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Abstract: Among the evolutionary methods, one that is quite prominent is genetic programming.
In recent years, a variant called geometric semantic genetic programming (GSGP) was successfully
applied to many real-world problems. Due to a peculiarity in its implementation, GSGP needs to store
all its evolutionary history, i.e., all populations from the first one. We exploit this stored information
to define a multi-generational selection scheme that is able to use individuals from older populations.
We show that a limited ability to use “old” generations is actually useful for the search process, thus
showing a zero-cost way of improving the performances of GSGP.

Keywords: evolutionary computation; genetic programming; geometric operators; geometric semantic
genetic programming

1. Introduction

Genetic programming (GP) [1] is a method for evolving programs, usually represented
as trees, through operations that mimic the Darwinian process of natural selection. Among
the most successful methods of GP, there is the geometric semantic GP (GSGP) [2]. In
its inception, GSGP was only an object of theoretical interest because of the geometric
properties it induced on the fitness landscape. Subsequently, an efficient implementation
of the geometric semantic genetic operators [3,4] allowed for the application of GSGP in
many different fields (e.g., [5]).

To implement and execute GSGP in an efficient manner, it is necessary to store all the
information regarding the entire evolutionary process. In particular, all the populations
need to be efficiently stored. Thus, it is natural to ask how this information can be used to
improve the search process.

In this paper, we propose a method to use this additional “free” information by
allowing the selection process to select individuals from the “old” populations. In particular,
we present two ways for performing this multi-generational selection:

• By selecting uniformly among the last k generations;
• By selecting among all the generations with a decreasing probability (i.e., with a

geometric distribution).

We compare the performance of two methods over six real-world datasets, showing
that the ability to look back at the evolutionary history of GSGP is actually beneficial in the
evolutionary process.

The paper is structured as follows: Section 2 explores the existing works concerning the
use of old generations (or memory) to improve the performance of evolutionary computation
algorithms. Section 3.2 recalls the basic notions of GSGP and introduces multi-generational
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selection. In Section 4, the experimental settings are presented, while Section 5 discusses
and analyzes the results. Section 6 provides a summary of this work and directions for
future research.

2. Related Works

When considering an evolutionary algorithm (EA) as a dynamic system, the idea of
selecting individuals from older populations may be regarded as the ability of the system
to directly exploit its memory, or equivalently the sequence of its past states. Under this
perspective, approaches that enhanced genetic algorithms (GA) with memory started to
appear in the literature in the mid-90s.

As far as we know, Louis and Li [6] were the first to propose the use of a long-term
memory to store the best solutions found so far by a GA, eventually reintegrating them into
the population in a later stage. Their experimental investigation of the traveling salesman
problem (TSP) showed that GA obtained a better performance when its population was
seeded with sub-optimal solutions found in previous instances rather than initializing
it at random. Wiering [7] experimented with a combination of GA and local search,
where memory plays an analogous role in Tabu Search: if a local optimum has been
found before, then it gets the lowest possible fitness to maximize the probability that the
corresponding individual is replaced in the next generation. Later, Yang [8] compared
two variants of the random immigrants scheme based on memory and elitism to enhance
the performance of GA over dynamic fitness landscapes. In these hybrid schemes, the
best individual retained either by memory or elitism from old populations was used
as a basis to evolve new immigrants through mutation, thus increasing the diversity of
the population and its adaptability against a dynamic environment. Still, concerning
dynamic optimization problems, Cao and Luo [9] considered two retrieving strategies
which selected the two best individuals from the associative memory of a GA. In particular,
the environmental information associated with these two individuals was evaluated by
either a survivability or diversity criterion. Similar to the methods proposed in this paper,
Castelli et al. [10,11] proposed the reinsertion of old genetic material in GAs. In particular,
the authors proposed a method to boost the GA optimization ability by replacing a fraction
of the worst individuals with the best ones from an older population.

From the point of view of GP, the reinsertion of genetic material from old populations
usually occurs in the related literature under the name of concept and knowledge reuse. This
is indeed a proper term since GP evolves programs that can be used, in turn, for learning
concepts and functions, as in symbolic regression [12]. Séront [13] set forth a method to re-
trieve concepts evolved by GP based on a library that saved the trees of the best individuals.
This method stood on the reasonable assumption that highly fit individuals embed useful
concepts in their syntactic trees for solving a particular optimization problem. The results
showed that the use of a concept library to create the initial population is beneficial for GP,
as compared to the random initialization. Jaskowski et al. [14] explored a different direction
where a method for reusing knowledge embedded by GP was used among a group of
learners that worked in parallel on a visual learning task. Therefore, in this case, the reuse of
GP subprograms does not come from old populations but is rather shared among different
current populations at the same time. Pei et al. [15] investigated the issue of class imbalance
in GP-based classifiers and proposed a method to mitigate it by using previously evolved
GP trees to initialize the population in later runs. The experimental results indicated that
such a mechanism allows the training time to be reduced and increases the accuracy of
multi-classifier systems based on GP. More recently, Bi et al. [16] proposed a new method
to improve GP learning performance over image classification problems. Such a method is
based on knowledge transfer among multiple populations, similarly to the aforementioned
approach of [14].

One of the main issues of the methods proposed in the above papers is that (a part of)
the evolutionary history is needed to properly exploit older populations, thus increasing
the space necessary for those methods to work. It is also interesting to notice that an
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increase in the population’s size (under a certain limit) is also useful for GSGP [17]. Thus,
as proposed in this paper, it is fundamental to explore the trade-off between population
size and performance and whether this trade-off can be removed or mitigated by using
part of the existing evolutionary history.

The principle of exploiting memory in evolutionary algorithms is also considered
under a different guise in the area of machine learning. This is the case, for instance, of the
conservation machine learning approach proposed by Sipper and Moore [18,19]. There, the
authors explore the idea of reusing ML models learned in different ways (e.g., multiple
runs, ensemble methods, etc.) and apply it to the case of random forests. The results
showed that their method improves the performance over some classification tasks through
ensemble cultivation.

Finally, to the best of our knowledge, in the specific area of GSGP, there is no work
directly addressing the reuse of old genetic material or individuals from past populations.
Nevertheless, there have been several attempts aimed at improving the performance of
the basic GSGP algorithm over regression problems. One of the most relevant approaches
considers the integration of local search in the evolutionary process of GSGP [20,21].

3. Geometric Semantic GP with Multi-Generational Selection

In this section, we recall the construction of GSGP with semantic operators and its
current efficient implementation through dynamic programming. We then introduce a
procedure to use this implementation to obtain a zero-cost way of sampling, during the
selection process, not only from the current population but also for any previous population
obtained during the evolution process.

3.1. Geometric Semantic Genetic Programming

In classical GP, the crossover (recombination) and mutation operators act on the
genotype of the individual involved, usually modifying or changing parts of the subtrees
in the case of a tree-based representation. However, the effects on the phenotype of
the individuals are difficult to formalize, and even small modifications to the genotype
can create a significant change in the phenotype. Therefore, in addition to the standard
“syntactic” operators of GP, there have been multiple studies on semantic operators [22]. By
relying on these operators, it is possible to predict the effect of crossover and mutation on
the phenotype of the solutions.

In 2012, Moraglio and coauthors [2] defined a way of performing semantic crossover
and mutation where the effect was obtaining a geometric crossover and geometric mutation
in the semantic space, two concepts defined and studied in [23]. Given a metric space (X, d)
where X is a set and d : X × X → R+ is a distance, a crossover is said to be geometric if,
for each x, y ∈ X, each element resulting from the crossover of x and y belongs to the set
{z ∈ A | d(x, z) + d(z, y) = d(x, y)}, i.e., the result of the crossover is inside the segment
connecting x and y. A mutation operator is said to be geometrical and, in particular, a
geometric ε-mutation, if, for each x ∈ X, the individuals resulting from the mutation are
all inside the ball Bε(x), i.e., the ball of radius ε centered in x. One of the advantages of
working with geometric operators is that it is possible to reason on the geometrical effect of
the different operators; e.g., a geometric crossover always generates offspring in the convex
hull given by the current population (see Figure 1).

In particular, one interesting space where it is possible to define genetic operators is
the semantic space. That is, given a set of samples X = {~x1, . . . ,~xm} ⊂ Rn and a function
T : Rn → R, representing a GP individual, we can define the semantics of T, denoted by
s(T) as the vector (T(~x1), T(~x2), . . . , T(~xm)) ∈ Rm. If we perform a geometric crossover
between the semantics of two trees T1 and T2, the semantics of any individual resulting
from the crossover will have outputs (on the elements of the set X) intermediate between
the ones of T1 and T2. Similarly, a geometric mutation on the semantic space will generate a
perturbation of the outputs of the parent individual. There is, however, the question of how
to define operators working on the semantic space by manipulating the syntactic space.
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The conundrum was solved by Moraglio et al. [2] in 2012 with the definition of semantic
mutation and crossover, as detailed below.

t = k t = k + 1
standard

t = k + 1
multi-generational selection

Figure 1. A representation of the effect of multi-generational selection on the convex hull where
geometric semantic crossover can generate new individuals.

Semantic Crossover. Let T1 and T2 be two functions from Rn to R representing two
GP trees and let R : Rn → [0, 1] be a randomly generated tree. Then the semantic crossover
between T1 and T2 using the random tree R is defined as:

Cross(T1, T2, R)(~x) = R(~x)T1(~x) + (1− R(~x))T2(~x) for all ~x ∈ Rn.

Notice that the outputs of Cross(T1, T2, R)(~x) will be intermediate with respect to the
outputs of T1 and T2. Thus, the crossover is geometric in the semantic space. To constrain
the output of R inside the interval [0, 1], a simple technique is to generate a random tree
and pass its output to a sigmoid function.

Semantic Mutation. Let T : Rn → R be the function defined by a GP tree, R : Rn → R
be a randomly generated tree, and m ∈ R+ be a positive real number, called the mutation
step. Then, the semantic mutation of T using the random tree R is defined as:

Mut(T, R)(~x) = T(~x) + mR(~x) for all ~x ∈ Rn.

Notice that there is an additional parameter, the mutation step m, that allows how
“big” the jumps/perturbations produced by mutation to be tuned.

One disadvantage of geometric operators and crossover in particular, at least in their
naïve implementation, is that they produce trees that are exponential with respect to the
number of generations: each crossover can be more than twice the size of the trees, thus
generating an exponential blowup of the trees. This problem can be solved by using a
dynamic programming approach [3]:

• The initial population is composed of standard GP trees;
• Each successive generation is not composed of trees; rather, each individual is a

structure containing the random trees used in crossover and mutations and pointers or
references to the individuals in the previous populations. This solves the problem of an
exponential space blowup;

• Evaluation can be performed bottom-up, saving the intermediate results from the initial
population and combining them following the application of crossover and mutations.

The resulting structure is represented schematically in Figure 2. The resulting com-
plexity for computing the output of an individual is O(gp), where g is the number of
generations and p is the population size. Thus, the resulting complexity is polynomial
rather than exponential.
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t = 0 t = 1 t = 2 t = 3 t = 4

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 2. A visual representation of how GSGP can be implemented in an efficient way, sharing
subtrees between individuals. At the top, the standard implementation where the parents can be
selected only from the previous generation is shown. At the bottom, parents can be selected uniformly
at random from the previous two populations. Notice how no additional storage is required.

3.2. Multi-Generational Selection for GSGP

One interesting aspect to notice in the “fast” GSGP implementation is that we are
able to access all the intermediate populations at zero cost: they are already stored in the
data structures that we use, and their output is already computed to obtain the outputs
of the current population. Hence, it is natural to ask if we can use this additional “free”
information to improve the performances in GSGP. In particular, we propose allowing
“older” individuals to be selected in the tournament selection.

Concerning the implementation details, as one can observe in Figure 2 at the bottom,
the pointers can go back for multiple generations (two in the example figure) instead of
a single one, with no additional overhead. The pseudocode for the multi-generational
selection is presented in Algorithm 1. As it is possible to notice, since all the information
is already available, there is no significant additional computational cost compared to
standard GSGP.

Algorithm 1 The pseudocode of the multi-generational (tournament) selection algorithm,
where P is a two-dimensional array of individuals of n rows (generations), where P[i][j] is
the j-th individual in the i-th generation, f is the fitness function, t ∈ N is the tournament
size, and D is a distribution.

function MULTI-GENERATIONAL-SELECTION(P, n, f , t, D)
Tournament← ∅ . Individuals selected for the tournament
for 1 ≤ i ≤ t do . Repeat for the tournament size t

j← n− extract from D . Select the generation
k← uniform random integer between 1 and |P[j]| . Select the individual
Tournament← Tournament ∪{P[j][k]} . Add the individual to the tournament

end for
best← arg maxx∈Tournament f (x) . Find the best individual in the tournament
return best

end function

In what follows, we describe how this selection can be performed since multiple possi-
bilities are available. In particular, we propose a uniform and a geometric selection strategy.
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3.2.1. Uniform Multi-Generational Selection

The simplest case is when individuals can be selected uniformly at random from the
populations of the last k ∈ N generations (or all of them if less than k generations have been
performed). If k = 1, then we obtain standard GSGP. However, as shown in Figure 1, one
of the effects of higher values of k is to “delay” the shrinking of the convex hull given by
crossover. In this way, we expect to equip GSGP with a better exploration ability.

3.2.2. Geometric Multi-Generational Selection

In the uniform selection method, there is a hard cut-off for participating in the selec-
tion process. Another idea is to gradually decrease the probability of an old population
contributing to the selection process. In particular, it is possible to employ a geometric
distribution, so that the probability of selecting the k-th generation before the current one
is p(1− p)k with p ∈ (0, 1) a parameter. Thus, for example, if k = 0.5, the probability
of selecting from the previous population is 0.5, two generations behind (0.5)2 = 0.25,
and so on (if we go back more than the number of existing generations we select from the
initial population). Thus, we can regard the geometric method as a way of “fading out” the
convex hull given by the previous populations.

Here we have defined two different multi-generation selection methods: uniform with
a parameter k ∈ N, which we will denote by Uk (e.g., U1, U2, etc.), and geometric with a
parameter p ∈ (0, 1), which we will denote by Gp (e.g., G0.5, G0.75, etc.).

4. Experimental Setting

The following section introduces the experimental environment adopted to test the
validity of the proposed methods: Section 4.1 describes the benchmark dataset employed,
while Section 4.2 provides the experimental settings needed to render experiments fully
reproducible.

4.1. Dataset

The datasets exploited in this paper have been purposely chosen as they consist of real-
world, complex datasets ranging from different areas that have been extensively leveraged
as benchmarks for GP. The reader can find [24] a comprehensive description of the reasons
why these datasets represent suitable reference points to assert the validity of a genetic
programming method. Table 1 outlines the key features of the considered problems, such as
the number of instances and variables, the area to which they belong, and, finally, the kind
of task required. It is worth pointing out that these datasets are significantly different from
each other (considering, for example, the number of instances and variables). Thus, they
represent an optimal choice to test the validity of our methods when applied to problems
that have rather diverse characteristics.

Table 1. Principal characteristics of the considered datasets: the number of variables, the number of
instances, and the domain.

Dataset Variables Instances Area

airfoil 6 1503 Physics
bioav 242 359 Pharmacokinetic

concrete 9 1030 Physics
ppb 627 131 Pharmacokinetic

toxicity 627 234 Pharmacokinetic
yacht 7 308 Physics

The first group of datasets deals with predicting pharmacokinetic parameters of
potential new drugs.

Human oral bioavailability (%F) measures the percentage of the initial drug dose that
effectively reaches the systemic blood circulation: this problem constitutes an essential
pharmacokinetic task as the oral assumption is usually the preferred way of supplying
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drugs to patients, and also because it is a representative measure of the quantity of the
active principle that can effectively actuate its biological effect [25].

Protein-plasma binding level (%PPB) characterizes the distribution into the human body
of a drug. Specifically, it corresponds to the percentage of the initial drug dose which binds
plasma proteins: this measure is fundamental, as blood circulation is the major vehicle of
drug distribution into the human body [26].

Median oral lethal dose (LD50) concerns the harmful effect produced by the distribution
of a drug into the human body, as it measures the lethal dose required to kill half the
members of a tested population after a specified time. It is expressed as the number of
milligrams of drug-related to one kilogram of cavies mass [26].

The second group of datasets originates from physical problems.
Airfoil self-noise (air) measures the hydrodynamic performance of sailing yachts, taking

into account their dimension and velocity [27].
Concrete compressive strength (conc) [28] characterizes the value of the slump flow of

the concrete when given as inputs concrete components such as cement, fly ash, slag, water,
coarse aggregate and fine aggregate.

Finally, Yacht hydrodynamics (yac) measures the hydrodynamic performance of sailing
yachts starting from their dimension and velocity.

4.2. Experimental Study

This section describes the experimental settings summarized in Table 2 to make the
method fully reproducible. To get statistically valuable results, 100 runs of the method have
been performed for each benchmark. Each run consisted of 100 generations to allow the
algorithm to stabilize, and, in each run, the dataset has been randomly split into training
and test sets with a percentage of 70–30%. All the parameters of GSGP described in Table 2
are the standard values used in the literature (e.g., [29]).

Table 2. Experimental settings.

Parameter Value

Population size 100
Number of generations 100

Number of runs 100
Max. initial depth 4

Crossover rate 0.9
Mutation rate 0.3
Mutation step 0.1

Selection method Tournament of size 4
Elitism Best individuals survive

To assess the validity of both uniform and geometric distributions for performing
the multi-generational selection, the fitness values achieved within these techniques were
compared with classical GSGP. It is worth emphasizing that the results obtained by standard
GP [1] are not listed in this paper since standard GP is consistently outperformed by GSGP.

Regarding the uniform distribution variation of the proposed method, experiments
have been performed considering the following values as the number of previous genera-
tions from where parents have been selected: 2, 5, 10, 20, and 100. The geometric variation
of the proposed technique has been tested by selecting 0.25, 0.50, and 0.75 as values for
the parameter p that defines the geometric probability distributions. The selection of those
parameters allows covering most cases (from “looking back” only a few generations to the
entire evolution), thus giving a general idea of the behavior of the proposed method.

The population size for all the considered cases of study is set to 100, which is a usual
trade-off between computational costs and quality of the search process [17], and the trees
of the first generation are initialized with the ramped half and half technique. The fitness
function selected to measure and compare the quality of different methods proposed is the
root-mean-square error (RMSE).
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5. Results and Discussion

Figures 3 and 4 show, via box-plots, the distribution of the fitness, calculated over
100 independent runs, achieved by the different configurations, discussed in Section 4.2,
compared to classical GSGP, which is denoted here as U1 whereas, as explained before, it
considers only the previous generation from which to select parents, exactly as in GSGP.
Table 3 stores the fitness values obtained by selecting the ancestors with uniform multi-
generational selection for both the training and testing set among all the considered
benchmark problems. Similarly, Table 4 stores the geometric multi-generational selec-
tion method’s fitness values. Table 5 reports a statistical significance assessment of the
achieved result, displaying the p-values obtained under the hypothesis that the median
fitness resulting from the considered technique is equal to the one obtained with standard
GSGP. This means that, if the resulting p-values are zero, the fitness obtained is statistically
significantly better or significantly worse with respect to the one achieved by GSGP, and to
understand which case we are dealing with, the results contained in Tables 3 and 4 must be
compared. Finally, Tables 3 and 4 display the fitness values obtained by selecting parents
using a uniform distribution and geometric distribution, respectively.
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Figure 3. Box-plots of the RMSE on the training set over 100 independent runs of the considered
benchmark dataset for all the proposed methods. (a) Air; (b) %F; (c) conc; (d) %PPB; (e) LD50; (f) yac.
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Figure 4. Box-plots of the RMSE on the test set over 100 independent runs of the considered
benchmark dataset for all the proposed methods. (a) Air; (b) %F; (c) conc; (d) %PPB; (e) LD50; (f) yac.

Table 3. Fitness values obtained by selecting the ancestors with uniform multi-generational selection.
The values in bold are the best results obtained.

GSGP U2 U5 U10 U20 U50 U100

air
train 34.43 33.89 32.02 33.28 32.85 34.93 34.93

test 34.44 34.01 31.83 33.26 33.12 34.72 37.51

%F
train 41.92 41.78 40.37 41.13 40.72 43.00 43.53

test 42.17 42.54 41.27 42.10 41.36 43.56 43.94

conc
train 9.54 9.41 9.15 9.27 9.36 9.82 10.08

test 9.52 9.49 9.21 9.31 9.35 9.69 10.07

%PPB
train 36.62 38.26 29.48 31.02 30.82 44.80 51.94

test 255.51 243.46 335.42 371.03 298.03 206.88 148.83

LD50
train 2183.65 2183.17 2165.20 2171.09 2165.36 2199.38 2243.06

test 2262.15 2233.41 2250.19 2242.84 2240.93 2274.87 2280.51

yac
train 13.71 13.77 13.04 13.24 13.18 14.19 14.44

test 13.55 13.69 12.99 13.12 13.00 14.11 14.27
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Table 4. Fitness values obtained by selecting the ancestors with geometric multi-generational selection.
The values in bold are the best results obtained.

GSGP G0.25 G0.50 G0.75

air
train 34.43 37.48 32.97 40.76

test 34.44 32.93 40.63 43.51

%F
train 41.92 41.16 44.60 44.92

test 42.17 41.49 44.63 44.73

conc
train 9.54 9.35 10.58 10.86

test 9.52 9.37 10.48 10.76

%PPB
train 36.62 32.06 57.37 58.73

test 255.51 300.03 119.20 106.33

LD50
train 2183.65 2176.51 2234.56 2264.43

test 2262.15 2216.47 2258.10 2305.45

yac
train 13.71 13.37 14.55 14.73

test 13.55 13.30 14.52 14.65

Table 5. p-values returned by the Wilcoxon rank-sum test under the alternative hypothesis that
the median errors on the test set obtained from classical GSGP are equal with respect to the errors
obtained with the methods introduced in this paper. Highlighted in bold, the p-values below 0.05
where the direction of the difference shows an improvement with respect to standard GSGP.

U2 U5 U10 U20 U50 U100 G0.25 G0.50 G0.75

airfoil 0.158 0.000 0.000 0.000 0.280 0.000 0.000 0.000 0.000
bioav 0.741 0.000 0.001 0.000 0.000 0.000 0.007 0.000 0.000

concrete 0.763 0.001 0.042 0.445 0.001 0.000 0.557 0.000 0.000
ppb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

toxicity 0.783 0.049 0.365 0.128 0.281 0.001 0.275 0.001 0.000
yacht 0.135 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

Concerning the air dataset (Figures 3a and 4a), it is possible to see that, if we consider a
uniform distribution for the multi-generational selection, the best performance is obtained
by selecting ancestors from the 5 previous generations (Table 3); on the other hand, with a
geometric distribution, better results are achieved with p = 0.25 (Table 4). Both of these
methods meaningfully outperform standard GSGP, as confirmed by the statistical results
of Table 5. For what concerns the other variations of the proposed methods, combining
information provided by fitness distribution shown in the box plots with the corresponding
p-values, it is possible to conclude that: U2, U10 and U20 also outperform GSGP with
statistical significance, U50 leads to results similar to GSGP, while U100, G0.50 and G0.75
results are substantially less performing with respect to GSGP.

Considering the %F dataset (Figures 3b and 4b), a similar behavior as the one observed
for the previous benchmark problem appears. Again, U5 and G0.25 represent the two best
candidates and outperform GSGP together with U2, U10, and U20. Here, U50, U100, G0.50,
and G0.75 lead to worse fitness values compared to classical GSGP.

Moving to the conc dataset, (Figures 3c and 4c provide us with more evidence that U5
and G0.25 are a significant improvement of the standard GSGP. Moreover, it is still the case
that U2, U10 and U20 slightly outperform GSGP, while U50, U100, G0.50 and G0.75 bring
poor fitness values.

Taking into account the %PPB dataset (Figures 3d and 4d), it is clear that all models
are affected by overfitting, and a lower error in the training set entails a bigger error in the
test set.
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Applying our methods to the LD50 dataset (Figures 3e and 4e), we can once more
recognize that U5 and G0.25 represent the best improvement in GSGP. Further, it is impor-
tant to highlight that for this dataset, while U2, U10, U20, U50, U100, G0.50, and G0.75
are indeed less well performing than the standard GSGP, none of these methods result in
actually poor fitness values; instead, each of them reaches performance very similar to that
obtained by GSGP.

Finally, the yac dataset (Figures 3f and 4f) is the last confirmation of the behavior we
have been observing so far. Once more, U5 and G0.25 are a significant improvement of the
standard GSGP, U2, U10 and U20 outperform GSGP, whereas U50, U100, G0.50 and G0.75
result in poor fitness values.

All in all, experiments performed revealed that U5 and G0.25 provide us with a
meaningful improvement of the standard GSGP.

Regarding results obtained with uniform multi-generational selection, a number k of
previous generations equal to 10 and 20 (and 5, as aforementioned) leads to statistically
significant improvement in the fitness. This confirms our intuition: selecting ancestors also
from previous generations (that, anyway, are not too far away) led to better results as a
more wide set of genotypes is considered for recombination, and good characteristics of an
individual that may have been lost during generation can be retrieved, thus decreasing the
likelihood of being stuck in local minima. On the other hand, considering only 2 previous
generations results in fitness values comparable with GSGP. This is reasonable considering
that individuals of two subsequent generations do not differ too much. Thus, selecting
ancestors from a generation or from the directly previous one does not remarkably affect
the quality of the offspring generated. On the other hand, U50 and U100 lead to signifi-
cantly worse performance in terms of fitness. This is because ancestors are selected from
generations too far back, where individuals were not yet improved by the genetic process.

Considering the results achieved by geometric multi-generational selection, while,
as stated above, setting p = 0.25 led to a significant upgrade of the fitness value; for the
other choice of parameters, i.e., p = 0.5 and p = 0.75, the obtained results were worse with
regards to standard GSGP.

These results are interesting for a particular reason: the expected value of the geometric
distributions with p = 0.25, p = 0.5, and p = 0.75 are 3, 1, and 1

3 , respectively (i.e., 1−p
p ).

Thus, we would expect G0.25, G0.50, and G0.75 to behave similarly to U4, U2, and between
U1 and U2, respectively. In the first case, it appears to be correct, while in the second one,
this happens only in some of the datasets. However, the behaviour of G0.75 is quite different
from what was expected. Since the motivation cannot be traced back to the expected value
of the distribution, it could be due to the fact that while it is expected that most of the
individuals will be from the previous generation, only a limited number of them can be
from older ones, damaging the search process. However, this is only a conjecture, and we
expect to investigate this unexpected behaviour in later works together with the effect of
using other distributions in the multi-generational selection.

6. Conclusions

In this paper, we have presented and studied a way to use the information of the pre-
vious generations, which GSGP stores anyway, to improve the performance of GSGP. This
resulted in a multi-generational selection, and we presented two methods implementing
this idea: a uniform selection probability and a geometric selection. The main idea consists
of selecting individuals not only from the last population but also from previous ones
(how many and with which probability depending on the underlying method). We have
tested the proposed uniform and geometric multi-generational selections with multiple
parameters on a selection of six datasets, showing that a limited ability to select from previ-
ous populations is beneficial to the search process. In the future, we plan to expand this
research and provide even more powerful ways of exploiting the additional information
that GSGP, in its fast implementation, is already storing.
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%F Human oral bioavailability
%PPB Protein-plasma binding level
air Airfoil self-noise
conc Concrete compressive strength
Gp Geometric multi-generational selection with parameter p
EA Evolutionary algorithms
GA Genetic algorithms
GP Genetic programming
GSGP Geometric semantic genetic programming
LD50 Median oral lethal dose
RMSE Root-mean-square errors
Uk Uniform multi-generational selection with parameter k
yac Yacht hydrodynamics

References
1. Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994, 4, 87–112.

[CrossRef]
2. Moraglio, A.; Krawiec, K.; Johnson, C.G. Geometric semantic genetic programming. In Proceedings of the International

Conference on Parallel Problem Solving from Nature, Taormina, Italy, 1–5 September 2012; pp. 21–31.
3. Vanneschi, L.; Castelli, M.; Manzoni, L.; Silva, S. A new implementation of geometric semantic GP and its application to problems

in pharmacokinetics. In Proceedings of the European Conference on Genetic Programming, Vienna, Austria, 3–5 April 2013;
pp. 205–216.

4. Castelli, M.; Manzoni, L. GSGP-C++ 2.0: A geometric semantic genetic programming framework. SoftwareX 2019, 10, 100313.
[CrossRef]

5. Vanneschi, L.; Silva, S.; Castelli, M.; Manzoni, L. Geometric semantic genetic programming for real life applications. In Genetic
Programming Theory and Practice Xi; Springer: Berlin/Heidelberg, Germany, 2014; pp. 191–209.

6. Louis, S.; Li, G. Augmenting genetic algorithms with memory to solve traveling salesman problems. In Proceedings of the Joint
Conference on Information Sciences, Nagoya, Japan 23–29 August 1997; pp. 108–111.

7. Wiering, M. Memory-based memetic algorithms. In Proceedings of the Benelearn’04—Thirteenth Belgian-Dutch Conference on
Machine Learning, Brussels, Belgium, 8–9 January 2004; pp. 191–198.

8. Yang, S. Genetic Algorithms with Memory- and Elitism-Based Immigrants in Dynamic Environments. Evol. Comput. 2008,
16, 385–416. [CrossRef] [PubMed]

9. Cao, Y.; Luo, W. Novel Associative Memory Retrieving Strategies for Evolutionary Algorithms in Dynamic Environments. In
Lecture Notes in Computer Science, Proceedings of the Advances in Computation and Intelligence—4th International Symposium, ISICA
2009, Huangshi, China, 23–25 Ocotober 2009; Cai, Z., Li, Z., Kang, Z., Liu, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;
Volume 5821, pp. 258–268.

10. Castelli, M.; Manzoni, L.; Vanneschi, L. The effect of selection from old populations in genetic algorithms. In Companion Material
Proceedings, Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, Dublin, Ireland, 12–16 July
2011; Krasnogor, N., Lanzi, P.L., Eds.; ACM: New York, NY, USA, 2011; pp. 161–162.

11. Castelli, M.; Manzoni, L.; Vanneschi, L. A Method to Reuse Old Populations in Genetic Algorithms. In Progress in Artificial
Intelligence, Proceedings of the 15th Portuguese Conference on Artificial Intelligence, EPIA 2011, Lisbon, Portugal, 10–13 October 2011;
Lecture Notes in Computer Science; Antunes, L., Pinto, H.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7026,
pp. 138–152.

http://doi.org/10.1007/BF00175355
http://dx.doi.org/10.1016/j.softx.2019.100313
http://dx.doi.org/10.1162/evco.2008.16.3.385
http://www.ncbi.nlm.nih.gov/pubmed/18811247


Appl. Sci. 2022, 12, 4836 13 of 13

12. Augusto, D.A.; Barbosa, H.J.C. Symbolic Regression via Genetic Programming. In Proceedings of the 6th Brazilian Symposium
on Neural Networks (SBRN 2000), Rio de Janiero, Brazil, 22–25 November 2000; pp. 173–178.

13. Seront, G. External concepts reuse in genetic programming. In Proceedings of the AAAI Symposium on Genetic programming,
MIT/AAAI, Cambridge, MA, USA, 10–12 November 1995; pp. 94–98.

14. Jaskowski, W.; Krawiec, K.; Wieloch, B. Knowledge reuse in genetic programming applied to visual learning. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2007, London, UK, 7–11 July 2007; pp. 1790–1797.

15. Pei, W.; Xue, B.; Shang, L.; Zhang, M. Reuse of program trees in genetic programming with a new fitness function in high-
dimensional unbalanced classification. In Proceedings of the Genetic and Evolutionary Computation Conference Companion
(GECCO 2019), Prague, Czech Republic, 13–17 July 2019; pp. 187–188.

16. Bi, Y.; Xue, B.; Zhang, M. A Divide-and-Conquer Genetic Programming Algorithm With Ensembles for Image Classification.
IEEE Trans. Evol. Comput. 2021, 25, 1148–1162. [CrossRef]
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