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Abstract: We present a new set of near orthogonal codes which we call Hadamard Aperiodic Interval
(HAPI) codes and demonstrate their utility for parallel multi-transmitter synthetic aperture imaging.
The codes are tri-state and sparse. Locations of non-zero bits are based on marks in a sequence of
aperiodic intervals, also known as a Golomb ruler. The values of non-zero bits are selected from
Hadamard sequences that are mutually orthogonal. This ensures that cross-correlation sidelobe
magnitudes between differing codes are bounded by unity while the autocorrelation approaches a
delta function with mainlobe-to-sidelobe levels scaling with the number of non-zero bits. We use
simulations to demonstrate the potential of the codes for synthetic aperture imaging. A multiplicity
of transmitter elements is used to transmit codes simultaneously, with a different code for each
element. Echo signals are received from a multiplicity of transducer elements in parallel. Channel
data from each receiver element are cross-correlated with respective HAPI codes to estimate the
transmit–receive signature associated with each transmitter–receiver pair while minimizing crosstalk.
This estimate of the full transmit–receive synthetic aperture dataset is then used to form high-quality
images demonstrating image quality and signal-to-noise ratio improvements over multiple flash
angle imaging and synthetic aperture imaging methods for linear arrays. We also demonstrate
simulated full volume synthetic aperture imaging with random sparse arrays, possible with one
extended HAPI code-set transmit event.

Keywords: coded excitation; orthogonal codes; parallel synthetic aperture imaging; fast synthetic
aperture imaging; ultrasound imaging; sparse arrays; 3D ultrasound; volumetric imaging

1. Introduction

Most ultrasound imaging systems transmit the same waveform on each array element
with some electronically programmable delays and apodization weightings. New imaging
possibilities may open up if different coded excitations could be transmitted from different
elements in parallel. Ideally, these codes would be mutually orthogonal in the sense that
their cross-correlation is negligible and their autocorrelation approaches a delta function,
so that decoding could be performed with minimal crosstalk. Codes which satisfy these
conditions are difficult to find.

Various forms of coded excitation have previously been explored in the ultrasound
imaging literature. Barker codes are one type of binary code [1] that are most commonly
used in communications due to their cross-correlation properties [2–5]. These codes are
considered to have good cross-correlation properties because their autocorrelation function
produces a peak of N, where N is the number of code elements in the code, and a sidelobe
level bounded by a minimum value. Barker codes of length 13 have been shown to produce
an SNR increase of 11.1 dB over conventional pulse-echo imaging [6]. However, Barker
codes of lengths greater than 13 have yet to be found [7], and at this maximum code length,
Barker codes will not produce the high dynamic range >50 dB typical of most ultrasound
imaging systems, even with Wiener-filter deconvolution.
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Golay codes are another type of binary code that are used for increasing SNR and
for improving penetration depth in ultrasound imaging [8–10]. They are pairs of binary
codes belonging to a set of codes called complementary codes [11]. These complementary
codes consist of two codes of length N, whose autocorrelation function have sidelobe levels
equal in magnitude but opposite in sign. When the autocorrelation functions of the comple-
mentary codes are added together, they result in a composite autocorrelation function that
has a mainlobe peak of 2N and sidelobe levels of zero. The sidelobes completely cancel
out because they are equal but opposite in sign. This means Golay complementary codes
produce an ideal autocorrelation function which is essential for imaging with good quality.
Golay codes have been successfully used to image and have shown an increase in SNR of
32 dB over sine burst excitation [12].

Binary codes such as Barker codes, Golay codes, and others are good for increasing
penetration depth and signal-to-noise ratio, but they do not constitute a near orthogo-
nal code set, and hence cannot be used for parallel transmission in ultrasound imaging.
Orthogonal codes have been investigated for use in multi-user communications [13–15]
and are successfully used in radio communications technologies such as CDMA (code
division multiple access) [16,17]; however, most of these are meant for synchronous coded
information transfer rather than high dynamic range imaging. The imaging problem can
be considered asynchronous because locations of scatterers and hence echo-time delays are
unknown and different for an ensemble of scatterers.

Two main types of orthogonal codes that are commonly used for asynchronous com-
munications but are not commonly used in imaging are pseudorandom codes [18–21] and
Kasami codes [22–24]. The sidelobe levels in the autocorrelation function of Kasami codes
are small compared to the peak but are not guaranteed to be bounded by a minimum
level. Kasami codes are specially constructed binary sequences with good cross-correlation
properties. Unlike other orthogonal codes, the small Kasami code set meets the Welch
lower bound [25]. The Welch bound is a lower bound on how small the cross-correlation
and autocorrelation can simultaneously be at non-zero lags [26].

In the field of medical imaging, R. Chiao et al. showed through simulations that
using spatio-temporal encoding with orthogonal Golay code sets could increase SNR by
10log(ML), where M is the number of transmit events and L is the code length [27]. While
this paper by R. Chiao used Hadamard encoding to construct orthogonal code sets, recently
another paper by Gong et al. used a delay-encoded transmission scheme to recover the
synthetic transmit aperture dataset. This was conducted by delaying selected transmitting
elements by a half period of the ultrasound wave relative to the rest of the transmitting
elements [28]. The authors achieved a 7 dB improvement in peak signal-to-noise ratio over
traditional synthetic transmit aperture imaging.

Most codes designed for multi-user synchronous or asynchronous communication
applications require only that detected signal-to-noise and signal-to-crosstalk after decoding
is sufficient to reliably detect binary bits. However, imaging applications require more
stringent demands. Ultrasound imaging typically has a >50 dB display dynamic range and
it is desirable that crosstalk is below this level or as low as possible. To ensure mainlobe-to-
sidelobe levels after decoding are sufficiently high, very long pseudorandom or Kasami
codes would be required.

Additionally, most codes in the communications literature are purely binary (+1, −1)
or sometimes multi-phase. In ultrasound imaging, however, there is no need to restrict
levels to binary states and in fact binary states of +1 or −1 would mean the transmitter is
always on, which is the case for many communications devices. In ultrasound imaging,
having the transmitter always on could lead to ultrasound thermal index safety concerns
for medical applications. Considering arbitrary-level codes could open up new possibilities
for the design of near orthogonal codes.

We introduce a set of novel tri-state codes which we call Hadamard Aperiodic Interval
(HAPI) codes. The codes are constructed by creating a sequence of bits which take values
of 0, 1, or −1. Tri-state pulsers are common on some ultrasound systems because of the
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simplicity of the electronics over arbitrary function generator capabilities. Locations of non-
zero bits are constructed based on marks in an aperiodic interval sequence, also known as a
Golomb ruler [29,30]. The values of non-zero bits are selected from columns of Hadamard
matrices that are mutually orthogonal. This ensures that cross-correlation between differing
codes is bounded while the autocorrelation approaches a delta function with mainlobe-
to-sidelobe levels scaling with the number of non-zero bits. We demonstrate the utility of
these HAPI codes for high-quality 2D and 3D ultrasound imaging using simulations of a
scattering phantom with hypoechoic and hyperechoic regions. We demonstrate signal-to-
noise and contrast-to-noise advantages over synthetic aperture approaches as well as other
imaging techniques using linear array transducers. We also demonstrate the utility of our
HAPI codes for fast 3D imaging using 2D sparse arrays.

2. Materials and Methods
2.1. Mathematical Modeling Framework

In order to acquire a set of synthetic transmit–receive aperture data with one transmit
event, we desire a set of codes such that a different code can be transmitted from a set
of transmitters and then received signals from a set of receivers can be decoded for each
transmit code with minimal interference between signals after decoding. We create a
modeling framework for ultrasound imaging in this section; however, this analysis is valid
for any multi-transmitter multi-receiver system.

First, consider an array of N transducer elements. The driving voltage signals of all
elements can be represented as Equation (1).

V(t) =
[
v1(t) v2(t) · · · vN(t)

]
(1)

where vN(t) is the voltage as a function of time driving element n, which can be represented
in its discrete form as a vector of M time samples, vn =

[
vn1 vn2 · · · vnM

]T .
We want to transmit a set of codes such that the cross-correlation between differ-

ent sequences is close to zero, and the autocorrelation is approximately a delta function
(Equation (2)):

vn(t) ? vm(t) ≈ δnm(t) =
{

0 i f n 6= m
δ(t) i f n = m

(2)

where ? is the autocorrelation operator and δ(t) is the delta function.
The received signal due to an ensemble of scatterers on receiver element k is given as

Equation (3).

rk(t) = ∑
l,j

vl(t) ∗ hTx
(
t, xl → xj

)
∗ s
(
t, xj
)
∗ ∂

∂t
hRx
(
t, xj → xk

)
(3)

where rk(t) is the signal due to an ensemble of scatterers at location xj using elements at
location xl to transmit, vl(t) is the driving signal for elements at location xl , hTx

(
t, xl → xj

)
is the transmitter spatio-temporal impulse response, s

(
t, xj
)

is the scatterer response at
location xj, hRx

(
t, xj → xk

)
is the receiver spatio-temporal impulse response, and ∗ is the

cross-correlation operator.
If effectively orthogonal transmit sequences are used, we can estimate the signal

transmitted from element m and received on element k, rmk(t), by cross-correlating the
receive signal rk(t) with vm(t) as shown in Equation (4):

r̂mk(t) = rk(t) ? vm(t) ≈∑
l,j

hTx
(
t, xm → xj

)
? s
(
t, xj
)
?

∂

∂t
hRx
(
t, xj → xk

)
(4)

We can then obtain an estimate of the full synthetic aperture data for all elements.
Then, transmit–receive synthetic aperture delay and sum focusing can produce high spatial
resolution and high contrast-to-noise images.
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We desire tri-state codes of len gth M with states {−1, 0, 1} which satisfy minimal
correlation and orthogonality conditions with the constraints:

|ρnm(τ)| ≤ 1 ∀τ i f n 6= m
ρnm(0) = 0 i f n 6= m

ρmm(0) = M ∀m

where ρnm(τ) is the cross-correlation between vn(t) and vm(t) at time-lag τ.
With these constraints, the mainlobe-to-sidelobe ratio will be equal to M, and the

sidelobe levels will be bounded for any code length.
In addition to these requirements, we further would like the set of codes to satisfy the

following conditions (Equations (5)–(7)) to enable a set of transmissions to reproduce delta
function cross-correlations:

M

∑
m=1

vm(t) = δ(t) (5)

M

∑
m=1

vm(t) ? vm(t) = δ(t) (6)

M

∑
m=1

M

∑
n=1

vn(t) ? vm(t) = δ(t) (7)

The next two sections discuss a novel way to construct tri-state codes that conform
to such conditions, and show a simple example of the construction of a 4 non-zero bit
HAPI code.

2.2. Constructing Simple HAPI Codes

In order to construct Hadamard Aperiodic Interval codes, varying sequences of zeros
are interposed between non-zero bits obtained from a Hadamard sequence. The aperiodic
interval sequence is based on a so-called Golomb ruler. A Golomb ruler is a set of marks at
integer positions along a ruler such that no two pairs of marks are the same distance apart.
The number of marks on the ruler is its order. Codes designed in this manner can ensure
that a maximum of one pair of non-zero bits would multiply in a cross-correlation of two
codes at any given lag, which produces an outcome that is bounded by unity. In addition,
the autocorrelation of any code at zero lag will produce a value equal to the sum of the
square of the bits of the Hadamard sequence, or M for an M-bit Hadamard matrix.

The following example illustrates how to build a simple 4 non-zero-bit HAPI code.
In order to construct a 4-bit HAPI code, we require 3 non-repeating intervals of zeros

to interpose between the 4 non-zero bits. If we start with intervals of 2 and 3, we can pick a
third interval, 4, which is not a combination of 2 and 3. Hence, our chosen intervals are
{2, 3, 4}.

Next, we can construct four HAPI codes by interposing the non-zero bits sampled from
each row or column of a 4 × 4 Hadamard matrix with the intervals of zeros chosen above.

The 4 × 4 Hadamard Matrix is given as

H =


+1 +1
+1 −1

+1 +1
+1 −1

+1 −1
+1 +1

−1 +1
−1 −1


For this example, we chose to sample each Hadamard sequence from each row of the

matrix. However, we could have chosen to sample our bits from the columns of the matrix
instead because both rows and columns of a Hadamard matrix are mutually orthogonal to
each other. We can then interpose the sampled non-zero bits from the rows of this matrix
with the sequences of zero intervals to construct four codes, as shown in Table 1.
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Table 1. Table of the four non-zero-bit HAPI codes derived from the rows of the 4 × 4
Hadamard matrix.

v1 1 0 1 0 0 1 0 0 0 1

v2 1 0 −1 0 0 1 0 0 0 −1

v3 1 0 −1 0 0 −1 0 0 0 1

v4 1 0 1 0 0 −1 0 0 0 −1

Intervals

2 3 4
5

7
9

Table 1 shows the four HAPI codes we can generate from the rows of the 4 × 4
Hadamard matrix. The table also shows our chosen intervals of {2, 3, 4} and the combination
of these intervals, {5, 7, 9}, shaded underneath. If we were to add one more non-zero bit,
and thus require one more interval, then that interval cannot be chosen from the list of
combinations {5, 7, 9}. Hence, our intervals of {2, 3, 4} are correctly chosen such that there
are no repeating intervals or combinations of intervals.

Now, let us examine the autocorrelation properties of these codes and the cross-
correlation properties at various lags.

Figure 1 shows the cross-correlation of codes v2 and v4 at every lag, and the autocorre-
lation of code v2 to demonstrate that cross-correlation is bounded by unity for every lag,
and that the autocorrelation is a delta function. We can see from Figure 1a–e that for any
lag, the cross-correlation is bounded by unity, i.e., the result of a cross-correlation at any
lag will be in the set [−1, 1]. The bounded property of the cross-correlation can be visually
seen in Figure 2c below.
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Figure 2. (a) Temporal representation of code v2, (b) autocorrelation of code v2, (c) cross-correlation
of codes v2 and v4, and (d) sum of all the autocorrelations of codes v1 through v4.

Figure 1f shows that the result of the autocorrelation of code v2 is 4, which is the size of
our 4-bit Hadamard sequence. Figure 2b shows the temporal representation of the result of
the autocorrelation of this sequence. Furthermore, if the autocorrelations of all the codes v1
through v4 are added together, an ideal delta function is produced, as shown in Figure 2d.

2.3. Algorithm for Constructing Arbitrary-Length HAPI Codes

In order for HAPI codes to be useful, they must be much longer than only 4 non-zero
bits as shown in the example above. A list of shortest-length Golomb rulers (also known as
Optimal Golomb rulers) is only known up to order 27 [31]. Hence, we propose the following
algorithm to construct arbitrary-length Golomb rulers and associated HAPI codes.

The algorithm starts with a seed sequence such as S = {2, 3, 4}, the same sequence
that was used in the example above. The seed sequence can be any set of intervals such that
no intervals or combinations of intervals are repeating. Additional aperiodic intervals are
then added to this list for each non-zero bit that needs to be added. To add an additional
aperiodic interval n to append a new data bit with n− 1 interposed zeros, we must search
for an interval with the following conditions.

C1. The new interval n = Ik+1 should not be in the set of pre-existing intervals, n /∈
Sexcl , where Sexcl =

{
I, {∑ i

1 Ik∀i ∈ [1, 2, . . . , K]}, {∑ k
1 IK−k∀k ∈ [1, 2, . . . , K]}

}
and K = |I|

is the cardinality or size of the set of intervals, S = {Ik, k ∈ [1, 2, . . . , K]}.
C2. Newly formed intervals (formed when combining the new interval n = IK+1

with other pre-existing intervals) should not be in the set of excluded intervals: n + b /∈
Sexcl ∀b ∈ B, where B = {∑ k

1 IK+1−k∀k ∈ [1, K]} is the set of intervals terminating at the
right-hand side of the existing sequence.

The newly added interval should be of minimum possible length for maximum
compactness. but this is not essential. We then add the new interval to the ordered set of
HAPI intervals S and update the sets Sexcl and B.
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Following these conditions, the proposed algorithm for generating the non-repeating
intervals is then:

1. Begin with a seed sequence of intervals, such as S = {2,3,4}.
2. Search for a new interval that satisfies the criteria C1 and C2 above.
3. Add the new interval into the ordered set S and update the exclusion set Sexcl and the

terminating set B.
4. Iterate steps 1 to 3 until the ordered set S is of the desired length.

The only restriction is that for HAPI codes sampled from Hadamard sequences, the
desired length should be a power of 2.

For example, in the case of the 4-bit HAPI code example, the exclusion set Sexcl =
{2, 3, 4, 5, 7, 9} and the terminating set B = {4, 7, 9}. Hence, if we wanted to add one
more non-zero bit and so one more interval to the list, we could choose an interval that is
not in Sexcl, such as 6.

Once the intervals are generated by the above algorithm, HAPI codes are then con-
structed by creating vectors of non-zero bits sampled from the different rows or columns of
a Hadamard matrix and where the intervals of zeros between the non-zero bits are taken
from the generated intervals.

HAPI codes may have many applications including asynchronous code division
multiple access (CDMA) communications and multi-transmitter multi-receiver imaging.
Here, we focus on parallel coded synthetic aperture ultrasound imaging.

2.4. Methods of Simulation

Traditional synthetic aperture (SA) imaging involves transmitting a signal from each
transmitter one at a time, and then receiving on all receiver elements simultaneously. This
approach requires significant time delays to propagate signals over multiple transmission
events, and this time increases linearly as the transmit/receive array size increases. With
HAPI synthetic aperture (HAPI-SA), different HAPI codes can be transmitted simultane-
ously from different elements, and the receive signals can all be received simultaneously.
The receive signals on each receiver can then be decoded for each possible transmit signal to
obtain the full synthetic aperture data set. This data set can then be beamformed to obtain
a high-resolution image that is focused everywhere. This is all conducted with one parallel
coded extended transmit event, rather than the many transmit events of the traditional
synthetic aperture method.

To test the potential of HAPI codes for imaging, we performed a set of simulations.
Field II is used to simulate the performance of the HAPI synthetic aperture algorithm (HAPI-
SA) and compare it to coherent plane wave compounding (7 angles equally spaced between
−18◦ and 18◦), traditional synthetic aperture (SA), and fast synthetic aperture imaging
(3 sub-apertures) for linear array transducers. Field II is an ultrasound simulation package
that uses the Tupholme–Stepanishen method to calculate pulsed ultrasound fields [32,33].

For 2D imaging, the simulations were performed using a 5 MHz center frequency
linear array transducer. The transducer has 128 elements, with a kerf of 15.4 µm. Each
element has a width of 292.6 µm, and a height of 5 mm. The whole array has an aperture of
3.94 cm.

For 3D imaging, the simulations were performed using a 2D sparse array with 128
active elements where the active element positions are determined randomly. Each element
has a width of 292.6 µm, and a height of 292.6 µm.

All simulations were performed with a sampling frequency of 100 MHz. The 2D
synthetic aperture beamforming was performed using a beamforming toolbox developed
by S. Nikolov [34]. A custom delay and sum algorithm was implemented for 3D synthetic
aperture imaging, which was validated against the Nikolov toolbox in the limit of a linear
array. Frequency-dependent simulations were implemented by setting the attenuation
property in Field II using the function set_field. As frequency-dependent attenuation calcu-
lations were computationally burdensome, we used frequency-independent attenuation in
the results presented, implemented by attenuating the scatterer amplitudes. To validate
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this approach, we compared frequency-independent and frequency-dependent small-scale
simulations and found negligible differences in resulting images.

Parallel code transmission was simulated by summing the pulse-echo channel data
of codes transmitted from individual elements. Summed pulse-echo channel data were
then decoded by cross-correlating respective HAPI codes to reconstruct the estimated
full synthetic transmit–receive aperture (STRA) dataset. This STRA dataset was then
beamformed using the synthetic aperture reconstruction code mentioned above.

For our simulations, we used HAPI codes with 128 non-zero bits, generated by our
algorithm described above (and shown in Appendix A). This algorithm generated the
following set of intervals between non-zero bits: {2, 3, 4, 6, 8, 11, 16, 12, 24, 20, 17, 38, 30,
49, 31, 33, 26, 76, 94, 43, 66, 54, 88, 42, 74, 145, 87, 125, 98, 51, 136, 140, 119, 171, 194, 180,
151, 200, 234, 67, 155, 65, 354, 173, 205, 407, 92, 96, 247, 211, 427, 284, 128, 364, 335, 78, 416,
153, 524, 199, 112, 273, 202, 581, 474, 253, 518, 439, 336, 691, 433, 508, 402, 598, 314, 510, 313,
342, 936, 631, 428, 107, 526, 812, 70, 400, 683, 849, 1432, 810, 802, 175, 695, 890, 649, 483, 673,
937, 69, 874, 482, 368, 337, 1363, 925, 911, 1148, 643, 1568, 762, 471, 944, 1744, 703, 1172, 845,
651, 861, 1023, 1229, 763, 1062, 536, 393, 880, 467, 2088, 968}. This code was thus of length
54,415 samples, and with a 100 MHz clock required 0.54 ms to transmit.

Figure 3 below shows the process flow diagram of the system used for imaging.
Order 128 HAPI codes are first generated according to the algorithm described above. The
bandwidth of the codes is then matched to the bandwidth of the transducer by performing
a Kronecker product with a sequence of 10 ones. This ensures that a coded excitation pulse
width (10 ns) is half the center frequency period (20 ns for 5 MHz). The bandwidth-matched
codes are then transmitted in parallel from each transmit element (128 elements). Then,
each HAPI code is cross-correlated with the receive signals from the receive elements to
obtain each transmit–receive combination. The decoded transmit–receive aperture data
are then beamformed to produce 128 low-resolution images. Finally, the images are then
combined to produce one high-resolution image.
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Figure 3. Flow diagram of imaging with HAPI codes. First, 128 HAPI codes are generated. Then they
are bandwidth-matched to improve correlation properties. The codes are then transmitted in parallel
from all elements and echo signals are received. Decoding is then performed on the echo signals
using cross-correlation to recover the full synthetic aperture dataset. Beamforming and summing are
then performed on the full recovered dataset to form a high-resolution image.

To characterize imaging performance, both point spread functions and scattering
phantoms were simulated. The scattering phantoms consist of five hypoechoic cysts and
five high scattering regions. The cysts and high scattering regions in the phantom are used
to calculate the contrast-to-speckle ratio (CSR) as proposed by Patterson and Foster [35],
the contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) in order to evaluate
the contrast-lesion detection capability. The phantom contains 50,000 scatterers that are
randomly assigned a Gaussian distributed amplitude. The amplitude of the scatterers in
the cyst regions are set to zero, while the amplitude of the scatterers in the high scattering
regions are set to 10 times the previously assigned Gaussian distributed amplitude.
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The CSR, CNR, and SNR were calculated using the following formulas for each of the
five targets as shown in Equations (8)–(10).

CSR =
Sin − Sbg√

σ2
in + σ2

bg

(8)

CNR = 20 log10

(Sin − Sbg

σn

)
(9)

SNR = 20 log10

(Sbg

σn

)
(10)

where Sin is the mean signal in the target, Sbg is the mean signal in the background, σin and
σbg are the standard deviations inside the target and for the background, respectively, and
σn is the standard deviation of the noise.

Theoretically, synthetic aperture imaging with order N HAPI codes should provide
a maximum increase in SNR of 20 log10(N) compared to traditional synthetic aperture
imaging, where N is the number of non-zero code bits, in our case also equal to the number
of elements in the imaging array. In order to realize this improvement when imaging, the
bandwidth of the transducer has to be matched to the bandwidth of the autocorrelation
of the HAPI code. This is achieved by performing a Kronecker product on the HAPI code
with a sequence of repeated ones as described above. With this adjustment, the bandwidth
is closely matched, and the simulations produced the maximum theoretical SNR increase.

The phantoms were simulated using an HAPI synthetic aperture method which is
not bandwidth-matched to the transducer and an HAPI synthetic aperture method which
is bandwidth-matched to the transducer. For comparison, with linear arrays, we also
simulated a coherent compounded plane wave imaging method (7 angles), a full synthetic
aperture method (firing from each element in succession), and a fast synthetic aperture
method (using 3 sub-apertures of 12 elements each). All non-HAPI comparisons have a
pulse bandwidth-matched to the transducer bandwidth. Noise was added to the scattering
RF data from the elements on receive to make the resultant image have a noise level of
−6 dB relative to the maximum in the RF channel data for a given simulation. This noise
level in the RF channel data was then used for all simulations. This noise level is used to
ensure the noise is visible in images and to demonstrate the applicability of HAPI codes in
extreme noise situations. Attenuation was implemented in the simulations by attenuating
the scatterer amplitudes at 0.5 dB/[cm MHz].

Given the practical concern that we may need to be receiving data while transmitting a
rather long code, and thus potentially experience amplifier saturation after each sparse bit is
transmitted, we also modeled a situation where every other element is used as transmitter,
and the interlaced non-transmitting elements are used as receivers while half of the 128
HAPI codes are transmitted in parallel during one long transmit event. We call this the
HAPI-SA Alternating Scheme.

For sparse 2D array simulations, 128 active elements were used as described above
and 3D rather than 2D reconstruction was possible; however, for visualization, we display
only the x-z plane 2D slice of the 3D volume. Similar noise and attenuation parameters
were used as with the linear arrays.

3. Results
3.1. Linear Array Simulation Results

Figure 4 below compares the point spread functions (PSF) of traditional synthetic
aperture (Figure 4a) and bandwidth-matched HAPI synthetic aperture (Figure 4b). It is
clear that HAPI-SA produces a less noisy PSF. In fact, the PSF of traditional SA is so noisy at
the noise level in this simulation that it is almost impossible to differentiate the single-point
scatterer from the noise. The PSF of the SA method appears small because the single-point
scatterer is obfuscated by the high amount of noise present in the simulation. The HAPI
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synthetic aperture PSF is similar in shape and resolution to a noiseless synthetic aperture
PSF (data not shown) but exhibits more clutter due to correlation sidelobes.
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Figure 4. Point spread functions of (a) traditional synthetic aperture with 128 elements (128 transmit
events), and (b) HAPI synthetic aperture with 128 non-zero-bit codes (1 transmit event) and band-
width matching. For the same amount of noise added to the scattering data, HAPI-SA produces less
noise in the resultant image. Images have a 55 dB dynamic range.

Figure 5 below compares the simulated images of the scattering phantom for all the
imaging methods: (a) coherent plane wave compounding (b) synthetic aperture imaging,
(c) fast synthetic aperture imaging, (d) HAPI synthetic aperture imaging without bandwidth
matching, (e) HAPI synthetic aperture imaging with bandwidth matching, and (f) HAPI
synthetic aperture with the alternating scheme. We can visually see that HAPI-SA imaging
with bandwidth matching (Figure 5e) produces the best image in the context of noise.
When the bandwidth is not matched (Figure 5d), the image quality suffers. We can also
see how the alternating scheme (Figure 5f) of transmitting on every other element, and
receiving on the rest, produces an image that is better than traditional synthetic aperture but
worse than the full HAPI-SA imaging method that transmits and receives on all elements.
This is because only half the synthetic transmit–receive aperture data are obtained in
the alternating scheme. The full aperture data can be obtained by imaging with the
alternating scheme twice, and switching the elements used for transmit and receive for
each transmit event.

Table 2 below compares the speed, SNR, CNR, and CSR for all of the imaging methods
mentioned above. For the CNR and CSR, the five rows of values represent cysts and high
scattering (HS) regions at decreasing depths (10 mm, 20 mm, 30 mm, and 40 mm). The SA
imaging scheme and bandwidth-matched HAPI-SA are highlighted in the table. Table 2
confirms numerically the visual results from Figure 5. We can see how HAPI-SA with
bandwidth matching has the best SNR, CNR, and CSR values compared to all the other
imaging methods investigated.
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Figure 5. Simulation images of the phantom with 4 hypoechoic cysts and 4 high scattering regions
placed at decreasing depths (10 mm, 20 mm, 30 mm, 40 mm) for (a) coherent plane wave compounding
with 7 angles equally spaced between −18◦ and 18◦, (b) traditional synthetic aperture imaging with
128 transmit events, (c) fast synthetic aperture imaging with 3 sub-apertures, (d) HAPI synthetic
aperture imaging with 1 transmit event but no bandwidth matching, (e) HAPI synthetic aperture
imaging with bandwidth matching, and (f) HAPI synthetic aperture imaging with an alternating
transmit scheme. HAPI-SA with bandwidth matching (e) produces the best images of all the above.
The alternating transmit scheme (f) of transmitting on every other element and receiving on the rest
produces an image better than traditional SA (a) but worse than the full HAPI-SA (e). When the
bandwidth is not matched, the quality of the image suffers (d). All images are shown at a 55 dB
dynamic range.

Table 2. Comparison of SNR, CNR, and CSR for imaging methods.

Coherent Plane
Wave

Compounding

Synthetic
Aperture

Synthetic
Aperture (3

Sub-apertures of
12 Elements)

HAPI
Synthetic
Aperture

HAPI
Synthetic
Aperture

(Bandwidth-
Matched)

HAPI
Synthetic
Aperture

(Alternating
Transmit Scheme)

# Trans-
mit

Events
7 128 3 1 1 1

Transmit-
Receive

Time
(ms)

0.41 7.4 0.18 0.6 5.46 5.46

Frame
Rate
(Hz)

2444 135 5560 1670 183.2 183.2

SNR
(dB) 22.33 12.02 10.72 24.87 48.42 36.64

CNR
(dB) HS Cyst HS Cyst HS Cyst HS Cyst HS Cyst HS Cyst

10 mm 32.48 7.41 24.01 −5.3 7.52 −20.06 37.96 8.84 69.55 38.93 57.77 27.15
20 mm 33.93 16.28 20.46 −4.24 10.47 −14.03 34.6 11.57 66.34 41.4 54.56 29.62
30 mm 29.22 18.94 19.14 −3.85 7.9 −11.29 30.52 15.57 59.53 42.61 47.75 30.83
40 mm 24.2 19.97 19.14 −2.13 1.3 −14.57 28.47 15.05 56.68 43.74 44.89 31.96

CSR HS Cyst HS Cyst HS Cyst HS Cyst HS Cyst HS Cyst
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Table 2. Cont.

Coherent Plane
Wave

Compounding

Synthetic
Aperture

Synthetic
Aperture (3

Sub-apertures of
12 Elements)

HAPI
Synthetic
Aperture

HAPI
Synthetic
Aperture

(Bandwidth-
Matched)

HAPI
Synthetic
Aperture

(Alternating
Transmit Scheme)

10 mm 0.55 −0.17 0.92 −0.17 0.63 0.04 0.55 −0.22 1.11 −0.42 1.11 −0.42
20 mm 0.67 −0.6 0.78 −0.19 0.66 −0.08 0.82 −0.31 1.16 −0.57 1.16 −0.57
30 mm 0.7 −0.84 0.66 −0.21 0.56 −0.11 0.7 −0.51 0.98 −0.73 0.98 −0.73
40 mm 0.54 −0.96 0.74 −0.26 0.35 −0.07 0.71 −0.48 0.89 −0.84 0.89 −0.84

3.2. The 2D Sparse Array Simulation Results

Figure 6 below compares the simulated images of the scattering phantom imaged
using a 2D sparse array where active element positions are determined randomly. Images
shown are 2D slices in the x-z plane of a 3D volume. Figure 6a shows the image from
a synthetic aperture imaging scheme that takes 128 transmits, and Figure 6b shows the
image from the encoded HAPI synthetic aperture transmit scheme that takes one extended
transmit. We can visually see how HAPI-SA produces the best image in terms of signal-to-
noise and contrast-to-noise in much less transmits than synthetic aperture imaging in the
context of noise.
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Figure 6. The 2D sparse array simulation images of the phantom with 4 hypoechoic cysts and 4 high
scattering regions placed at decreasing depths (10 mm, 20 mm, 30 mm, 40 mm) for (a) synthetic
aperture imaging using 128 transmits, and (b) Hadamard Aperiodic Interval synthetic aperture
imaging using 1 transmit. Images are 2D slices of the x-z plane of a 3D volume displayed at −55 dB.

4. Discussion

When imaging with a linear array, HAPI synthetic aperture produced a much higher
SNR than traditional synthetic aperture or coherent plane wave compounding. Theoreti-
cally, there should be a maximum SNR increase of 20 log10 128 = 42.14 dB when comparing
128-element traditional synthetic aperture with HAPI synthetic aperture. The simulation
results from Table 2 show that there is a difference in SNR between those two imaging
methods of 36.4 dB. This is very close to the theoretical maximum. However, this maximum
is only achieved when a Kronecker product is applied to the HAPI code in order to match
the bandwidth with the transducer. When this adjustment is not applied, there is only an
increase in SNR of 12.85 dB. This result shows the importance of matching the bandwidth
so that one can obtain the maximum SNR increase theoretically possible. The difference in
SNR and the impact of noise between traditional SA and HAPI-SA can be visually seen
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in the point spread functions (Figure 4). It is clear that there is much more noise present
in traditional SA with 128 transmit events (Figure 4a), compared to HAPI-SA with one
transmit event (Figure 4b).

From Figure 5 above, one can visually see how it is easier to differentiate the cysts from
the background in the HAPI-SA method compared to traditional SA. At this noise level,
it is difficult to locate the cysts with traditional SA (Figure 5b). When we use HAPI-SA
imaging without adjusting for the bandwidth of the transducer (Figure 5d), there is only
a very small visual increase in contrast compared to SA. However, when the bandwidth
is matched (Figure 5e), the contrast increases to the point where it becomes much easier
to locate the first three cysts (at 10, 20, and 30 mm) visually. For coherent plane wave
compounding (Figure 5a), the cysts are more visible than traditional SA but not as visible
as with the bandwidth-matched HAPI-SA method.

These visual results for the cysts are reflected in the CNR calculations in Table 2. HAPI-
SA has an average CNR of around 42 dB across the four cyst regions, while traditional SA
has an average CNR of −4 dB across the five regions. This makes for a difference of 46 dB.
Again, when the bandwidth is not matched, we see a decrease in performance resulting in
a difference in average CNR of only 16 dB.

For the high scattering regions in the phantom, it is not as easy to tell the difference
in contrast from a visual inspection of the image. Instead, we refer directly to Table 2 to
evaluate the performance of the different imaging methods for realizing high scattering
regions. Across all imaging methods that were simulated, the CNR of the high scattering
regions increases with depth up to a certain point, and then decreases further down.
The difference between the average CNR for HAPI-SA compared to traditional SA is
43 dB. Consistent with the previous results, this difference is reduced to 12 dB when the
bandwidth is not matched. The CNR of the high scattering regions with coherent plane
wave compounding is comparable to the contrast with HAPI-SA without bandwidth
matching. With bandwidth matching, the HAPI-SA method has an average CNR that is
twice that of coherent plane wave compounding.

The trends for CSR were found to follow the same trends as were discussed for CNR.
Similarly, we see similar trends with the 2D sparse array for 3D imaging. Bandwidth-

matched HAPI-SA imaging produced superior images much less susceptible to noise
compared to SA imaging. In addition, the HAPI-SA method takes only one extended trans-
mit to form an image, compared to 128 transmits for SA imaging. This shows the potential
of HAPI codes to capture 3D volumes with transmit and receive focusing everywhere at
hundreds of volumes per second.

From the results it is clear that matching the bandwidth is necessary for achieving
maximum performance gains. However, matching the bandwidth results in an increase in
code length, which results in an increase in the time to acquire an image. In our case, the
code length was increased ten times. Before matching the bandwidth, our code length was
54,415 samples, which translated to a transmit and receive time of 0.54 ms at our sampling
frequency of 100 MHz. After matching the bandwidth, the code length is multiplied by 10,
and the transmit and receive time is increased to 5.40 ms. This is a significant increase in
time, but it is comparable to the amount of time needed to perform 128 transmit events
in traditional synthetic aperture. Moreover, our approach achieves a significant SNR
advantage, unlike traditional synthetic aperture imaging. For the maximum distance of 45
mm and a speed of sound in soft tissue of 1540 m/s, it would take 128 ∗ 2∗45 mm

1540 m/s = 7.5 ms
to perform a full synthetic aperture acquisition with 128 elements. Due to the long transmit–
receive times of HAPI codes, they are not applicable for fast-moving objects. For example,
if we require the imaging target(s) to move less than a tenth of a wavelength over the code
duration, this would restrict velocities to below (30 um/5.4 ms = 5.6 mm/s), which may
be practical in some static imaging situations, but not applicable to fast-moving tissues.
However, the technique may also have applicability to non-destructive testing, underwater
acoustics, and air ultrasonics, specifically in cases that do not require detection of fast-
moving objects. The codes could additionally be applied to sonar, radar, or communications
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systems, especially multi-user communications systems that rely on the multiple-input
multiple-output paradigm.

The time needed to perform a synthetic aperture image can be reduced by using only
a subset of elements to perform a fast synthetic aperture acquisition. If we were to use 3
sub-apertures of 12 elements each, it would only take 0.18 ms to obtain the partial synthetic
transmit–receive aperture data. However, using fewer elements will reduce the quality
of the image, as seen in Figure 5c. At the noise level in this simulation, it is impossible to
obtain a good image with only 3 sub-apertures of 12 elements. This can further be seen in
Table 2, where the SNR and CNR have the worst values for fast SA compared to the other
imaging methods.

Practical implementation of the codes may require special considerations. Each time
a transmit bit is sent it could saturate the amplifiers of the imaging system for tens of
nanoseconds to microseconds. The amplifiers will be unable to receive any signals until
they recover. This creates a dead zone after each bit is transmitted.

To minimize the dead zone problems or electrical crosstalk during transmission, we
introduced the alternating transmit scheme above, where every other element is used for
transmit, and the other unused elements for receive. The alternating transmit scheme
preserves half the aperture of the array and allows for good imaging quality without
sacrificing too much SNR or CNR. If needed, the full SNR and CNR improvement can be
realized with the alternating scheme if two transmit events are used. The first transmit
event uses every other element to transmit and the other elements to receive, and the second
transmit event switches the transmit and receive elements. This way, the full aperture data
are collected. However, this approach doubles the transmit time to recover the maximum
SNR and CNR gain. Amplifier saturation may not be problematic if transmit amplitudes
are sufficiently low and fast amplifier switching is used.

In the case of sparse 2D arrays, it should be easy to implement one sparse pattern of
transmitters and a different sparse pattern of elements as receivers. This should also enable
extended transmission of codes while allowing for reception during this transmission time
without the dead zone problem.

Other coding methods such as those which use Barker and Golay codes do not offer
near orthogonal properties of code sets. However, Kasami codes do have near orthogonal
properties, and they also meet the Welch lower bound. The Welch bound is the maximum
cross-correlation value that can be achieved. For a multi-channel aperiodic correlation, the
bound is calculated as Equation (11) [26],

cmax =

√
M
K − 1

M(2N− 1)− 1
(11)

where N is the length of the code, M is the number of codes transmitted in parallel, and K
is the number of transmit events.

For our bandwidth-matched 128 non-zero-bit HAPI codes with N = 128, M = 544,150,
and K = 1, the maximum bound that can be achieved is cmax = 0.00095. However, the
actual sidelobe level of the HAPI codes is given by 1

M = 0.0078 for a code length of M = 128.
Therefore, HAPI codes do not meet the Welch lower bound, but they do approach it. The
small set of Kasami codes, on the other hand, meets the Welch lower bound. However,
Kasami codes can become very long if we require them to meet the sidelobe levels of HAPI
codes. For a requirement on cmax of 42 dB, Kasami codes need to have a code length of 8155
bits. They are also periodic codes, meaning that the transmitter is always on, and they are
not sparse and may contain too much energy if appreciable voltage levels are transmitted,
potentially violating ultrasound thermal index limits. HAPI codes are also long but they
are very sparse, are aperiodic, and thus have minimal energy in them.

Ultrasound systems that can image in real time with synthetic aperture imaging
techniques have already been realized. To use HAPI codes on GPU programmable systems,
the decoding step needs to be carefully implemented. On receive, decoding is performed
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by cross-correlating each receive line with each transmit signal to recover the full synthetic
aperture dataset. Regular cross-correlation of two vectors involves sliding one vector
relative to the other and multiplying the two vectors at each sample. The results are then
summed to produce the cross-correlation result. In the case of 128 non-zero-bit bandwidth-
matched HAPI codes, this cross-correlation operation would need to be performed for each
sample (544,150 samples) and for each transmit–receive combination. This is a significant
computational burden. However, because HAPI codes are sparse and they only have 128
non-zero bits, the multiplication stages of the cross-correlation of a single transmit–receive
combination need only be performed 128 times for each lag. For a 4.5 cm imaging depth, we
require 2400 reconstructed depth samples. At 40 megasamples/second sampling rates and
with 256 imaging lines this would require 2.4 GFLOPS to maintain real-time reconstruction
rates. This can be performed in real-time using modern computing architectures, some of
which are capable of hundreds of TFLOPS.

Few current diagnostic systems may support the transmission of such long codes.
However, their generation using custom pulser systems would not be difficult using FPGAs
or other programmable devices. Their analysis and computation (beamforming, etc.) would
not be difficult to implement in real-time using modern GPUs.

5. Conclusions

We designed a new set of codes called Hadamard Aperiodic Interval codes that are
able to produce images with superior SNR with a single extended transmit event. HAPI
codes are near orthogonal, so they can be used for parallel transmission in multiple-input
multiple-output systems. These codes are also very sparse, as they contain many long
intervals of zeros.

Our simulation results show that imaging with the HAPI-SA method produces images
with superior signal-to-noise ratio, contrast-to-noise ratio, and contrast-to-speckle ratio
compared to traditional SA imaging and coherent plane wave compounding methods. We
were able to achieve a maximum SNR increase of 36 dB over traditional SA, close to the
predicted maximum from our theoretical calculations.

HAPI codes are among the first codes to be reported which aim to achieve a multiple-
input, multiple-output paradigm, where multiple codes are transmitted in parallel with
carefully designed auto- and cross-correlation properties. They show promise to improve
sensitivity and achieve high contrast-lesion detection capabilities at moderately high frame
rates compared to synthetic aperture ultrasound imaging methods. HAPI codes used with
sparse 2D arrays show promise for fast 3D volumetric imaging with transmit and receive
focusing everywhere throughout the volume.
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Appendix A

Matlab code for generating a sequence of non-repeating intervals.
k = [2 3 4]; % initial vector of HAPI intervals
exclusions = []; % set of excluded intervals
for n = 4:N

exclusions = [exclusions k cumsum(k) cumsum(fliplr(k))];
sorted_exclusions = unique(sort([exclusions]));
% further exclude possible numbers if the candidate number added to
% neighbouring intervals coincides with other existing intervals
B = cumsum(fliplr(k));
% choose next_interval q such that q is not a member of the
% set S_Excl = {sorted_exclusions} and such that new
% intervals formed by the added value q+b is not a member
% of S_Excl, where b is a member of B = {cumsum(fliplr(k))}.
for s = 1:length(sorted_exclusions)

for b = 1:length(B)
E(s,b) = sorted_exclusions(s)-B(b);

end
end
exclusion_list = unique(sort([sorted_exclusions E(:)’]));
clear E;
ints = [2:2000];
numspossible = setdiff(ints, exclusion_list);
% pick the lowest interval as a starting guess
if length(numspossible) ~= 0

next_interval = numspossible(1);
else

disp(‘Error’);
next_interval = [];

end
k = [k next_interval];

end
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