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Abstract: Electroencephalography (EEG)-based measurements of fine tactile sensation produce large
amounts of data, with high costs for manual evaluation. In this study, an EEG-based machine-learning
(ML) model with support vector machine (SVM) was established to automatically evaluate post-
stroke impairments in fine tactile sensation. Stroke survivors (n = 12, stroke group) and unimpaired
participants (n = 15, control group) received stimulations with cotton, nylon, and wool fabrics to the
different upper limbs of a stroke participant and the dominant side of the control. The average and
maximal values of relative spectral power (RSP) of EEG in the stimulations were used as the inputs
to the SVM-ML model, which was first optimized for classification accuracies for different limb sides
through hyperparameter selection (γ, C) in radial basis function (RBF) kernel and cross-validation
during cotton stimulation. Model generalization was investigated by comparing accuracies during
stimulations with different fabrics to different limbs. The highest accuracies were achieved with
(γ = 21, C = 23) for the RBF kernel (76.8%) and six-fold cross-validation (75.4%), respectively, in the
gamma band for cotton stimulation; these were selected as optimal parameters for the SVM-ML
model. In model generalization, significant differences in the post-stroke fabric stimulation accuracies
were shifted to higher (beta/gamma) bands. The EEG-based SVM-ML model generated results
similar to manual evaluation of cortical responses to fabric stimulations; this may aid automatic
assessments of post-stroke fine tactile sensations.

Keywords: stroke; fine tactile sensation; electroencephalography; machine learning; evaluation

1. Introduction

Approximately 50% of stroke survivors have reported persistent sensory deficiencies
for both somatosensation and proprioception [1,2]. For example, they often have difficulties
in perceiving pain, temperature, pressure, posture, and light touch [3]. Sensory deficiencies
have profound negative impacts on the functional ability and independency in daily living,
which further affect motor recovery after stroke [4,5]. Fine tactile sensation is an elementary
somatosensory function for obtaining external information through touch [6]. Previous
studies have shown that fine tactile sensation also provide valid spatial references for body
positions to reduce postural sway [7], and it may act as an indicator to enhance sensory
feedback in position control [8,9]. However, rehabilitation for sensory functions has been
overlooked in the traditional practices, when compared with efforts for motor restoration;
this is attributed to the lack of effective evaluation measures for sensory impairments [10].
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Objective and efficient assessments of sensory impairments are important for long-
term post-stroke rehabilitation with repeated measurements during follow up [11]. How-
ever, subjective and manual measurements have been used traditionally for sensory im-
pairment assessments [12]. For example, the Fugl–Meyer assessment (FMA) [13] and
Semmes–Weinstein monofilament test [14] are commonly used in current evaluations of
fine tactile sensations because of the ease of interpretation of the assessment results. Addi-
tionally, the measurement process highly relies on the personal experiences of the assessor,
where achieving consistency in measurements is challenging when the stroke population
increases during long-term service [15].

Neuroimaging techniques have been introduced to provide objective data for sensory
impairment assessments [16]. The common neuroimaging techniques include functional
magnetic resonance imaging (fMRI), positron emission tomography (PET), neuromolecular
imaging, and electroencephalography (EEG), among others [17–23]. These approaches
characterize neural circuitry changes during post-stroke sensorimotor recovery; however,
such medical equipment is expensive and the preparations before neuroimaging-based
examinations are complicated compared to the traditional clinical assessments [24]. Among
these techniques, owing to the advantage of high temporal resolution, EEG has been ap-
plied to detect transient sensory neural responses during fine tactile stimulations [25,26].
For example, Ahn et al. compared the effects of different tactile exploration tasks, i.e.,
passively or actively moving a tactile board, on post-stroke brain activation using EEG [27].
The sensory motor rhythm indicated by the EEG relative powers from the right prefrontal
and parietal lobes during active tactile perceptions were significantly greater than those
in the damaged left hemisphere during passive tactile perception [27]. In our previous
work [28], post-stroke sensory impairment of fine tactile sensation was measured quantita-
tively via EEG during textile fabric stimulation, i.e., simulation of the common fabric–skin
touch. We observed EEG relative spectral power (RSP) differences after stroke, i.e., RSP
intensities in different frequency bands between unimpaired and stroke populations [28].
However, neuroimaging-based measurements usually generate large amounts of data,
whose interpretations still heavily rely on human professionals, which is time consuming
and labor demanding [29,30].

Neuroimaging data interpretation by machine-learning (ML) techniques has been a
promising approach to reduce manpower workload in data interpretations [31]. ML is a
technique that can help develop an automatic predictive model by learning the relationships
between features and targets from a given set of historical data before application to
repeated analyses on massive data [32]. Various ML algorithms, e.g., linear discriminant
analysis (LDA), artificial neural network (ANN), and support vector machine (SVM), are
being explored for the detection, classification, and characterization of neuroimaging data,
e.g., EEG [31]. For instance, Jochumsen et al. classified single-trial movement intentions
associated with different hand grasp types using the EEG spectra as input features to
an LDA model [33]. Usama et al. distinguished correct/error feedbacks during hand
and foot movements by feeding the EEG waveform features into an ANN model [34].
Limited classification accuracies were obtained in both studies: 41–86% [33,34]. This may
be attributed to insufficiencies in feature mapping by simple linear transformation of the
LDA, leading to inefficient construction of the optimal decision function (classification
boundary) for multichannel EEG [35,36]. Although ANN-based models offer nonlinear
feature mapping abilities during classifications, overfitting often occurs when there are
several hyperparameters, e.g., numbers of hidden layers and nodes, to be determined
during network optimization [36]. In contrast to the ANN, SVM-based models reduce the
disadvantages of overfitting of the classification results with the help of kernel functions [37].
SVM with kernel functions effectively minimize model complexities via implicitly realizing
nonlinear transformations of the feature spaces without explicit mathematical expressions,
so that only specific hyperparameters related to the kernel functions of the SVM need to
be optimized during model development [38]. In the SVM-ML models, several kernel
functions are commonly used, namely linear, polynomial, and radial basis function (RBF)
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kernels. For example, Liu et al. extracted the spectrum features from subject-related
EEG frequency bands and channels, and the SVM with linear kernel was applied to each
subject’s EEG-based motor imagery classification [39]. Ghumman et al. investigated the
classification performance of SVM with a polynomial kernel in multiclass motor imagery
EEG [40]. Bousseta et al. used SVM with RBF kernel to classify the EEGs of imagined hand
movements [41]. These studies reported a classification range of 67–92.8% [39–41]. Among
the practical applications of the kernel functions mentioned above, the RBF kernel is a
common choice in SVM-ML models because of its better performance on the nonlinearities
in feature mapping capabilities with less hyperparameters compared to the other two types
of kernel functions [42,43].

Automatic evaluations of neuroimaging data by SVM-ML techniques have not been
fully explored in literature, e.g., fine tactile sensation. Kim et al. extracted the powers of the
alpha and gamma bands as features representing EEG during touch with different objects,
i.e., fabric, glass, and paper [44]. However, they only evaluated the tactile perception of
unimpaired persons and obtained limited classification performance (68.1%) with the LDA
model [44]. The purpose of this study was to automatically evaluate and assess post-stroke
impairments in fine tactile sensation using a new EEG-based SVM-ML model.

2. Methodology

In this study, an SVM-ML model was established based on EEG measurements of
cortical responses to fine tactile stimulations to the upper limbs in persons who have
experienced stroke and in unimpaired participants via stimulations with different types of
fabrics (cotton, nylon, and wool). The SVM-ML model was first developed and optimized
using EEG RSP features with cotton fabric stimulation as the baseline input for classifying
the responses from multiple upper limb groups, i.e., stimulation to the (1) affected sides of
persons after stroke (SA), (2) unaffected sides of persons after stroke (SU), and (3) dominant
sides of unimpaired participants (UD). Then, the generalization performance of the model
was evaluated using the EEG RSP features during stimulations with different fabrics with
and without considering arm differences.

2.1. EEG Acquisitions during Fabric Stimulations

After obtaining ethical approval from the Human Subjects Ethics Sub-committee
(HSESC) of the Hong Kong Polytechnic University, twelve survivors of chronic stroke
were recruited as the “stroke group”, and fifteen unimpaired participants were recruited
as the “control group”, whose demographic details are listed in Table 1. The inclusion
criteria of stroke group were: (1) individuals must be at least six months after the singular
and unilateral brain lesion due to stroke; (2) the lesions occurring due to stroke were
experienced in the subcortical area, to ensure the detectable EEG from the cortical area. All
unimpaired participants were right-handed. No significant difference was found in age
between the stroke and control groups (p > 0.05) by the independent t-test after verifying
normality evaluations via the Shapiro–Wilk test [45].

Table 1. Demographic characteristics and clinical scores of the stroke and control groups [28].

Measure Stroke Group (n = 12) Control Group (n = 15)

Age in years 55.1 ± 16.0 46.4 ± 17.4
Gender (male/female) 11/1 5/10

Stroke type (ischemic/hemorrhagic) 10/2 -
Affected side (right/left) 6/6 -

Years since stroke 14.9 ± 5.8 -
FMA (upper extremity) 42.5 ± 15.2 -

FMA (light touch on forearm) 1 ± 0 -
MAS (elbow) 1.1 ± 0.7 -

Note: Data are given as mean ± standard deviation. MAS: Modified Ashworth scale; FMA: Fugl–Meyer
assessment [28].
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The experimental setup and protocol for the fabric fine tactile stimulation are shown
in Figure 1. The three types of fabrics, i.e., cotton, nylon, and wool of the same size and
different textural properties, were alternatively placed on the skin surface of the ventral
forearm of the upper limb, i.e., a single stimulation trial (Figure 1c). Each trial consisted of
a 30 s baseline measurement, i.e., no fabric stimulation to the skin, followed by alternative
stimuli with the three different fabrics in a random sequence for 13 s stimulation with each
fabric and 60 s gaps in between. The stimulation trial was repeated thrice for each target
forearm. The whole brain EEG with 64 channels (BP-01830, Brain Products Inc., Gilching,
Germany) based on the 10–20 system [46] was captured during the stimulation trials at a
sampling frequency of 1000 Hz. Each subject was required to stay awake and calm during
the EEG measurements while wearing ear plugs and an eye mask, whose purpose was to
minimize visual and audio disturbances from the environment. The detailed experimental
procedure is described in [28].
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Figure 1. Electroencephalography (EEG) experimental setup and protocol. (a) Participant wearing
the EEG cap, ear plugs, and eye mask, is seated in a chair and tested with their hands comfortably
placed on the table. The areas of each fabric stimulation are the ventral forearms. The three fabric
samples, namely cotton, nylon, and wool, are placed on the table. (b) Illustration of fabric stimulation.
The nylon fabric is placed on the ventral forearm. (c) Protocol for fabric stimulation.

2.2. EEG-Specific Feature Extraction for the SVM-ML Model

In this work, the RSPmean and RSPmax values in different frequency bands were
selected as the EEG features for input to the SVM-ML model as they represent the average
and maximal cortical changes, respectively, during fabric stimulations based on manual
recognition from the previous study [28]. During the real-time EEG recording, the sampling
frequency was 1000 Hz. In the preparation of the EEG RSP features, a Butterworth bandpass
filter from 0.1 to 100 Hz was first applied to the EEG to eliminate irrelevant high-frequency
components. Then, an additional Butterworth notch filter from 49 Hz to 51 Hz was applied
to eliminate the 50 Hz noise from the environment. Following this, the filtered EEG was
segmented into different epochs, i.e., 30 s pre-stimulus baseline and three 13 s stimuli with
different fabrics. The numbers of EEG samples after segmentation were 108 from the SA
group (12 participants × 3 trials × 3 fabric stimuli), 108 for the SU group (12 participants ×
3 trials × 3 fabric stimuli), and 135 for the UD group (15 participants × 3 trials × 3 fabric
stimuli). Next, the EEG samples were transformed into their power spectra by Pwelch
estimation [47], and the entire frequency band (0.1–100 Hz) of each segmented EEG epoch
was decomposed into five frequency bands, i.e., delta (0.5–4 Hz), theta (4–8 Hz), alpha
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(8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz) [48]. Finally, the RSP [49] of each
frequency band for each fabric stimulus was calculated using the following equations:

P(f1, f2) =
∫ f2

f1

p(f)df (1)

RSP(f1, f2) =
P(f1, f2)

P(0.1, 100)
− Pbaseline(f1, f2)

P(0.1, 100)
, (2)

where p(f) is the power spectral density; f1 and f2 are the low and high cutoff frequencies
of a given EEG frequency band, respectively; P(f1, f2) is the power spectrum from f1 to f2;
and Pbaseline is the power spectrum of the EEG segments during the baseline test in each
trial. The above spectral analysis of the raw EEG signals was implemented offline with the
EEGLAB v12 toolbox in MATLAB (The MathWorks Inc., Natick, MA, USA).

After obtaining the RSP value from each EEG channel, the RSPmean and RSPmax values
were acquired to represent the RSP features of the multichannel EEG, where RSPmean is
the average value of the RSPs of all the channels in a given frequency band of a signal
epoch, and RSPmax is the highest value among all the EEG channels. Then, the RSPmean
and RSPmax of the 62-channel EEG (ground and reference channels were neglected), which
covered the entire cortical area, were calculated for each frequency band. To minimize
the diversity of the ranges for the RSPmean and RSPmax, the original RSPmean and RSPmax
were further normalized as in the following equation according to z-score normalization,
which scales all the RSPmean and RSPmax values in varying ranges with a zero mean and
unit standard deviation [50]:

RSPi
′ =

RSPi − µRSP
σRSP

, (3)

where RSPi is the original spectral feature, i.e., RSPmean or RSPmax; µRSP is the mean of
RSPi; σRSP is the standard deviation of RSPi; and RSPi

′ is the normalized spectral feature.
The normalized features were then used as the inputs to the SVM-ML model.

2.3. SVM-ML Model Configuration

Figure 2 shows the configuration of the SVM-ML model, including optimization of the
SVM RBF kernel function and k-fold cross-validation (CV) strategy. The normalized EEG
features (i.e., RSPmean and RSPmax) during stimulation with cotton fabric were adopted
as the baseline inputs for model establishment. This is because cotton is the most widely
used fabric that is in intimate contact with skin in daily living and provides minimum
stimulation intensity with a comfortable feeling compared to other fabrics [51]. In addition,
compared to nylon and wool, the textile physical properties of cotton fabric as quantitatively
measured by the fabric touch tester (FTT) [52] were neutral with equivalent distances in
the aspects of smoothness, thickness, etc. [28]. Therefore, the EEG RSP features evoked by
the cotton fabric were used as the baseline inputs to configure the SVM-ML model.

The RBF kernel function of the SVM-ML model was determined by optimizing the
classification boundaries that achieved the best accuracy on the RSP features related to
cotton stimulation. For an RBF kernel, two hyperparameters, namely the kernel scaling
parameter γ and regularization parameter C [53], are optimized in the SVM-ML model
development to classify the different upper-limb groups. The search for optimal (γ, C)
was conducted by a “grid search” approach [54]. The candidate values of (γ, C) were first
defined as exponentially increasing sequences (γ = 2−15, 2−13, . . . , 29; C = 2−5, 2−3, . . . , 215),
which were the ranges adopted by most EEG-based SVM-ML studies to identify the optimal
(γ, C) values [42,55,56]. Following this, different pairs of γ and C (13 × 11 = 143 pairs)
values were generated, and each pair was used to construct the RBF kernel of the SVM.
The classification accuracies with the different hyperparameter pairs were evaluated by
three-fold CV according to the greatest common divisor of the number of stroke patients
(i.e., n = 12) and unimpaired controls (i.e., n = 15); this is a common pilot estimation
approach used in previous studies [57]. The value pair that achieved the best classification
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accuracy was then adopted as the optimal hyperparameters for model configuration. The
above SVM algorithm was implemented using the Scikit-learn toolbox, an open-source ML
toolbox in Python [58].
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The grid search results of γ and C are displayed in Figure 3, where Figure 3a–e present
the accuracies of different (γ, C) pairs for distinguishing the UD, SA, and SU groups with
the RSPmean and RSPmax of the 62-channel EEG in the delta, theta, alpha, beta, and gamma
bands, respectively, as input features. The coordinates and values of the highest accuracy
for each frequency band are indicated by the red dots in Figure 3a–e. Among all the
accuracies, the model with the highest accuracy of 67.4% (γ = 23, C = 29) was achieved in
the gamma band.

As the sensorimotor cortex is the main response area for sensory stimulations [59],
the classification performance achieved by including only the EEG channels covering the
sensorimotor cortex was evaluated in the SVM-ML model configuration. The RSPmean
and RSPmax of the corresponding 21-channel EEG (i.e., FC1–FC6, FCZ, C1–C6, CZ, CP1–
CP6, CPZ), which cover the sensorimotor area [60], were used as the inputs to the model.
Figure 4 shows the accuracies with the RSP features for the 21-channel EEG, and the highest
accuracy of 76.8% (γ = 21, C = 23) was obtained for the gamma band as well.

The accuracies of the SVM-ML model for classifying the UD, SA, and SU groups with
the RBF kernel hyperparameter pairs in the different bands are summarized in Table 2.
Compared to other frequency bands, the gamma band has the best average accuracy
performance for both channel set selections. The average and peak accuracies of the gamma
band of the 21-channel EEG were better than those of the 62-channel EEG. Therefore, the
hyperparameter pair (γ = 21, C = 23) from the 21-channel EEG was selected as the optimal
RBF kernel hyperparameters.

After the RBF kernel function was determined, the k-fold CV was also configured
using the RSP features of the 21-channel EEG as inputs to improve generalization of the
SVM-ML model. Compared to the simple train/test split, the k-fold CV ensures that each
sample from the original dataset has the chance of appearing in the training and testing set,
which results in less biased evaluations [61]. Since the partition of k folds is random, the
k-fold CV was performed 10 times to calculate the mean estimate to decrease the variance
of accuracy estimations of the one-shot k-fold CV [62–64]. Typically, the configuration of
k is 5 or 10, as these values have been shown to be the bias-variance trade-off for model
evaluation [61,65]. In our experiment, different selections of k from 2 to 10 were employed
to compare the influence of k on model performance. In addition, the leave-one-out CV,
where k is the number of samples in the dataset, was used as a complementary comparison
to different k-fold CV. Although the leave-one-out CV is more computationally expensive
compared to the above strategies, i.e., five-fold and ten-fold CV, it offers an unbiased
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evaluation of the model performance as each sample is given the opportunity to represent
the entirety of the test dataset [61].
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Figure 3. Grid search results of γ and C in the SVM-ML model with RBF kernel using the 62-channel
EEG RSP features of the delta, theta, alpha, beta, and gamma bands. Acc: accuracy. Peak Acc: highest
classification accuracy of the SVM-ML model in the predefined range of (γ, C); Peak Loc: location (γ,
C) corresponding to the highest classification accuracy of the SVM-ML model.

The accuracies of the SVM-ML model for distinguishing between the UD, SA, and
SU groups with different k-fold CV strategies in the different frequency bands are shown
in Table 3. The model achieved the highest accuracy of 75.4% in the gamma band by
six-fold CV. For the leave-one-out CV, the model obtained the highest classification accu-
racy of 74.4% in the gamma band as well. Therefore, the six-fold CV was selected as the
optimal evaluation strategy for the model when using the RSP features of the 21-channel
EEG as inputs.
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2.4. Generalization of the SVM-ML Model

Using the RSP features during stimulation with cotton fabric as the baseline inputs,
the SVM-ML model was established. Then, we first investigated the generalization per-
formance of the model for classifying the upper-limb groups with the inputs of different
fabrics, i.e., nylon, wool, and cotton. The measured RSP features in the respective stimula-
tions were then input to the developed model, and the achieved accuracies are summarized
in Table 4. The classification accuracies of the different fabric stimulations were not nor-
mally distributed (p < 0.5, Shapiro–Wilk test) in each frequency band. Significant intergroup
differences in the accuracies (p < 0.001, Kruskal–Wallis test) with respect to fabric stimula-
tion were observed in the delta, theta, alpha, beta, and gamma bands. The model achieved
the highest classification accuracies of 75.4%, 83.5%, and 84.3% for the cotton, nylon, and
wool stimulations, respectively, in the gamma band.
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Table 2. Accuracies of the SVM-ML model for classifying the three upper-limb groups with the RBF
kernel hyperparameter pairs in different frequency bands.

Number of
EEG Channels Delta Theta Alpha Beta Gamma

62

Average Acc 33.5% ± 0.05 37.8% ± 0.05 35.8% ± 0.03 38.2% ± 0.04 44.7% ± 0.11

Peak Acc 38.5% 51.8% 40.0% 47.6% 67.4%

Peak Loc (γ, C) (2−3, 25) (23, 21) (2−5, 21) (2−7, 27) (23, 29)

21

Average Acc 39.1% ± 0.06 35.6% ± 0.04 33.2% ± 0.06 41.3% ± 0.07 49.2% ± 0.16

Peak Acc 57.3% 49.3% 38.5% 57.8% 76.8%

Peak Loc (γ, C) (2−3, 211) (23, 213) (2−13, 210) (2−5, 213) (21, 23)

Note: Average Acc: average classification accuracy of the SVM-ML model with all the RBF kernel hyperparameter
pairs; Peak Acc: highest classification accuracy of the SVM-ML model in the predefined range of (γ, C); Peak Loc:
location (γ, C) corresponding to the highest classification accuracy of the SVM-ML model.

Table 3. Accuracies of the SVM-ML model for classifying the three upper-limb groups with different
k-fold CV strategies in the different frequency bands.

CV
Accuracy

Delta Theta Alpha Beta Gamma

2-fold 49.6% ± 0.07 38.1% ± 0.06 27.6% ± 0.06 50.7% ± 0.07 73.8% ± 0.05

3-fold 49.1% ± 0.06 33.3% ± 0.07 26.0% ± 0.05 51.0% ± 0.05 74.5% ± 0.04

4-fold 49.7% ± 0.06 34.7% ± 0.06 23.9% ± 0.05 50.1% ± 0.05 74.8% ± 0.04

5-fold 49.7% ± 0.06 32.4% ± 0.05 26.1% ± 0.05 51.2% ± 0.04 75.0% ± 0.03

6-fold 53.2% ± 0.05 35.0% ± 0.06 22.2% ± 0.05 50.8% ± 0.05 75.4% ± 0.04

7-fold 46.7% ± 0.06 32.6% ± 0.05 32.9% ± 0.05 48.2% ± 0.06 72.6% ± 0.04

8-fold 47.0% ± 0.07 31.3% ± 0.06 28.9% ± 0.06 47.2% ± 0.06 74.8% ± 0.04

9-fold 49.5% ± 0.07 31.4% ± 0.06 27.8% ± 0.06 49.1% ± 0.06 74.7% ± 0.05

10-fold 51.7% ± 0.07 33.0% ± 0.06 25.9% ± 0.06 50.0% ± 0.05 74.8% ± 0.05

LOO 51.3% 28.2% 12.8% 53.8% 74.4%
Note: Data are given as mean ± SD. CV: cross validation; LOO: leave-one-out.

Table 4. Overall accuracies of the SVM-ML model for classifying different fabric stimulations.

Fabric
Stimulation

Accuracy

Delta Theta Alpha Beta Gamma

Cotton 53.2% ± 0.05 35.0% ± 0.06 22.3% ± 0.05 50.8% ± 0.05 75.4% ± 0.04

Nylon 21.0% ± 0.04 40.6% ± 0.05 51.4% ± 0.04 63.2% ± 0.03 83.5% ± 0.02

Wool 30.3% ± 0.04 25.6% ± 0.06 43.0% ± 0.05 69.2% ± 0.04 84.3% ± 0.03

Significance
(p-value) <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***

Note: Data are given as mean ± SD. The significant differences are indicated by ‘***’ (p < 0.001, Kruskal–Wallis test).

The comparison of the overall accuracies of the SVM-ML model with respect to fabric
stimulation in each band are shown in Figure 5. Significant differences in the accuracies
were observed in the delta, theta, alpha, beta, and gamma bands for pairwise comparisons
among the three different fabric stimulations (p < 0.001, Kruskal–Wallis with Bonferroni
post-hoc test), except for the difference between nylon and wool in the gamma band
(p > 0.05, Kruskal–Wallis with Bonferroni post-hoc test). The models with nylon and wool
achieved significantly higher accuracies in the beta and gamma bands than those with
cotton (p < 0.001, Kruskal–Wallis with Bonferroni post-hoc test).



Appl. Sci. 2022, 12, 4796 10 of 18

Appl. Sci. 2022, 12, 4796  10  of  18 
 

Using the RSP features during stimulation with cotton fabric as the baseline inputs, the 

SVM‐ML model was established. Then, we first investigated the generalization performance 

of the model for classifying the upper‐limb groups with the inputs of different fabrics, i.e., 

nylon, wool, and cotton. The measured RSP features in the respective stimulations were then 

input to the developed model, and the achieved accuracies are summarized in Table 4. The 

classification accuracies of the different fabric stimulations were not normally distributed (p < 

0.5, Shapiro–Wilk test) in each frequency band. Significant intergroup differences in the accu‐

racies (p < 0.001, Kruskal–Wallis test) with respect to fabric stimulation were observed in the 

delta, theta, alpha, beta, and gamma bands. The model achieved the highest classification ac‐

curacies of 75.4%, 83.5%, and 84.3% for the cotton, nylon, and wool stimulations, respectively, 

in the gamma band. 

The comparison of the overall accuracies of the SVM‐ML model with respect to fabric 

stimulation in each band are shown in Figure 5. Significant differences in the accuracies were 

observed in the delta, theta, alpha, beta, and gamma bands for pairwise comparisons among 

the three different fabric stimulations (p < 0.001, Kruskal–Wallis with Bonferroni post‐hoc test), 

except for the difference between nylon and wool in the gamma band (p > 0.05, Kruskal–Wallis 

with Bonferroni post‐hoc test). The models with nylon and wool achieved significantly higher 

accuracies in the beta and gamma bands than those with cotton (p < 0.001, Kruskal–Wallis with 

Bonferroni post‐hoc test). 

Table 4. Overall accuracies of the SVM‐ML model for classifying different fabric stimulations. 

Fabric   

Stimulation 

Accuracy 

Delta  Theta  Alpha  Beta  Gamma 

Cotton  53.2% ± 0.05  35.0% ± 0.06  22.3% ± 0.05  50.8% ± 0.05  75.4% ± 0.04 

Nylon  21.0% ± 0.04  40.6% ± 0.05  51.4% ± 0.04  63.2% ± 0.03  83.5% ± 0.02 

Wool  30.3% ± 0.04  25.6% ± 0.06  43.0% ± 0.05  69.2% ± 0.04  84.3% ± 0.03 

Significance (p‐value)  < 0.001 ***  < 0.001 ***  < 0.001 ***  < 0.001 ***  < 0.001 *** 

Note: Data are given as mean ± SD. The significant differences are indicated by ‘***’ (p < 0.001, Kruskal–

Wallis test). 

 

Figure 5. Comparisons of the overall classification accuracies of the SVM‐ML model with respect to fabric 

stimulations in the delta, theta, alpha, beta, and gamma bands. The significant intergroup differences are 

indicated by ‘***’ (p < 0.001, Kruskal–Wallis with Bonferroni post‐hoc test). 

The generalized performance of the model was also evaluated by considering the arm 

differences during stimulations with different fabrics (Table 5). The classification accuracies of 

each upper‐limb group during stimulations with different fabrics are not normally distributed 

(p < 0.5, Shapiro–Wilk test). Significant differences in the accuracies (p < 0.001, Kruskal–Wallis 

test) with respect to fabric stimulations were observed in each band, except for the SU group 

Figure 5. Comparisons of the overall classification accuracies of the SVM-ML model with respect
to fabric stimulations in the delta, theta, alpha, beta, and gamma bands. The significant intergroup
differences are indicated by ‘***’ (p < 0.001, Kruskal–Wallis with Bonferroni post-hoc test).

The generalized performance of the model was also evaluated by considering the
arm differences during stimulations with different fabrics (Table 5). The classification
accuracies of each upper-limb group during stimulations with different fabrics are not
normally distributed (p < 0.5, Shapiro–Wilk test). Significant differences in the accuracies
(p < 0.001, Kruskal–Wallis test) with respect to fabric stimulations were observed in each
band, except for the SU group in the gamma band (p > 0.05, Kruskal–Wallis test). The
highest classification accuracy for each upper-limb group was achieved in the gamma band.

Table 5. Accuracies of the SVM-ML model for classifying the three upper-limb groups with different
fabric stimulations.

Fabric
Stimulation

Accuracy

Delta Theta Alpha Beta Gamma

SA

Cotton 47.9% ± 0.09 28.8% ± 0.11 28.5% ± 0.10 48.9% ± 0.10 59.7% ± 0.08

Nylon 26.8% ± 0.09 31.9% ± 0.08 54.1% ± 0.11 64.3% ± 0.10 76.2% ± 0.06

Wool 22.9% ± 0.09 21.7% ± 0.08 51.1% ± 0.11 53.6% ± 0.08 78.9% ± 0.04

p-value <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***

SU

Cotton 48.3% ± 0.08 40.9% ± 0.13 27.0% ± 0.09 69.3% ± 0.05 91.0% ± 0.04

Nylon 15.5% ± 0.07 40.5% ± 0.13 61.7% ± 0.04 74.9% ± 0.01 91.2% ± 0.03

Wool 50.3% ± 0.03 27.8% ± 0.08 40.1% ± 0.04 84.9% ± 0.04 91.6% ± 0.01

p-value <0.001 *** <0.001 *** <0.001 *** <0.001 *** >0.05

UD

Cotton 51.4% ± 0.14 31.6% ± 0.10 22.0% ± 0.12 35.3% ± 0.12 78.0% ± 0.10

Nylon 24.0% ± 0.09 51.9% ± 0.07 39.2% ± 0.10 53.7% ± 0.05 83.4% ± 0.01

Wool 19.8% ± 0.09 30.0% ± 0.11 36.9% ± 0.10 71.9% ± 0.08 84.1% ± 0.06

p-value <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***

Note: Data are given as mean ± SD. The significant intergroup differences are indicated by ‘***’ (p < 0.001,
Kruskal–Wallis test).

Based on the results in Table 4 and Figure 5, the comparisons of the accuracies of the
SVM-ML model with respect to fabric stimulations when considering arm differences are
presented in Figure 6. In the SA group (Figure 6a), significant differences in accuracies with
respect to the fabric stimulations were obtained in the higher frequency bands, i.e., beta
(p < 0.001, Kruskal–Wallis with Bonferroni post-hoc test) and gamma (p < 0.05, Kruskal–
Wallis with Bonferroni post-hoc test) bands. No significant differences were found between
nylon and wool in the delta, theta, and alpha bands (p > 0.05, Kruskal–Wallis with Bonfer-
roni post-hoc test). In the SU group (Figure 6b), significant differences in accuracies with
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respect to fabric stimulations were found in the delta (p < 0.001, Kruskal–Wallis with Bonfer-
roni post-hoc test), alpha (p < 0.001, Kruskal–Wallis with Bonferroni post-hoc test), and beta
(p < 0.05, Kruskal–Wallis with Bonferroni post-hoc test) bands. No significant difference
was observed between cotton and nylon in the theta band (p > 0.05, Kruskal–Wallis with
Bonferroni post-hoc test). In the UD group (Figure 6c), significant differences in accuracies
with respect to fabric stimulations were found in almost all frequency bands (p < 0.001,
Kruskal–Wallis with Bonferroni post-hoc test), except for the difference between nylon and
wool in the gamma band (p > 0.05, Kruskal–Wallis with Bonferroni post-hoc test).
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post-hoc test).

3. Discussion

In this study, the EEG-based SVM-ML model was built using the RSP features during
stimulation with cotton fabric as the baseline inputs. The model’s generalization perfor-
mance was investigated by comparing the classification accuracies during stimulations
with different fabrics.

3.1. SVM-ML Configuration
3.1.1. RBF Kernel Determination

The grid search results of the hyperparameter pair (γ, C) for the RBF kernel (Figures 3
and 4) showed that the highest classification accuracies were obtained in the predefined
range of the hyperparameter pair. Similar boundaries of the hyperparameter pair (γ, C)
were also applied in other SVM-based studies, e.g., Chang et al. used the boundaries of
(e−8 ≤ γ ≤ e8, e−8 ≤ C ≤ e8) [66], and Hsu et al. selected the boundaries of (2−15 ≤ γ ≤ 23,
2−5 ≤ C ≤ 215) [42]. This showed that the selected optimal hyperparameter pair (γ, C) was
in the traditional search space, and the SVM-ML model with the general search space was
feasible for classifying the RSP features extracted from EEG during sensory assessments.
The kernel scaling parameter γ determines the complexity of the classification decision
function of the model [67]. For smaller values of γ, the decision function is nearly linear,
and for larger values of γ, the function becomes more curved [67]. The optimal value of
γ (21) chosen by the model was close to the upper boundary of the preset γ range, which



Appl. Sci. 2022, 12, 4796 12 of 18

suggested that there was a relatively strong nonlinearity among the EEGs of multiple upper-
limb groups in the original feature space, and the model obtained the “curved” decision
function by mapping the raw EEG to a higher dimensional space. The regularization
parameter C defines the penalty degree of the model for the percentage of deviation from
the misclassified trained data [67]. As the value of C increases, its penalty degree for the
model becomes larger, and the percentage of deviation of the misclassified data is smaller
during the training phase. The optimal value of C (23) selected by the model was relatively
lower compared to the predefined range of C. This suggested that the model tolerated a
greater percentage of misclassified training data when searching for the optimal decision
function, indicating that there was an overlap among the different groups of EEG data
points near the decision function. Meanwhile, the model with the optimal hyperparameter
pair (γ, C) achieved an accuracy of 76.8%, which was comparable to those reported in
studies on multiclass classification of EEG using SVM-ML models with accuracies exceeding
71.0% [68,69].

3.1.2. EEG Channel Selection

It was observed that the overall accuracies of the model with the 21-channel EEG were
better than those of the 62-channel EEG when not considering arm differences (Table 2).
The 21-channel EEG covers the sensorimotor cortex, which is the main response area to
sensory stimulations [70,71]. The accuracies based on the 21-channel EEG suggested that
direct cortical processing from the sensorimotor cortex was sufficient to capture the sensory
differences generated by different fabric samples through the SVM-ML model. Previous
studies have demonstrated that significant RSP variations for different EEG bands during
sensory stimulations were mainly captured in the sensorimotor cortex for both unimpaired
and stroke populations [28,72,73]. On the contrary, involuntary attention activities beyond
the sensorimotor cortex were involved in passive fabric stimulation experiments [28]. This
could be a hurdle to the recognition of cortical responses to fabric stimulations using the
SVM-ML model. Meanwhile, voluntary cognitive activities were also found to disturb mea-
surement of cortical responses to sensory stimulations [73,74]. For example, in post-stroke
sensory evaluation by a subjective questionnaire, stroke persons with sensory impairments
could distinguish different fabric stimulations because of the compensation of cognitive
processing, e.g., individual experiences, to the residual sensory pathways [28]. In this work,
the voluntary cognitive activities were minimized by asking the participants to stay awake
but mentally inactive during the fabric stimulations. Therefore, the EEG RSP features of
the sensorimotor cortex detected by the 21-channel EEG were sufficient for representing
the differences in direct cortical responses to fine tactile sensations.

Table 2 also shows that when identifying different fabric stimulations without consid-
ering arm differences, the model achieved better overall accuracies in higher bands, i.e., the
beta and gamma bands. This was consistent with the results of previous neurophysiologic
research into how the human brain reacts to tactile sensations induced by fabrics [74,75].
The cortical responses of the brain to tactile sensations are elicited by skin–fabric interac-
tions, which are characterized by the EEG beta and gamma band activations [76]. Beta
oscillations have been shown to be involved in the phasic locking process between the pri-
mary and secondary somatosensory cortex in response to tactile sensation [77]. Meanwhile,
it was observed that the neuronal assemblies of the sensorimotor cortex were joined in
large-scale networks oscillating in the beta band during maintenance of a sustained hand
lever press activity [78]. This phenomenon suggested that the primary somatosensory and
primary motor cortex were bound together in a beta-synchronized cortical network [78].
Furthermore, Greco et al. found that beta oscillations in the sensorimotor cortex served as
an informative feature characterizing affective tactile stimulation by interactions with dif-
ferent fabrics [79]. Singh et al. demonstrated that pleasant and unpleasant tactile sensations
present different beta-oscillation patterns [74]. The gamma oscillations of the sensorimotor
cortex were also observed in response to tactile sensation. This may reflect the timing code
and temporal organization for higher-order somatosensory processing, which is important
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for sensory binding [80,81]. In addition, the study by Aya et al. showed that gamma
oscillations were simultaneously evoked in the primary and secondary somatosensory
cortex during sensory stimulations, thus suggesting that it is critical for forming functional
cortico-cortical connections and for conveying somatosensory information from the primary
and secondary somatosensory cortex [82]. Bauer et al. found that tactile-stimuli-induced
gamma oscillations in the somatosensory cortex were enhanced and prolonged by spatial
tactile attention [83]. This indicated that gamma-band synchronization was instrumental in
the somatosensory system for processing behaviorally relevant stimulations [83]. Therefore,
the RSP variations in the beta and gamma bands were sensitive input features for the
SVM-ML model for both unimpaired and stroke persons.

3.2. K-Fold Cross Validation

During determination of k in CV, the model attained the highest accuracy with six-
fold CV in the gamma band (Table 3). This was also observed in terms of approximately
identical accuracies of the different numbers of k in the gamma band, which indicated that
the SVM-ML model achieved stable classification performance with good generalization
capacity for different combinations of training and testing datasets owing to the different
k-fold CV strategies [84]. Furthermore, the model with the leave-one-out CV achieved an
accuracy similar to the k-fold CV technique in the gamma band. This demonstrated the
model’s unbiased evaluation capability as a special case of k-fold CV, in which each sample
has a chance to represent the entire test dataset [85]. However, the computational cost of the
leave-one-out CV was greater than those of other configurations of k in the k-fold CV when
evaluating the SVM-ML model performance. This was in line with previous studies [85,86]
that investigated the computational efficiencies of k-fold and leave-one-out CV. Thus, it
was preferable to use the optimal k-fold CV, i.e., six-fold CV during model evaluations.

4. Generalization of the SVM-ML Model
4.1. Different Fabric Stimulations

In the evaluation of model generalization, the wool and nylon fabrics in the gamma band
achieved significantly higher accuracies than that of cotton fabric (Table 4 and Figure 5). This
was attributable to the differences in their stimulation intensities on the skin. According to
the study by Chen et al., neural oscillations in higher frequency bands, e.g., gamma band,
were lower when executing an easy task; however, they increased to higher levels to obtain
more information from the sensory environment when the task was difficult [87]. Cotton
is the most familiar fabric that is in direct contact with skin in daily life, and it provides
the lowest stimulation intensity during passive involuntary touch [28]. However, wool and
nylon offer more stimulating sensory experiences because of their textile physical properties,
which may require additional neural effort and cortical resources to evoke cortical responses
to stimulations [28]. This was further supported by the study by Jiao et al., who found that
wool elicited a relatively intense tactile stimulation in the form of scratching, resulting in the
sensation of discomfort [88]. They also discovered that touching wool fabric elicited higher
EEG RSP responses than cotton and nylon fabrics [88]. Hoefer et al. also observed that nylon
induced significant higher event-related potential (ERP) signals than cotton, implying that
there was less distraction and better cortical resources during tactile sensation [76]. As a result,
the model achieved relatively higher accuracies with the RSP features of nylon and wool
compared to cotton.

4.2. Different Upper-Limb Groups

When considering arm differences, the model yields various patterns for the compar-
ison of accuracies between stimulations with different fabrics (Table 5 and Figure 6). It
was observed that the significant differences in the accuracies for classifying post-stroke
stimulations with different fabrics shifted to higher frequency bands, i.e., the beta and
gamma bands, compared to the UD group. This pattern difference in the classification of
stimulations with different fabrics among the different upper-limb groups was similar to
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that for manual investigations comparing the EEG RSP differences between stroke and
unimpaired persons. In the manual evaluations, the post-stroke representative power spec-
tra to fine touch stimulation shifted to higher frequency bands, i.e., the beta and gamma
bands [28]. The sensitivity of the EEG-based RSP features and their capability for feature
mapping by the RBF kernel allowed the SVM-ML model to detect similar pattern as manual
evaluations. As the input features of the model, the average and maximal values of the
RSPs represent the significant differences in RSPs among multiple upper-limb groups. The
differences in the EEG RSP patterns in response to fabric stimulations have been discovered
in previous manual investigations and were mainly related to neuroplastic changes after
stroke [89]. For example, when the damage to the brain neurons result in post-stroke
sensorimotor function deficiencies, the cortex composed of various neural subsets could be
rewired [90,91]. Neural compensation to lesional functions can lead to redistributed pat-
terns of the cortical responses to external stimulations [92]. Meanwhile, the SVM with RBF
kernel can find the optimal decision boundary among multiple upper-limb groups owing
to its sufficient feature mapping capability. It implicitly transforms the original RSP features
to a high-dimensional feature space with fewer hyperparameters to be determined, which
guarantees the generalization capability of the model when supplying new input data [37].
Previous studies have also demonstrated that the SVM with RBF kernel achieves minimal
classification error rates in different clinical scenarios while controlling the complexity
of the model [36,93,94]. Therefore, based on the sensitivity of the RSP features and the
feature mapping capability of the RBF kernel, the proposed model was expected to achieve
similar performance as in manual inspection for distinguishing between unimpaired and
post-stroke persons.

5. Conclusions

In this study, an EEG-based SVM-ML model was established using the RSP features
of the EEG signals, i.e., RSPmean and RSPmax, during stimulation with cotton fabric as
the baseline input. The observations demonstrated that the RSPmean and RSPmax were
sensitive to fabric stimulations and could be used as representative input features to the
model. The generalization performance of the model was investigated by comparing the
classification accuracies during stimulations with different fabrics while considering arm
differences. The model determined that the significant differences in the accuracies of fabric
stimulations after stroke were shifted toward higher bands, i.e., beta and gamma bands,
similar to the differences in RSP patterns between post-stroke persons and unimpaired
participants as in manual investigations, thereby implying that the model could imitate
manual evaluations of cortical responses to fabric stimulations; this ability is expected to
aid in automatic assessments of post-stroke fine tactile sensation.
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