each node

except the root node. Let the parent of nodepdi
i be node

pdj
j , and then pdi = |i− j|, where nodepd0

0 is
the root node.

For example, the CTS of the example tree in Figure 1 can be a0b1c2d1e2 f 3. a0 is the root
element. a is the parent element of b, due to the difference between the positions of a and b
in the CTS is 1 while the index superscript of b is 1. c is the parent element of f , due to the
difference between the positions of c and f in the CTS being 3 while the index superscript
of f is 3. The same rule applies to other nodes, so the information about tree structure and
all the edges in the tree can be obtained from CTS.

Definition 5. Tree list length. The number of nodepd in CTS is the length of CTS.

3.1.2. CFMIS Algorithm

A simple review of the CFMIS algorithm is described below (more details in [9]), and
it is primarily performed via four stages:

Stage 1. Construct the compression tree model: the original data set is constructed as a
compression tree model using CTS;

Stage 2. Cutting edge: this stage is divided into two subprocesses, trim edges and
clean-up edges. First, trim the edges for which the edge frequent degree is less than
threshold. Then, delete the single node.
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Figure 1. An example tree.

Stage 3. Find frequent subtrees: Compress them according to the descending edge
frequent degree to obtain CTSs, and sort CTSs according to the tree list length from shortest
to longest. Match the CTSi with the CTSs following it; if matched (the CTSi is obtained in
another CTSj ), then the frequent degree of the T′ represented by CTSi is incremented by 1.

Stage 4. Maximal Stage: Run the frequent subtree sets maximal processing. The
frequent maximal induced subtree set of the original data set are obtained.

3.2. Grouping Strategy

Data partitioning is the premise of the parallel algorithm. An effective data partitioning
method can greatly reduce the data communication between different slave nodes, thereby
reducing the parallel computing time. Based on the above findings, the grouping strategy
(GS) of PCFMIS used to divide all the trees in original data set D into different groups is
described below:

(1) If given m slave nodes, we should divide all the trees in D into m groups, and the
number of the group is denoted as Gnum. For the edge (x,y) in D, divide (x,y) into the set
A = {Ak},k ∈ [1, m].

(2) For Ti ∈ D, all the edges in Ti may belong to several Ak according to (1). Take the
minimum of these k as the Gnum of Ti, Gnum = min k, so Ti is put into the group which
Gnum = min k. Then, for Ti, cut the edges which belong to Amink. Some new trees Ti

′
will

appear after cutting edges.
(3) For these new trees Ti

′
, repeat (2) until no new trees are produced.

(4) For Tj ∈ D, repeat (2) and (3).
(5) All the trees in original data set D are divided into different groups, and the

different groups will be put in different slave nodes.

Definition 6. Related Tree. Given a tree T = (V, E, r), for ∀(x, y) ∈ E, there is (x, y) ∈ Ak. min
k is the minimum of k. When (x, y) ∈ Amink, T is a related tree of (x, y), denoted as (x, y)→ T.
The set of t(x, y)→ T is denoted as Γ(x, y).

Property 1. According to grouping strategy, a tree in original data set only belongs to one group.

Property 2. According to grouping strategy, if (x, y) ∈ Ak, all Γ(x, y) will be put into the group
which Gnum = k.

According to Property 1, the trees in the original data set are grouped into different
groups, which can reduce the scale of the data each slave node needs to process. Although
in (2), new trees may be generated during the grouping process, the new trees are trimmed
and less complex than the original tree.

We can conclude from Property 2, for (x, y) ∈ Ak, all the induced subtrees of Γ(x, y)
containing (x, y) can be found in the group in which Gnum = k. So frequent induced
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subtrees of Γ(x, y) containing (x, y) can be found only in group k instead of the whole
original data set. This avoids communication between groups and realizes real parallelism.

Definition 7. Frequent Edge Degree. D = {T1, T2, ..., Tn}, the frequent edge degree of (x, y) is
the number of times (x, y) appears in D, denoted as EFrq(x, y).

How to divide the edge (x, y) into set {Ak} in (1) directly affects the Gnum of Γ(x, y).
One feasible method is described below:

Given an evenly divided interval Adiv = (a1, ..., ai, ..., am), a1 > ... > ai > ... > am,
a1 = EFrqmin(x, y), am = EFrqmax(x, y). If ai+1 > EFrq(x, y) ≥ ai, the edge (x, y) is
divided into Ai, then Γ(x, y) will be put into the group in which Gnum = k. For example,
in Figure 2, suppose that the number of slave nodes is 3. Divide the trees T0, T00 into 3
groups (G1, G2, G3). Given dividing interval Adiv = (a1, a2, a3), a1 > a2 > a3. EFrq(a, b),
EFrq(c, d), EFrq(d, f ) ≥ a1, a1 > EFeq(h, d), EFrq(d, e) ≥ a2, a2 > EFrq(a, c) ≥ a3, so
(a, b)(c, d)(d, f ) are divided into A1; (h, d)(d, e) are divided into A2; (a, c) is divided into
A3. Take T0 in Figure 2 as an example. For A3, Γ(a, c) (in Figure 2) is divided into G3. Then
delete (a, c) from A3 and cut (a, c). For A2, Γ(a, c) (Ti in Figure 2) are divided into G2. Then
delete (d, e) from A2 and cut (d, e). For A1, Γ(ab) (T3 in Figure 2), Γ(cd) (T4 in Figure 2) and
Γ(d f ) (T4 in Figure 2) are divided into G1. T01, T02 are obtained after applying GS on T00.

By using the above grouping strategy on the original data set and applying CFMIS
algorithm in each group, the CFMIS algorithm is implemented in parallel. The new parallel
algorithm is called PCFMIS1. However, the experiment results shown in Section 4.2 indicate
that the parallel computing time and speedup did not achieve the desired results. Further
improvements on PCFMIS1 will be discussed below.
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Figure 2. An example of weight tree dividing.

3.3. Improvements on Parallel Algorithm
3.3.1. Optimized Compression in CFMIS

Stage 3 is the central step of the CFMIS algorithm, and it also takes most of the time
in CFMIS. The subsequence processing of Stage 3 must find all subtrees of a compression
tree to determine whether each of them is frequent. In fact, it consumes up to 70% of the
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execution time in this stage. Optimizing Stage 3 can greatly reduce time consumption of
the algorithm, particularly when the data size is large. In this section, CFMIS is refined by
optimizing Stage 3.

According to Property 2, for any edges (x, y) ∈ Ak, all the induced subtrees of γ(x, y)
containing (x, y) can be found in the group k, so frequent induced subtrees of γ(x, y) can
also be found. For other edges (p, q) /∈ Ak, (p, q) ∈ A f , all the induced subtrees of γ(p, q)
containing (p, q) can be found in the group f . For the reasons above, we only need to
find all the frequent induced subtrees of γ(x, y) which contain (x, y) instead of all the
frequent induced subtrees in group k. Other frequent induced subtrees could be found
in other groups. If a CTS in group k does not contain (x, y), this CTS does not have to
match with the CTSs following it. That is, this improvement in Stage 3 avoids finding
all subtrees of a compression tree to determine whether each of them is frequent. The
improvement in compression in groups makes the running time shorter. The improved
parallel algorithm is called PCFMIS2. Although the time has been reduced, the load on
slave nodes is not balanced.

3.3.2. Load Balancing

An effective edge division strategy (EDS) is proposed in this section. If (x, y)εAk,
Γ(x, y) will be put into the group k. The division of edges in the original data set affects
the load of the slave nodes. Take the frequent edge degree as the basis for the edge
division strategy. Abstract edge division strategy as a math problem, it can be described as
below: Suppose that there are w different edges in the original data set, and their frequent
edge degree is denoted as EFrq(i), 1 6 i 6 w. Record EFrq(i) in the array x[i]. Divide
different edges from the original data set into the set {Ak}, ensuring that the sum of the
frequent edge degree in each Ak is approximately equal. The improved parallel algorithm
is called PCFMIS3.

The steps of EDS are described below:

1. Get the mean of array X, u=∑ X[i]
k .

2. Traverse the array X, if X[i] > u, then it is assigned separately to a group. Suppose
there are s groups like that.

3. Now, the problem is translated into such a problem: divide (w−s) different edges
into (k−s) sets, ensuring that the sum of the frequent edge degree in each group is
approximately equal.

4. For the rest X[j], 1 6 j 6w−s, get the mean of array X, u′=∑ X[j]
k−s .

5. Translate the step (3) and (4) problem to 0–1 Knapsack Problem in order to solve it.

An example of the EDS method is given here to show how it works: suppose that the
frequent edge degree of the original data set is 50, 60, 80, 100, 150, 200, 400, 1000, and k = 3.
The mean value u = 50+60+80+100+150+200+400+1000

3 = 680. As 1000 > 680, 1000 is assigned
separately to A1. Now, the problem is translated into such a problem: Divide the rest of
the edges into two sets, ensuring that the sum of the frequent edge degree in each set is
approximately equal. Get the mean value u = 50+60+80+100+150+200+400

2 = 520. Translate
the problem to 0–1 Knapsack Problem in order to solve it. The weights of these items are
50, 60, 80, 100, 150, 200, 400 and the backpack capacity is 520. The answer is that 50, 60, 400
make the total value biggest in the backpack. 50, 60, 400 are assigned to A2, and the rest are
assigned to A3.

PCFMIS3 solved the problem of load balancing and introduced the optimized com-
pression. The flowchart of PCFMIS3 is shown in Figure 3. Three steps including two
Map-reduce operations are completed during parallel computation.
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Figure 3. Parallel algorithm PCFMIS3 flowchart.

Step1: Calculate edge frequent degree of each edge in original tree set. In Map 1
(Algorithm 1), record each occurrence of each edge in a tree set split, which is the input of
Reduce 1 (Algorithm 2). In Reduce 1, the edge frequent degree of each edge is counted out.

Step 2: Cut edge and find frequent subtree. In Map 2 (Algorithm 3), trim the edges
for which the edge frequent degree is less than according to the list; divide the edges
into different sets according to EDS; divide the subtrees into different groups according to
GS. Then which group the subtree is divided to is the input of Reduce (Algorithm 4). In
Reduce 2, find frequent subtrees in each group. The maximal frequent subtrees of each
group could be obtained.

Step 3: Find the maximal subtrees of original tree set. In this step, run the frequent
subtree sets maximal processing to obtain the final maximal frequent subtrees.

Algorithm 1: Map 1 (key, value)
Input: //key: document name

//value: subtree set
Output: (key_edge, 1) // the key_edge is the edge in the subtree set.

1 for each edge in subtree set do
2 Emit (key_edge,1)
3 end

Algorithm 2: Reduce 1 (keys, values)
Input: //key: the set of the same edge

//values: the list of the edge value
Output: (key_edge, sum) // sum is the frequency of the edge

1 sum=0;
2 for each edge value in values do
3 sum=sum + value; Emit (key_edge, sum)
4 end
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Algorithm 3: Map 2 (key, value)
Input: //split: subtree set split

//list: the list of the edges
Output: key // key is the Gnum
value // value is the subtree in different Gnum

1 for each edge in list do
2 subtree_group = cut(edge)
3 // cut edges that do not meet the threshold requirements, group is the

remaining subtree set
4 end
5 for each edge in subtree_group do
6 A(edge)=EDS(edge)
7 // EDS is the edge division strategy; A(edge) is the division set
8 end
9 for each subtree in subtree_group do

10 Gnum(subtree)=GS(subtree)// GS is the grouping strategy
11 value=subtree
12 key=Gnum
13 Emit(key, value)
14 end

Algorithm 4: Reduce 2 (key, local_set)
Input: // Gnum: the group number

// Gnum_subtrees: all the subtrees which group number is Gnum
Output: key // null
local_set // the frequent subtree set which belongs to this group

1 f requent_list=get_edges(Gnum)
2 // get_edges(Gnum) is used to get the list of the frequent edges of this group
3 for the edges in f requent_list do
4 v=optimized_CFMIS(Gnum_subtrees)
5 // optimized_CFMIS is used to find the frequent subtrees in this group
6 local_set=max(v)
7 // max(v) is used to maximize the frequent subtrees
8 Emit (key, local_set)
9 end

4. Experiments and Results

Paralleling the CFMIS algorithm only affects execution time, and it has no effect on
the accuracy of the calculation results. The corresponding validity of the algorithm could
consult to [9]. The number of groups in the GS is the number of the slave nodes in this paper.
In order to prove that EDS is an effective method to solve load balancing, the load balancing
tests are compared between PCFMIS1 and PCFMIS3. The experiments on computational
time and speedup are done among PCFMIS1, PCFMIS2, PCFMIS3 and PaFuTM [28].

4.1. Experimental Environment

All of the experiments were conducted on a PC cluster connected with 100M Ethernet.
Each PC was equipped with a 3.20 GHz Intel Core i5 and 4 GB main memory, running
the Centos6.6 operating system. The version of the platform is Hadoop 2.6.2. The system
configuration is shown in Figure 4. The synthetic data set used in this paper was generated
by tree generator using the method in [29]. Parameters of the synthetic dataset are set as
follows: f = 10 (f represents fan-out), d = 10 (d represents the depth of the tree), n = 100
(n represents the number of labels), m = 100 (m represents the number of tree nodes), and t
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(t represents the number of trees). While t = 50,000, the data set is denoted as D5; t = 100,000,
denoted as D10; t = 200,000, denoted as D20; t = 500,000, denoted as D50; t = 1,000,000,
denoted as D100; t = 2,000,000, denoted as D200. The real data set was obtained from
CSLOGS data set, which is from a month-log of the data of the Rensselaer Polytechnic
Institute’s web site. CSLOGS10 contains 100,000 trees and CSLOGS100 contains 1,000,000
trees. The support thresholds for D5, D10, D20 and CSLOGS10 are 0.01 and 0.05. For D50,
D100, D200 and CSLOGS100, the support thresholds are 0.01 and 0.001.

Master Node 

192.168.1.128

Slave Node 

192.168.1.139

Slave Node 

192.168.1.137

Slave Node 

192.168.1.134

Slave Node 

192.168.1.121

Slave Node 

192.168.1.133

Slave Node 

192.168.1.136

Figure 4. System configuration diagram.

4.2. Experiments and Analysis

During the experiments, it was found that for the data sets with large data volume,
time cost increases dramatically when the number of nodes is too small. The reason is that
the computation of the tree structure needs to constantly operate the stack. If the JVM stack
is not enough, it can only keep replacing the stack. In this paper, experiments have been
done on a small number of nodes for small data sets and on a large number of nodes for
large data sets.

4.2.1. Comparison of Load Balancing

We performed the load balancing evaluation on both real data set CSLOGS10 and
synthetic data set D50. For CSLOGS10, the number of nodes is set to 1–5; for D50, the
number is set to 1–8.

Table 1 shows the amount of subtrees and computing time in different groups of
CSLOGS10 in Reduce 2 while the total number of nodes are 3, 4, 5 and the support threshold
is 0.01. The subtree amounts in each group divided by PCFMIS1 and PCFMIS3 are shown
in Table 1. For PCFMIS1, when the number of nodes is 3, the amount of subtrees in the most
loaded group (Gnum = 3) is 3.66 times that of the least loaded group (Gnum = 1); when the
number of nodes is 4 and 5, the ratio is 4.54 and 6.96. For PCFMIS3, when the number of
nodes is 3, the amount of subtrees in the most loaded group (Gnum = 1) is 1.32 times that
of the least loaded group (Gnum = 2); when the number of nodes is 4 and 5, the ratio is 1.30
and 1.31. For the computing time, when the number of nodes is 3 in PCFMIS1, the longest
computing time (Gnum = 3) is 3.31 times that of the shortest computing time (Gnum = 1).
The corresponding amount ratio and time ratio are shown in Table 2. The closer the ratio
is to 1, the better the effect of the load balancing. The same load balancing test is done
on D50 (the support threshold is 0.01) which is shown in Table 3, and the corresponding
amount ratio and time ratio are shown in Table 4. The experiments indicate that the efficient
division of edges in the original data set affects the load of the slave nodes. The proposed
EDS can achieve load balancing.
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Table 1. The amount of subtrees and computing time in different Gnum groups of CSLOGS10.

Number of Nodes Gnum
PCFMIS1 PCFMIS3

Amount Time (s) Amount Time (s)

1 18,395 22.73 53,466 40.01
3 2 41,369 41.65 40,564 38.37

3 67,365 75.34 50,084 37.72

1 15,463 18.39 49,826 28.58
4 2 52,369 27.76 49,819 29.49

3 67,428 55.56 38,462 25.28
4 70,254 42.84 38,352 25.91

1 10,630 13.27 34,657 21.46
2 32,745 21.36 38,724 23.11

5 3 62,156 41.2 45,396 22.31
4 47,563 32.58 42,683 22.12
5 73,947 37.25 40,567 21.89

Table 2. The amount ratio and time ratio in different Gnum groups of CSLOGS10.

Number of Nodes
PCFMIS1 PCFMIS3

Amount Time (s) Amount Time (s)

3 3.66 3.31 1.32 1.06

4 4.54 3.02 1.3 1.17

5 6.96 3.1 1.31 1.08

Table 3. The amount of subtrees and computing time in different Gnum groups of D50.

Number of Nodes Gnum
PCFMIS1 PCFMIS3

Amount Time (s) Amount Time (s)

1 96,386 82.36 134,526 118.63
4 2 113,695 113.67 101,637 113.6

3 155,692 136.98 116,985 123.64
4 277,258 187.63 114,329 117.25

1 75,264 52.69 96,452 86.66
2 65,897 53.76 93,658 84.32

6 3 193,648 122.25 107,612 83.59
4 85,638 85.96 84,369 83.12
5 84,567 93.21 83,695 83.72
6 156,942 110.67 92,418 84.87

1 87,526 67.77 54,960 63.89
2 40,236 45.63 76,147 62.14
3 73,658 62.37 58,426 63.45

8 4 54,269 43.73 66,545 64.77
5 86,352 58.23 65,471 62.95
6 125,621 87.12 64,774 64.01
7 97,634 81.69 70,425 63.52
8 177,563 93.28 69,998 62.59
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Table 4. The amount ratio and time ratio in different Gnum groups of D50.

Number of Nodes
PCFMIS1 PCFMIS3

Amount Time (s) Amount Time (s)

3 2.88 2.29 1.32 1.09

4 2.94 2.32 1.29 1.04

5 4.41 2.13 1.39 1.04

4.2.2. Comparison of Running Time and Speedup

The speedup is used to measure the parallelization performance of parallel systems or
programs. It is the ratio of the time that the same task runs in uniprocessor and parallel
processor systems. The speedup is defined by the following formula [30]:

Sp =
T1

Tp
(1)

where p is the number of nodes, T1 is the execution time on a single node, and Tp is the
execution time on p nodes.

When Sp = p, the speedup is a linear speedup. It is the ideal speedup that the parallel
algorithm tries to achieve. However, the linear speedup is difficult to achieve because the
communication cost increases with the increasing number of cores.

Figure 5 shows the computational time of four algorithms for four data sets on a small
number of nodes. Figure 6 shows the computational time of four algorithms for four data
sets on large number of nodes. As the number of the nodes increases, the computational
time of the four parallel methods becomes shorter. Due to the use of optimized compression,
PCFMIS2 has less computational time than PCFMIS1. PCFMIS3 performs best, saving
half the time compared to PCFMIS1. It indicates that the improvements on optimized
compression and load balancing are effective. In particular, the EDS strategy proposed by
PCFMIS3 divides the edges more rationally to provide a basis for grouping. As PaFuTM
has to find all the candidate subtrees and duplicate redundant subtrees exist among nodes,
PaFuTM has longer computational time than PCFMIS3.

  

(a) D5 support=0.01 (b) D5 support=0.05 (c) D10 support=0.01 (d) D10 support=0.05 

  

(e) D20 support=0.01 (f) D20 support=0.05 (g) CSLOGS10 support=0.01 (h) CSLOGS10 support=0.05 

Figure 5. Computational time of four algorithms for four data sets on a small number of nodes.
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(e) D200 support=0.01 (f) D200 support=0.001 (g) CSLOGS100 support=0.01 (h) CSLOGS100 support=0.001

Figure 6. Computational time of four algorithms for four data sets on a large number of nodes.

Figure 7 shows the speedups on four data sets with a small number of nodes. Figure 8
shows the speedups on another four data sets with a large number of nodes. As the results
show, the speedup of PCFMIS1 performs worst on all data sets. PCFMIS2 performs better
than PCFMIS1. The speedups of PCFMIS3 and PaFuTM are closest to the linear one, but
PCFMIS3 performs better. As the number of nodes increases, the speedup keeps growing.
However, in Figure 7e,f, when the nodes increase from 5 to 6, the speedup of PCFMIS1
and PCFMIS2 grow slowly. There is a clear salient point. This also appears in Figure 8a,b,f.
PCFMIS3 maintains a steady growth.
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 Figure 8. The speedups of four algorithms for four data sets on a large number of nodes.

5. Conclusions

A paralleling algorithm PCFMIS3 with GS and EDS is proposed in MapReduce frame-
work to parallel CFMIS to mine frequent subtrees efficiently. The GS method divides the
subtrees into different groups, which solves the data division problem in parallel comput-
ing. It avoids inter-group communication while mining frequent subtrees in each group
to reduce parallel computing time. In PCFMIS3, load balancing is achieved by using EDS.
Additionally, the compression stage in mining frequent subtrees is optimized by avoiding
all candidate subtrees of a compression tree, which reduces the calculation time of nodes.
Experiments demonstrate that the PCFMIS3 algorithm performs best on the comparison
of load balancing and running time on both the real data set and synthetic data set. The
maximum load is 1.3 times the minimum load, while it is up to 7 times without EDS. The
time ratio of PCFMIS3 is only about 1.1, while the time ratio exceeds 2.0 without EDS.
PCFMIS3 also performs best on different support values, saving half the computational
time compared to PCFMIS1. The PCFMIS3 achieves the optimal speedup which is closest
to the linear one on both small and large number of nodes.

Serial computing technology is difficult to meet the needs of massive data processing.
Parallel computing can take advantage of multi-node computing resources to reduce
problem resolution time. The proposed GS and EDS methods solve the two important
issues of data partitioning and load balancing in parallel computing. To apply GS and EDS
method in the mining of other frequent item sets is our future work.
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