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Abstract: Relay-aided free-space optical (FSO) communication systems have the ability of mitigating
the adverse effects of link disruption by dividing a long link into several short links. In order to solve
the relay selection (RS) problem in a decode and forward (DF) relay-aided FSO system, we model
the relay selection scheme as a Markov decision process (MDP). Based on a dueling deep Q-network
(DQON), the DON-RS algorithm is proposed, which aims at maximizing the average capacity. Different
from relevant works, the switching loss between relay nodes is considered. Thanks to the advantage
of maximizing cumulative rewards by deep reinforcement learning (DRL), our simulation results
demonstrate that the proposed DQN-RS algorithm outperforms the traditional greedy method.

Keywords: free space optics; relay selection; deep reinforcement learning

1. Introduction

Over the past few years, free-space optical (FSO) communications have attracted
considerable attention, becoming an interesting alternative for next-generation broad-
band. Compared with conventional radio-frequency (RF) systems, the FSO system has
the advantages of license-free transmissions, large bandwidth, simple and inexpensive
implementation, and high-rate transmission capability [1-3].

Despite these appealing features, there are also some inevitable challenges hampering
the system performance when transmitting through the atmosphere. Typical degradations
include atmospheric turbulence-induced fading, geometrical loss and pointing errors [4].
As aresult, the transmission distance and system performance are limited significantly. To
overcome this limitation, relaying techniques are investigated by dividing a long link into
several short links [5]. The utilization of relays can also remove the requirement that the
source node and the destination node be in line of sight.

1.1. Related Works

To the best of the authors” knowledge, the existing works on cooperative relaying
FSO systems can be divided into two categories, which are performance analysis and
optimization algorithms. In the first category, the system indexes are analyzed and derived,
including bit error rate (BER) or symbol error rate (SER) [6,7], outage probability (OP) [8],
channel capacity [9,10].

In the second category, studies on optimization algorithms can be viewed as an exten-
sion of the first category, where the abovementioned system indexes are either maximized
or minimized by optimizing parameters including power allocation [11,12], relay place-
ment [13,14] and relay selection [5,15-17]. Since this paper focuses on the relay selection
issue, the related papers are analyzed. It should be mentioned that either channel state in-
formation (CSI) or partial CSI is assumed to be a priori information during the optimization
algorithms, which can be estimated or obtained due to the quasi-static channel.
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Ref. [5] has discovered that the best relay can be selected to minimize the BER, accord-
ing to the channel conditions in source to the relay (S-R) link, the relay to destination (R-D)
link and the source to destination (S-D) link. A comprehensive comparison was carried
out between three cases, i.e., proactive relay, reactive relays and direct link. In Ref. [15],
a relay selection algorithm was proposed as a solution to mitigate channel fading, where
two cooperative modes enhanced network capacity, i.e., the intra-relay set and inter-relay
set cooperative modes. A link scheduling algorithm was further proposed to improve
bandwidth utilization and reduce the occupancy rate of the transceivers by better utilizing
the idle FSO links. Ref. [16] investigated a new distributed relay selection algorithm where
each relay was allowed to transmit only when its SNR was higher than a given threshold.
The threshold was achieved with the gradient algorithm to guarantee the lowest SER.
Ref. [17] proposed an improvement to the existing S-R protocol by relay selection, which
was better tailored to realistic systems deploying finite-size buffers. It was shown that the
proposed scheme could enhance the diversity order without the need of implementing
buffers of infinite size that cause infinite delays. The closed-form asymptotic expressions of
OP for two-relay networks were also derived.

With the development and application of machine learning (ML), ML-based relay
selection algorithms have become a hot topic. In Ref. [18], a supervised ML-enabling scheme
was proposed in order to enable a combined relay selection to avoid high computing latency.
In Ref. [19], a model-free primal-dual deep learning algorithm was designed to increase the
transmission capacity, and the policy gradient method was applied to the primal update
in order to estimate the necessary gradient information. Ref. [20] modeled the CSI in
the process of cooperative communications with relay selection as a Markov decision
process. A deep Q-network (DQN) was employed to choose the optimal relay from a
plurality of relay nodes, where both the outage probability and mutual information were
the objective function.

It should be noted that the difference between Refs. [18-20] is that Ref. [18] employed
a supervised learning structure, while Refs. [19,20] utilized a reinforcement learning (RL)
structure. The former learns from a labeled dataset, which provides answers that the
algorithm can use to evaluate its accuracy on the training data. The latter has the ability of
learning strategies to maximize rewards during interactions with the environment. Owing
to the fact that the RL approach is committed to maximizing the cumulative reward, it has
irreplaceable advantages in dynamic optimization problems.

1.2. Motivation and Contribution

The above literature review and the research content of this paper are shown in
Figure 1. Motivated by Refs. [19,20], we focus on the use of RL to solve the relay selection
problem in FSO systems. We utilize the RL approach to select the relay, which aims at
maximizing the channel capacity.

Performance Optimization Optimization
Analysis Algorithms Methods
[Wang2016, Lizoz1] | [T2e200o0 RN | BER/SER Power Allocation
[Hassan2021,Prasad2020, Outage
[Agarwal 2018] Abou-Rjeily2022] Probability Relay Placement
[Mohammad2022,
Dabiri2018] [Tan2d1o]

Figure 1. Literature review and the research content of this paper.



Appl. Sci. 2022,12, 4881

3of 14

As a result, we have to choose the most appropriate algorithm from the RL family.
There are three main algorithms in the RL family, which are Q-learning, DQN, and deep
deterministic policy gradient (DDPG) [21]. Q-learning deals with the discrete states and
actions, DDPG has an actor-critic architecture that handles the continuous action and state
spaces, whereas in the DQN algorithm, the action space is discrete, while the state space
is continuous.

In relation to our relay selection problem, the agent chooses the best action after
observing the current environment state. The action consists in selecting the appropriate
relay, while the state includes both the previous selected relay and the current CSI. DQN
appeared as the most appropriate method. As a result, this study employed the dueling-
DQN approach to select the relay in order to maximize the channel capacity, where the
relay nodes acted as the decode-and-forward (DF) mode, i.e., a cooperative DF-FSO. The
main contributions of this study are as follows.

e A Markov Decision Process (MDP) model was developed to describe the relay selection
problem.

e Different from the abovementioned literature, the switching loss between relay nodes
was considered. The corresponding expression of channel capacity was also derived.

e  We propose a DON-RS algorithm based on the dueling DON method, which deals
with the relay selection issue in a cooperative DF-FSO system in order to achieve
higher channel capacity.

e In our proposed DQN-RS algorithm, a state contained both the previous selected
relay and the current CSI. An action presented the current selected relay, where the
corresponding reward was equal to the derived channel capacity.

1.3. Paper Structure

The remainder of this paper is organized as follows. The system model and problem
formulation are presented in Section 2. The proposed DQN-RS algorithm is illustrated in
Section 3. We provide simulation results in Section 4. The conclusions and prospects are
reported in Section 5. The variables are illustrated in lowercase italic, and all vectors are in
lowercase bold form.

2. System Structure and Problem Formulation

This section is divided into two subsections. In Section 2.1, the system structure
is illustrated, consisting of both system model and channel capacity’s expression. In
Section 2.2, we first updated the expression of channel capacity by introducing the switching
loss. The problem to be optimized is further shown in a mathematical manner.

2.1. System Structure

In this paper, we consider a relay-assisted FSO system in DF mode, i.e., a cooperative
DE-FSO system, as shown in Figure 2. A cooperative DF-FSO system contains one source
node, one destination node and N relay nodes. In order to achieve higher received power,
the narrow divergence angle technique is always utilized in FSO systems. In this sequel, it
common that only one relay node can receive the signals from the source node in each time
slot (TS), which is selected by switching the direction of the transmit beam. According to
Ref. [22], optical switches can be implemented with either spatial light modulators (SLM)
or optical micro-electromechanical systems (MEMS). Correspondingly, the selected relay
node decodes and forwards the received signal to the destination node, which forms the
R-D link.
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Figure 2. System structure of a DF-FSO system.

In an arbitrary k-th TS, it is supposed that the N,-th relay node is selected. Then, the
channel capacity of a cooperative DF-FSO system can be expressed by Equation (1), where
the intensity modulation/direct detection (IM/DD) is employed:

c/ = min{logz (1 + (17Ph£’k>2/(7y2>,logz (1 + (ngll{\lk)z/tf,%) } 1)

where 7 denotes the photodetector responsivity, 07 and 07 represent the variance of the
equivalent noise in S-R link and R-D link, respectively, P is the transmitting power in the
source node and the selected relay node, h,lc\]" and g,]{v" stand for the channel gains from the
source node to the N,-th relay node and from the N,-th relay node to the destination node,
respectively. Then, vector h, is defined as the sets of CSI in all S-R links in the k-th TS, i.e.,
h, = [hi, h]%,. ., h]I(V } . Similarly, vector g, is defined as 8 = [gll, g,%, ., g}c\l } , representing
the sets of CSI of R-D links in the k-th TS. According to Ref. [5], the channel gain contains
both the turbulent fading and the pointing errors, whose PDF (probability density function)
is described with Equation (2):

 ap® o[ aph
fulh) = AoF(oc)F(ﬁ)Gig(z%

pz
p*—1la—1,8-1 ) @)
m,n

where G}/ (e|ap =ay,a2,- -+ ,ap;by = b1, by, - -, by) ) stands for the Meijer’ G function,
« and f3 represent the effective numbers of large-scale or small-scale turbulent eddies re-
spectively, which describe the Gamma—Gamma distribution, p stands for the ratio between
the equivalent beam radius and the standard deviation of the pointing errors, A is the
maximum fraction of the collected power in the receiving lens.

2.2. Problem Formulation

Different from relevant relay selection schemes, this paper considers the switching
loss when switching between the different relay nodes, which is a realistic consideration.
For convenience of representation, we assume that the duration of each time slot was
normalized to 1. We define 7 as the switching loss when switching between neighboring
relays. It is also assumed that the switching process is operated at a constant angular speed.
That is to say, the switching loss 7; ; between the i-th relay node and the j-th relay node
(1 <1i,j < N)is calculated by 7;; = [i — j| - T. Apparently, the switching loss from the i-th
relay to the j-th relay will be equal to the switching loss from the j-th relay to the i-th relay.
In addition, the switching time is equal to zero when the same relay node is selected in
both current and previous TS.

The S-R link and the R-D link cannot transmit data before the switching process
is completed. In other words, the switching process will reduce the available time of
communication, which limits the channel capacity. As a result, considering the switching
loss, the channel capacity of the k-th TS was modified in Equation (3).
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This paper focused on maximizing the average channel capacity over M time slots, as
shown in Equation (4):

M-1 . N\ 2 N2
gﬁx}% IEO Cy = max{ (1— N N,) -mm{log2 (1 + (17Phk k) /(772),log2 <1 + (77ng ") /U§> }} 4

st. 1< No,N1,--,Ny—1 <N

where () stands for the sets of the selected relays, i.e., Qpr = {No, Ny, - - -, Nyj—1}-

Obviously, this exhaustive method can solve this problem if the CSI of all slots are
available. However, this is unachievable, since the future CSI could not be known. In
addition, the complexity of the exhaustive method grows exponentially as the number of
TS increases, which is unacceptable. Regarding Equation (4), the system needed to select
the current relay cautiously, since every choice might change the future channel capacity.
As a result, we have to choose every relay by taking into account the possible impact on
the future channel capacity. Fortunately, we could employ RL method, which aims at
maximizing the long-term cumulative rewards.

3. DRL-Based Solution

In this section, there are three subsections. In Section 3.1, we first introduce the
reasons behind using RL frameworks to solve the formulated optimization problem. The
channel capacity to be optimized was further converted into the cumulative reward in the
RL-frameworks. In Section 3.2, the formulated optimization problem is modeled as an
incompletely known MDP, and the concept of Q-function is introduced. In Section 3.3, our
proposed DQN-RS is illustrated in detail.

3.1. RL Framework-Based Optimization Problem

As illustrated above, the main purpose of this study is to maximize a long-term
average channel capacity. Every relay selection will have an impact on the capacity in the
following TSs. As a result, long-term cumulative rewards should be maximized in each
TS. This agrees with the fact that RL approaches can maximize cumulative rewards. We
defined the discounted cumulative capacity from k-th TS as follows:

G(k) = ¥ v -¥C,

0o 2 2 (5)
= L1 (NN ) min{logz (1 + (nPm*)"/ Urz),logz (1 + (nPg) "/ Uﬁ) }
t=k
where 7y represents the discount factor ranging from 0 to 1.
As a result, we formulate the cumulative capacity maximization problem as
max E[G(k
max E[G(K)
o 2 2
= max E{ |} o' 7F max{ (1= TN ) min{log2 (1 + (nPh,I{V"> /(7,2>,log2 (1 + (ng,Z:]") /(7,,2> }} (6)
{QM} t=k
s.t. 1< Np,Ny,,Ny-1 <N

3.2. Markov Decision Process

In this subsection, we investigate an RL framework to solve our optimization problem
described in Equation (6), where the agent learns to select the optimal relay to obtain the
largest cumulative reward. The problem of RL is formulized as the incompletely known
MDP. On the basis of the Markov property, the next state of a system is only related to the
current state and the current selected action, and it is independent of earlier states.
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An MDP always consists of a four-tuple, namely, (S, A, P, R), where S denotes the
state space, A represents the action space, R is the immediate reward function, and P
is the transition probability. It has to be considered that statistical knowledge over the
model-free environment is not available. In our problem, the state transition probability P
was unknown. Thus, the detailed physical meaning of (S, A, R) is illustrated.

e  State Space S: The current state space of the whole system at the k-th TS is defined
as Sy = [Ix_1,hy, g;], which consists both the previous selected relay node and the
current CSI. I represents the selected relay in the k-th TS by one-hot code.

e  Action Space A: In our system model, the agent, as the decision maker, makes an
optimal decision on the relay selection. The current action space of the whole system
at k-th TS is defined as Ay = I;.

e Immediate reward function R: After taking action Ay in state S, the system will
transfer to the next state Sy 1; meanwhile, the agent will obtain an immediate reward
Ry. In our optimization problem, the immediate reward was defined as the current
capacity defined in Equation (3), i.e., Ry = Cj.

In RL tasks, an agent learns an optimal strategy to maximize the expected discounted
future cumulative reward in Equation (5). In order to measure the quality of any arbitrary
strategy 71, the value function Q" (s, a) is introduced, which is defined to be the expected
discounted cumulative reward in the future as the long-term reward by executing an action
a in an environmental state s, i.e., Q™ (s,a) = Ex[Gi|s = S, a = Ay]. The value function
can be expressed in a recursive form, as shown in Equation (7), which is always called the
Bellman equation.

@)

Q™ (s,a) = Ex[rx+vGyi1]s = Sk, a = Ag]
Er[re +vQ™ (Skt1, Ak+1)| s = Sk, = Ay]

So far, finding an optimal policy in RL tasks means to solve the above Bellman equation.
To achieve this goal, we just transferred our optimization objective in Equation (7). Our
DRL-based algorithms to solve this equation is presented in the following subsection.

It needs to be mentioned that the markers (S,.A,R), only used to explain MDP,
indicate the whole sets of state space, action space and reward space, while the marker
s (or a; r) denotes an arbitrary element belonging to the corresponding set. The markers
(Sk, Ak, Ry) stand for the instantaneous element in the k-th time slot in the proposed DQN-
RS algorithm.

3.3. The DQN-RS Algorithm

The simplest RL tasks, where the state and action spaces are small enough for the
state action values, i.e., the Q-values to be represented as tables, can be solved by a regular
Q-learning method. In this paper, we try to solve a relay selection problem in a cooperative
DF-FSO system with continuous state and discrete action space. Under this circumstance,
it is impractical to maintain all Q-values. Hence, we use an approximate solution method
that can be applied effectively to complex problems. The DQN algorithm is a typical
algorithm based on the value-based approximation method, which uses some neural
networks to approximate the action value function and can learn finite discrete values from
a high-dimensional state space and output action with the highest action value.

The dueling DQN improves the algorithm performance by optimizing the neural
network structure [23]. In this way, the Q-values are more robust and can be estimated with
lower variance. The architecture of our proposed dueling DQN-based DQN-RS algorithm
is shown in Figure 3.
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Figure 3. Proposed DQN-RS algorithm framework.

As can be seen in Figure 3, our DQN-RS framework consists of two neural networks.
One is the online network, the other is the target network, and both share the same structure.
Different from the conventional DQN which directly estimates the Q-values by one stream,
the dueling architecture consists of two streams of fully connected layers that represent
state value V(s) and action advantage A(s, a), respectively, while sharing common feature
layers. Then, the two streams are combined via a special aggregating layer to produce
the estimated Q-values. After estimating these Q-values, the agent can choose the action
with the highest Q value, i.e., select the current relay. As the action is completed, the
environment changes in the next time slot, which corresponds to the change of state in the
new slot. The state can be observed by the agent as the input to the DQN-RS networks. Our
proposed algorithm proceeds in an iterative manner according to the process described
above. As shown in Figure 3, a replay buffer storing experience data is used to train the
two networks.

The motivation for using this dueling DON structure is to solve the observability
problem in conventional DQN. For some states, such as the channel information in our
system model, their next states will not be affected by the taken actions at the current time
step. Hence, it is desirable to estimate V (s) independently of A(s,a). We define V(s) and
A(s,a) in Equations (8) and (9)

V(s) =V(s|w,9) 8)

A(s,a) = A(s,al w, Q) )

where w denotes the parameters of the convolutional layers, ¢ and { are the parameters
of the two streams of fully connected layers. Then, state action value function or Q-value
function in the dueling DON algorithm can be expressed as:

Q(S,Ll) = Q(S/a| wrérﬂ)

=V(s|w,®)+ A(s,a| w, Q) (10)

In our system, in order to improve the performance of our algorithm, we calculate the
Q-value by:

Q(S,IZ) = Q(Sra| wrg/ 19)

— V(5| w, ) + (A(s,a| ©,0) ~ T Al | w,g)> an

where the number of elements is indicated by |e|.
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In our proposed DQN-RS algorithm, we take the state S = [Ik,l, h, gk] introduced in
Section 3.2 as the input. We denote the output action in the DQN-RS algorithm as Ay = I.
These actions are selected by the e-reedy method. We randomly select Ay from the action
space with probability €, otherwise the action is selected by:

Ay = argmaxQ(s,a| w,{, 9) (12)
Ak S:St,ll:Ak

The dueling DQN-based algorithm also uses a dual network structure with an online
network and a target network like the conventional DON. Meanwhile, we also introduce
the experience replay buffer with capacity U.

After executing the selected action Ay at arbitrary k-th time slot, the agent receives
the immediate reward Ry defined in Section 3.2 and transfers it to the next state Sy, 1. We
continue to track the experience in a replay memory D with the state transition sample data
(Sk, Ak, R, Sk1) [20]. When training the network, we randomly take X sets of experience
data from D as a minibatch of the samples. An arbitrary set of experience data in the
minibatch is denoted as (S;, A;, R;, S;11). Then, the loss function can be expressed as:

1
L(w,,0)~ XZ(”I +ymaxa,,, Q (Si41,Ar1| @, ¢, 9) —Q(S, Al w,{,8))*  (13)
g

where ', {’ and ¢’ represent the weights of the target network, which correspond to w, {
and 9, respectively. Defining the learning rate as ¢, the online network can be updated by
the gradient descent method, shown in Equation (14):

w+—w—¢- VoLl
L 0—6¢-ViL (14)
9+ 8—c¢- -Vl

where V,, V7 and Vy represent the gradient vectors of L(w,{, ) with respect to w,
and 9, respectively. The weights of the target network are then updated through the slow
tracking of the learned online networks, with the learning rate to be A:

w A+ (1=
= AL+ (1= (15)
¢ A0+ (1— A

Our proposed DON-RS algorithm is summarized in Algorithm 1.
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Algorithm 1. The pseudocode diagram of the proposed DQN-RS algorithm.

Input: The cooperative DF-FSO simulator and its parameters.
Output: Optimal action Ay of each time slot.

1:  Initialize experience replay memory D with size U.
Initialize w, { and ¥ with random weights and initialize «’, {’ and ¢ by

2 W —w, 7,0 9.

3:  Initialize the minibatch size with X.

4: forepisode=1,2... do as follows

5: Initialize the environment and observe the environment initial state S.

6: fork=1,2,...K do as follows

7. Select a random action Ay with probability € or otherwise select action
argmaxAkQ(s, al w,7,9) ‘s:S,,a:Ak'

8: Execute action Ay and receive immediate reward Ry, observe Sy 1.

9: Store the transition data (S, Ag, Rk, Sk+1) in the buffer D.

10: if D is full, do as follows

11: Sample a random minibatch of X sets of transition data from D.

12: Update the online network by (14).

13: Update the target network by (15).

14: end for

15:  end for

The total algorithm complexity is defined as the product of the total time steps and
the algorithm complexity of each time step. We know that the algorithm complexity of an
arbitrary time step is determined by the calculation of the parameter updates in the neural
network. According to [21], the computational complexity for updating all the neural
network parameters is O(p x q) per time step, where p and g denote the action dimension
and the number of parameters, respectively. In our proposed DQN-RS algorithm, the action
dimension is N. The number of parameters in the proposed algorithm can be expressed
as N - (|w|+|8]|+]|l|). Therefore, the approximate complexity at each time step of the
proposed DQN-RS algorithm is O(N - (|w|+|®|+||), which is far less than that of the
exhaustive method O(N™).

4. Simulation Results

In this section, the numerical results of our proposed DQN-RS algorithm in cooper-
ative DF-FSO systems are illustrated. The greedy relay selection is also considered as a
comparison, where the relay with the best CSI is selected. The simulation parameters are
presented in Table 1. The simulation results were obtained on the deep learning framework
in TensorFlow 1.2.1 of Python 3.6.

Table 1. Simulation Parameters.

Parameters Values
Number of Relay Nodes N 4
Number of Time Slots M 10,100
Switching Loss T 0.2
Photodetector Responsivity # 0.9
Fading parameters («, B, A, p) 5.9776, 4.3980, 0.0032, 6.2552
Normalized Power P/o;, P/ 0s 5

As mentioned above, the number of neurons in the input layer was equal to 2N, which
was the dimension of the state space. Similarly, the number of neurons in the output layer
was equal to the number of relay nodes N, which coincided with the dimension of the
action space. In addition, there were 200 neurons in the common feature layer, whose
active function was the Relu function. There were also 200 neurons in the value layer and
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the action advantage layer, whose active function was the linear function in our proposed
DQN-RS algorithm. We trained the deep neural networks with a minibatch size of X = 200.
The replay memory capacity U was equal to one-third of the total training steps. The
discount factor y was set to 0.9.

First, the convergence performance of the mentioned DQN-RS algorithm is illustrated.
We set both the learning rates to 0.001. The channel capacity versus episodes and the loss
via training steps are presented in Figure 4a,b, respectively. As shown in Figure 4a, it
could be divided into three parts as the episodes increased. In the first part, the agent was
busy filling the replay buffer. The training process did not start until the buffer was full
around the 1333rd episode, where the second part began. During the second part, the agent
learned to achieve a higher Q-value by selecting different relay nodes. In the last part, the
parameter £ was set to 0, which means the agent had the ability of dealing with the relay
selection issue. According to Figure 4b, the DQN-RS algorithm converged after 2000 steps.
In addition, it can be seen in Figure 4b that the curve of the loss function presents periodic
fluctuations, which resulted from the fact that a bad experience may be chosen from the
replay memory during the training process.

047
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Figure 4. Convergence performance of the proposed DQN-RS algorithm. (a) Channel capacity versus
episodes, (b) loss function via training steps.

Figure 5 shows the difference of the proposed DQN-RS algorithm and the greedy
algorithm; it depicts an example of relay selection in 10 TSs. As shown in Figure 5, the
greedy algorithm (the green line) always choses the link with the largest channel condi-
tion, i.e., argmax{min{h,lc\[k , gi\]" } } That is why the 2nd relay node was selected in 2nd
TS, rather than the 4th relay node. The greedy algorithm did not consider the switching
loss. Moreover, frequent handovers would increase the time the system was unavail-
able, thereby reducing the channel capacity of the system, i.e., Cgreeqy = 3.1439bps/Hz <
Cpon-rs= 3.5337bps/Hz, even though there were other relay nodes with better CSI.
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Figure 5. An example of relay selection in 10 TSs.

Figures 6 and 7 show the average channel capacity versus different switching losses
and number of relay nodes, respectively. On the basis of Figure 6, the average channel
capacity decreased with a larger switching loss 7. This is evident because unavailable time
will increase with the growth of the switching loss, when the system switches between the
relay nodes. Moreover, the gap between the proposed DQN-RS scheme and the greedy
algorithm became larger with the increasing switching loss. Only considering the link
with the best CSI, the greedy algorithm resulted in more reps and more frequent switching
between the relay nodes, which inadvertently reduced the capacity. To illustrate the
effectiveness of our algorithm, we considered Gc = Cpon-Rrs/ Cgreedy — 1, defined as the
capacity gain by our proposed algorithm over the greedy algorithm. In Figure 6, with the
increase of the switching loss on the horizontal axis, the capacity gain G¢ could reach 18%.
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Figure 6. Channel capacity versus switching loss 7.
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Figure 7. Channel capacity versus the number of relay nodes.

As can be seen in Figure 7, the channel capacity did not increase monotonically with
the number of the relay nodes, and the capacity gain G¢ ranged from 2.59% (N = 2) to
14.6% (N = 5). It is different from the situation where there was no switching loss. As
the number of relay nodes increased, the possibility of multiple links fading at the same
time decreased, and there was potential to establish better channel links. However, the
switching between the relay nodes would reduce the channel capacity. As a result, there
was a tradeoff between the number of relay nodes and the switching loss. Therefore, the
relay-aided FSO system should consider both the number of relay nodes and the switching
time carefully in actual systems. It can also be concluded that our proposed DQN-RS
algorithm performs better than the traditional greedy algorithm with an arbitrary number
of relay nodes and different switching loss.

5. Conclusions and Prospects

In this paper, we investigated the relay selection problem in a cooperative DF-FSO
system, which was modeled as a Markov decision process. A DQN-RS relay selection
scheme was proposed based on the dueling DON method, where the channel capacity was
derived and maximized by considering the switching loss between the relay nodes. In
our DQN-RS algorithm, a state contained both the previous selected relay and the current
CSI. An action presented the current selected relay, where the corresponding reward was
equal to the derived channel capacity. On the basis of the simulation results, the proposed
DQN-RS algorithm outperformed the greedy method. As the switching loss increased, our
algorithm became increasingly superior to the greedy method. It was also found that the
channel capacity did not increase monotonically with the number of relay nodes, which
is different from the traditional case where the switching loss is ignored. It indicates that
there is a tradeoff between the number of relay nodes and the switching loss. In addition, it
should be mentioned that our algorithm has the potential of practical application through
complexity analysis.

Although both the feasibility and effectiveness of the algorithm have been verified,
more work can be carried out. Two aspects of our study should be highlighted. First of all,
this paper assumed that perfect channel information can be obtained. When the channel
information is not perfect, how to optimize the algorithm is a topic worthy of study in order
to achieve better performance. In addition, how to speed up the convergence is another
point of interest. Potential improvements include, but are not limited to, optimizing the
network structure and the training methods.
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Abbreviations

The main variables appearing in this paper are summarized below:

W channel gain from the source node to the N -th relay node

gkﬁ\]k channel gain from the N,-th relay node to the destination node

Cx channel capacity of the k-th TS

Ge capacity gain by our proposed algorithm over the greedy algorithm

T switching loss when switching between neighboring relay nodes

Tij switching loss 7; ; between i-th relay node and j-th relay node

N number of relay nodes

©,9,7 parameters of the convolutional layers and two streams of fully connected layers in
Y the online network

W, 7 parameters of the convolutional layers and two streams of fully connected layers in

the target network
Si, Ay, Ry current state space, action space, reward of the whole system at k-th TS

0% discount factor of the DQN-RS algorithm
¢, A learning rate of the online network and target network
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