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1. Introduction

Artificial Intelligence has gained a lot of popularity in recent years thanks to the
advent of, mainly, Deep Learning techniques. These algorithms have broken many of the
barriers in difficult computer based tasks such as computer vision, decision making or
machine translation, among others. Nevertheless, many of the applications and problems
overcome were already attempted with traditional algorithms in machine learning, heuristic
approaches or knowledge-based systems. The big difference from previous approaches
is that the current proposals are data-driven: they are able to learn from large amounts
of data and build models to perform different tasks with a level of success never reached
previously by other solutions.

This shift has been especially dramatic for Natural Language Processing (NLP).
Linguistic-based methods have been surpassed by end-to-end architectures, where no
prior knowledge on language is needed, although only when a massive amount of data
is available. During the last two years we have witnessed the birth of amazing language
models with impressive results in many different tasks, defining the new state-of-the-art
in all of them. These models do not include, explicitly, traditional language processing
tasks such as morpho-syntactic tokenization, lemmatization, stop-words removal, syntactic
parsing, part of speech labeling, and other linguistic treatments on the text. New models
seem to learn all of this linguistic information just from data.

Thus, NLP research has shown impressive improvements in many major tasks: ma-
chine translation, language modeling, text generation, sentiment/emotion analysis, natural
language understanding, and question answering, among others. The advent of new
methods and techniques such as graph-based approaches and reinforcement learning over
deep learning architectures have boosted many of the tasks in NLP to reach human-level
(and even further) performance. This has attracted the interest of many companies, so
new products and solutions can profit from the advances of this relevant area within the
artificial intelligence domain.

However, intensive research is still being conducted using deep learning approaches.
Many new relevant features are being proposed, mainly related to stylometry, personality,
or psicolinguistics. All of them are ad hoc features computed from texts that try to capture
profile information, which, as we will see, can be used together with traditional machine
learning algorithms to overcome user-centered tasks.

This Special Issue focuses on emerging techniques and trendy applications of NLP
methods as an opportunity to report on all these achievements, establishing a useful
reference for industry and researchers on cutting edge human language technologies. The
contributions included in this issue propose new NLP algorithms and applications of
current and novel NLP tasks. In addition, some trends, potential future research areas and
new commercial products have been identified.
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2. Review of Issue Contents

The contributions collected in this Special Issue tackle diverse tasks in NLP: text
classification, text summarization, question and answering, machine translation, etc. We
have organized these papers according to these topics.

2.1. Text Classification

Text classification is still a major concern in NLP research. Several contributions are
related to this topic. For example, ref. [1] predict whether a patient had been diagnosed
with a mental disorder and, if so, the specific mental disorder type. LIWC, spaCy, fastText,
and RobBERT were used to analyze Dutch psychiatric interview transcriptions. LIWC, in
combination with the random forest classification algorithm, performed the best in predict-
ing whether a person had a mental disorder or not. SpaCy, in combination with random
forest, best predicted which particular mental disorder a patient had been diagnosed with.
When studying the results obtained with RobBERT and fastText, it was found, by applying
LIME analysis, that the difference between mental disorder and no disorder was more
prevalent in the manner of speaking than in the topics or the semantic content. Again,
classical ML techniques such as Random Forest are still very useful.

Multimodal approaches are also present. In [2], a novel approach to fuse textual and
visual features using a scaled dot-product attention mechanism is proposed. This is used in
a multimodal classification system applied in fake news detection. The attention mechanism
allows fine-grained combination of both visual embeddings and word embeddings taken
from the image and text found in posts. The system achieves competitive results on the
Weibo dataset.

Another paper studies the automatic detection of misogyny in web content by building
an annotated corpus from several sources and then training a system for classifying texts [3].
The system is based on BERT embeddings and a final linear regression classifier. The results
are good, although not comparable to other systems. A major contribution is the way
in which the corpus is generated, which can allow for augmenting training datasets on
misogyny detection.

Text classification can also be used to classify types of texts at high-level semantics.
For instance, ref. [4] explores different machine learning and neural network techniques for
the classification of strings as problems, non-problems, solutions, and non-solutions. The
algorithm that provided the best results was a convolutional neural network.

To addresses the detection of fake news, the authors of [5] present a solution based
on three steps: stance detection, author credibility verification, and machine learning
classification. Stance detection verifies the relevance between the title and paragraphs of
a news item; if there is a match, the next module checks whether the author is authentic
to determine whether the news item should be believed or not. Finally, machine learning
algorithms are used to classify the news item.

Text classification can also be applied to user profiling. A proposal for personality
recognition relying on the dominance, influence, steadiness, and compliance (DISC) model
together with a Bag-of-Words model of language is presented in [6]. Classical machine
learning algorithms such as AdaBoost and Random Forests achieved good performance.

Topic detection is still stimulating research. Ref. [7] applies BERT word embeddings
and a classical clustering algorithm (spherical k-means) to assign documents to topics.
The proposal encodes documents as a linear combination of word embeddings and word
frequencies in the document. Topics have been previously identified using the spherical
k-means algorithm over all word embeddings in the corpus. Finally, documents are
associated with topics using cosine distance. This method outperforms other approaches
such as PLSA (Probabilistic Latent Semantic Analysis) and do not need to fine-tune the
deep learning model.

In addition to systems and methods, this Special Issue includes some overviews.
Related to this topic, ref. [8] provides a review on corpora related to deception detec-
tion on several approaches to the study of deception and on previous research into its
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linguistic detection. Moreover, the author explores the linguistic cues of deception in the
Spanish language.

One last contribution to text classification is the creation of a new multi-modal Wikime-
dia Commons dataset based on concrete/abstract words [9], along with a novel multi-modal
pre-training approach based on curricular learning. The authors use the curricular learn-
ing method to train the model on the concepts through images and their corresponding
captions to achieve multimodal language modeling. BERT and Resnet-152 models are em-
ployed in each modality and combined using attentional pooling to perform pre-training
on the dataset.

2.2. Name Entity Recognition

Among major natural language understanding tasks, information extraction is still
attracting much of the research. Named Entity Recognition (NER) is a central problem
here. This Special Issue covers some novel approaches to NER in different languages. For
instance, ref. [10] proposes an approach to entity linking (associate mentions in documents
to existing entities in a knowledge graph) that profits from structural information of the
graph, so correlation information between entities is enriched. No deep learning is used
here, nor machine learning. It is a fully distance-based approach.

Nevertheless, transformers are the most prominent approach to NER. In [11], the task
of a nested named entity recognition over two and four levels of annotation is accomplished
by fine-tuning a BERT model. The results outperform state-of-the-art approaches such as
Bi-LSTM-CRF. Thus, this approach is easier to generalize as it does not need specific feature
extraction methods.

Another contribution to fine-grained NER is [12]. This work proposes a system for
using character-level embeddings over LSTM networks multi-stacked for feature fusion.
The unbalance problem usually found in fine-grained NER is solved by means of contextual
information of coarse-grained named entities. The system is able to outperform other state-
of-the art NER systems.

To close the papers related to NER, an interesting overview is also included, but
it is focused on the clinical domain [13]. The paper summarizes the current status of
named entity recognition techniques and clinical relationship extraction in the clinical
domain, discussing the existing models for the two tasks and their performances, the
current challenges and future directions.

2.3. Question and Answering

Staying in natural language understanding tasks, Question and Answering (Q & A)
systems still emerge as a continuous topic of research. In this regard, the paper by [14]
proposes an attention model to solve question difficulty estimation in Question–Answering
tasks. The method first relates question and information components using dual multi-head
co-attention. Then, a self-attention model is applied over these relationships. This approach
sets a new state-of-the-art in question difficulty estimation.

Expanding the number of question-answer pairs of Thai Question Answering corpora
using Multilingual Text-to-Text Transfer Transformer (mT5) is the approach proposed
by [15]. In addition, the authors propose a new syllable-level evaluation metric, which
they consider more suitable for the Thai language because there is no ambiguity in syllable
tokenization.

One last contribution to the Q & A topic is the paper by [16]. This paper introduces
a privacy-preserving machine reading comprehension system capable of working with
private data at a large scale and that is language independent.

2.4. Machine Translation

The problem of out-of-vocabulary (OOV) or rarely occurring words that limit the per-
formance of neural machine translation models is known in automatic machine translation.
The authors of [17] present a post-processing method for correcting machine translation re-
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sults using a named entity recognition (NER) model to overcome this problem and conduct
experiments on Chinese to Korean translation.

Another relevant issue is the estimation of the quality of a translation system. In [18],
a pure performance comparison between several multilingual pretrained linguistic models
(mPLM) is performed. As a result of the experiments, the authors confirm that the XLM-
TLM model performs better and that the induced learning of cross-language alignment
during pre-training had a positive impact. Furthermore, they perform experiments using
mBART, and its additional noise schemes had a positive effect.

Bilingual embeddings are the subject of [19]. To train English–Welsh bilingual em-
beddings, the authors combine a Welsh corpus of approximately 145 million words with
an English Wikipedia corpus. To learn the monolingual embeddings, they use word2vec
and fastText. In addition, they explore three cross-language alignment strategies: cosine
similarity, inverted softmax, and cross-domain similarity local scaling (CSLS). Different
combinations of these approaches were evaluated on two tasks, bilingual dictionary induc-
tion and cross-lingual sentiment analysis. The best results were obtained using fastText
monolingual embeddings and the CSLS metric.

2.5. Dialogue Systems

Conversational agents and chatbots are leveraging the research in dialogue systems.
Two papers are included in this Special Issue with two totally different approaches. One
is based on classical algorithms, and another uses a large language model. The former
paper [20] proposes a system architecture for conversational agents that performs language
understanding by intent detection and slot filling. The answering mechanism is based on a
text retrieval engine (BM25). A classical CRF model is applied to perform the filling task,
and the SVM algorithm was used for intent classification. No deep learning models were
needed. The second approach is a novel task-oriented Arabic dialogue dataset (Arabic-TOD)
and proposes an end-to-end generative dialogue system based on the multilingual mT5 [21].
The experiments show a performance comparable to high-resourced languages, such as
English, and that a joint-training strategy with English and Chinese leads to better results.

2.6. Other Tasks

Explainability is a matter of study which is gaining deserved interest in recent years,
in order to guarantee trustworthy systems. The work presented in [22] proposes a system
to represent multilingual sentences using a natural machine language. The paper generates
related universal concepts that are intuitive, according to human evaluation. Also related
to explainability, the aim of the work presented in [23] is to provide people with an
understandable representation of the complications of a disease. The authors present an
approach to extract disease causal pathways, through cause–effect relation extraction, from
documents on diabetes, kidney disease, heart disease, and arterial disease posted on Thai
hospital web boards.

Related to Information Retrieval systems, we can find a proposal for query expan-
sion [24]. This paper proposes a query expansion technique for Information Retrieval
systems. A supervised expansion technique using the Naïve Bayes Multinomial Naïve
Bayes algorithm is presented to extract relevant terms from the first documents retrieved
by the initial query. In the evaluation of the proposed method, more accurate results are
obtained compared to those achieved by the systems which participated in the TREC2017
Precision Medicine Track.

As an additional contribution, this time related to text summarization, is the work
presented in [25]. It is a monolingual approach for abstractive summarization in Catalan
and Spanish. The approach is based on a Transformer encoder–decoder pretrained and
fine-tuned specifically for the language under studied. The performance of the monolingual
models is compared with two of the most widely used multilingual models in text summa-
rization, mBART, and mT5. Moreover, the authors present a new metric, content reordering,
intended to help quantify the reordering of original content within an abstractive summary.
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3. Conclusions

This Special Issue covers some of the most trending tasks in natural language process-
ing: text classification, machine translation, information extraction, explainability, question
and answering, or dialogue systems, among other topics. Many of the contributions in this
Special Issue set a new state-of-the-art in targeted tasks.

It is remarkable how multilinguality is fostering research to cover what are considered
“low-resourced” languages (i.e., those different from English or Chinese). In addition, we
can confirm from the set of contributions that deep learning models (LSTM, BERT, mT5,
among others) have irrupted the NLP arena to move approaches from computational
linguistics to end-to-end solutions. Still, classical machine learning algorithms such as
CRF, SVM, or Random Forest, just to cite few, are valid choices in many scenarios and are
integrated in some competitive systems.

As a last remark, we find interesting the advent of hybrid approaches, such as those
based in the combination of multiple features (word embeddings, char embeddings, BoW,
etc.). In this ensemble of methods and techniques, graph-based and knowledge-based
approaches deserve the focus of a growing number of studies.

As a main conclusion, this Special Issue offers a wide and varied insight into current
NLP research, a domain of research which has already been considered as the main frontier
in artificial intelligence.
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