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Abstract: Background: Cognitive behavioral therapy (CBT) can be a useful treatment option for
various mental health disorders. Modern advances in information technology and mobile communi-
cation enable delivery of state-of-the-art CBT programs via smartphones, either as stand-alone or as
an adjunct treatment augmenting traditional sessions with a therapist. Experimental CBTs require
careful assessment in randomized clinical trials (RCTs). Methods: We investigate some statistical is-
sues for an RCT comparing efficacy of an experimental CBT intervention for a mental health disorder
against the control. Assuming a linear model for the clinical outcome and patient engagement as
an influential covariate, we investigate two common statistical approaches to inference—analysis
of covariance (ANCOVA) and a two-sample t-test. We also study sample size requirements for the
described experimental setting. Results: Both ANCOVA and a two-sample t-test are appropriate
for the inference on treatment difference at the average observed level of engagement. However,
ANCOVA produces estimates with lower variance and may be more powerful. Furthermore, unlike
the t-test, ANCOVA allows one to perform treatment comparison at the levels of engagement other
than the average level observed in the study. Larger sample sizes may be required to ensure experi-
ments are sufficiently powered if one is interested in comparing treatment effects for different levels
of engagement. Conclusions: ANCOVA with proper adjustment for engagement should be used for
the for the described experimental setting. Uncertainty on engagement patterns should be taken into
account at the study design stage.

Keywords: analysis of covariance; digital cognitive behavioral therapy; engagement as a covariate;
randomized controlled trial; sample size planning

1. Introduction

Cognitive behavioral therapy (CBT) can be useful for various mental health problems
including depression, anxiety, substance use disorders, etc. Digital cognitive behavioral
therapy (dCBT)—administered either as stand-alone or as an adjunct treatment augmenting
traditional sessions with a human therapist—is a potentially promising way to deliver
CBT by means of digital technologies such as smartphones. Potential merits of the dCBT
include accessibility and cost-efficiency (e.g., real time coaching and support can be pro-
vided remotely instead of face-to-face visits), more consistent quality of treatment delivery
(e.g., psychological therapy is provided by clinically validated computer programs), and
personalization of treatment (e.g., the course of therapy is tailored to an individual patient’s
goals, availability, and engagement) [1,2].

Fundamentally, clinical investigation of an experimental dCBT should follow a similar
path to clinical trials of other therapeutic interventions [3]. The randomized controlled
trial (RCT) is the most rigorous research design to obtain evidence in support of clinical
efficacy of a dCBT product. However, such trials pose some unique challenges. First,
many dCBTs are complex interventions with multiple ingredients that are applied based
on a dynamic feedback loop to optimize the treatment for an individual patient. Second,
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it may be very difficult to define an optimal “dose” or “exposure” of a dCBT to attain
the desired therapeutic effect [4]. Third, while engagement with dCBT is viewed as an
essential component of this treatment modality [5], it is quite challenging to quantify and
build reliable statistical models relating engagement with clinical efficacy. For instance,
“more time using a digital therapeutic” does not necessarily translate into “better treatment
effect” [6]. Fourth, high heterogeneity in the usage/engagement patterns may potentially
confound treatment effects. For instance, if patients are randomized to treatments that do
not meet their expectations, this may affect the patients’ motivation to engage and comply
with the treatments, which, in turn, may impact the study outcomes [7].

Engagement may be strongly correlated with efficacy of an intervention. On the other
hand, engagement by itself is not sufficient; for instance, study participants may enjoy
using the app and provide very positive feedback, but this may not directly translate into
clinical benefit. Acquiring important data on engagement and properly accounting for it in
the analysis may be essential for valid statistical inference.

In this paper, we investigate some statistical issues for a 1:1 RCT comparing efficacy
of an experimental CBT intervention for a mental health disorder versus control. For
illustration purposes, we assume that participants in both experimental and control groups
receive some background standard of care medication throughout the study. Participants
in the experimental group (intervention condition) have sessions with a human therapist at
which they learn some novel cognitive and behavioral strategies to overcome difficulties
in their daily lives, and, in addition, they receive a smartphone app that augments the
sessions by providing personalized tips on disease management, e.g., through serious
games, educational videos, etc., that are expected to magnify therapeutic benefit. There-
fore, in the experimental group the intervention has two components: novel cognitive
behavioral therapy delivered during sessions with a human therapist (CBT) and a self-
administered digital cognitive behavioral therapy (dCBT). Participants in the control group
just have regular sessions with a therapist (without being exposed to a novel CBT) and
use a sham app (without active therapeutic ingredients of a psychosocial intervention) on
their smartphones.

We assume the primary endpoint Y represents some measure of clinical efficacy, e.g.,
change from baseline to the end of treatment period in Montgomery-Åsberg Depression
Rating Scale (MADRS) [8] total score in depression. In the experimental group, participants
may engage differentially with the dCBT. For simplicity, we assume that X = the percentage
of successfully completed dCBT trainings at the end of the treatment period provides a
meaningful quantification of individual engagement with the dCBT. While the utility of
“completion rate” as a measure of engagement for digital mental health interventions
has been well documented [9–12], we acknowledge that this is only one way to measure
engagement. In practice, other, more elaborate metrics may be considered. However, in our
opinion, a simple metric such as “completion rate” is rather informative and can be used as a
starting point for developing statistical models. In other words, we assume that engagement
X is measured on a scale 0 to 1, where 0 means 0% completed trainings, 0.6 means 60%
completed trainings, etc. By contrast, in the control group, the sham application has no
active therapeutic ingredients of a psychosocial intervention, and therefore, the engagement
is a structural zero for every participant in the control group. To illustrate the latter point,
consider, for example, a recent randomized, sham-controlled clinical trial of a smartphone-
based application as an adjunct to the standard-of-care in schizophrenia [6]. Participants
in the experimental group were exposed for a period of 12 weeks to an app that was
designed as a self-management tool in schizophrenia. The users could engage with the
app by prompt or on demand, and the app provided interactive, cognitive and behavior
exercises that were hypothesized to improve schizophrenia symptoms. Participants in the
sham group were exposed for 12 weeks to an app that was similar in appearance to the
experimental app, but which did not deliver any active therapeutic content (it only sent
periodic prompts to open the app, in which case a digital clock timer was displayed). The
sham control arm was chosen to account for the nonspecific effects of engagement with
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a smartphone. Clearly, in this case the engagement defined as “exercise completion rate”
can be quantified only in the experimental group, and it can be regarded as zero in the
control group.

For the considered setting (1:1 RCT; primary endpoint Y is changed from the baseline
in MADRS total score at the end of the treatment period; engagement X is an important
covariate for subjects in the experimental group but not in the control group; no missing
data in the study) we address the following research questions:

1. What is the proper approach to the statistical analysis of such a trial?
2. How do we compare treatment effects accounting for different levels of engagement?
3. How should we perform a sample size planning for such a trial given that engagement

patterns are unknown upfront?

The results presented here should aid trial statisticians in developing statistical analysis
plans and in facilitating important discussions with clinical investigators at the study
planning stage.

The article is organized as follows. In Section 2, we describe the trial setup, assump-
tions for the data generating mechanism, and two approaches to data analysis following
the trial—analysis of covariance (ANCOVA) and a two-sample t-test. In Section 3, we
give an illustrative example of how to analyze data from such an experiment. In Section 4,
we present results from a simulation study to evaluate the power of statistical tests. In
Section 5, we discuss the optimization of the trial design and considerations for the sample
size planning. Finally, Section 6 provides a summary and a discussion of the future work.

2. Statistical Modeling and Some Theoretical Results

We assume equal (1:1) RCT design for which an even number of n subjects are ran-
domized between the experimental (E) and the control (C) conditions. Let δi = 1 (or 0), if
the ith participant is randomized to group E (or C). With equal allocation design, the group
sample sizes are nE = ∑n

i=1 δi = n/2 and nC = ∑n
i=1 (1− δi) = n/2.

For the ith participant, we acquire data (Yi, Xi, δi) (i = 1, . . . , n), where Yi is the
response, δi is the treatment assignment indicator, and Xi is the measure of engagement
(applicable only to the experimental group). The responses Yi, conditional on Xi = xi and
δi, are assumed to satisfy the following statistical model:

Yi = δiµE + (1− δi)µC + γxiδi + εi, i = 1, . . . , n, (1)

where µE and µC are the treatment effects for group E and group C, respectively, γ is a
linear regression slope, and εi’s are independent and identically distributed (i.i.d.) mea-
surement errors, assumed to be normally distributed with zero mean and variance σ2, i.e.,
εi ∼ N(0, σ2).

The parameters in Equation (1) can be interpreted as follows: µE is the effect of the
novel CBT alone, i.e., this is the mean effect for a subject in the experimental group who
had CBT sessions (required by the study design) and never used the dCBT (engagement
level x = 0). On the other hand, if a subject in the experimental group had both CBT and
engaged with the dCBT (x > 0), then the mean response for this subject is E(Y) = µE + γx,
which can be magnified or decreased compared to µE according to the values of x and γ.
For subjects in the control group, µC is the mean effect due to the control intervention (a
combination of the standard CBT and the sham app).

In the described setting, several estimands may be of interest:

(I) The difference ∆0 = µE − µC, which is the contrast between the novel CBT alone and
the control intervention.

(II) The difference ∆x = (µE + γx)− µC, which is the contrast between the novel CBT +
dCBT engaged at the level X = x and the control intervention.

The estimand (I) is a special case of estimand (II) with x = 0. In practice, estimand
(II) may be more relevant because it provides information on a combined effect of novel
CBT + dCBT for a chosen level of x that is deemed important to the investigator. One
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particularly interesting case is ∆xE = (µE + γxE) − µC, which is the contrast between
novel CBT + dCBT at the average level of engagement observed in the trial and the
control condition.

An investigator may wish to answer to different research questions in the study, such
as: (i) Is the difference ∆0 = µE − µC significant? (ii) Is the effect of engagement (the linear
slope γ) significant? (iii) Is the difference ∆x = (µE + γx)− µC for a pre-specified value of
x significant?

The choice of the primary research question is very important because it will, among
other considerations, drive the choice of the sample size for the study. The answers to
questions (i)–(iii) will carry different implications for development. For instance:

• If both ∆0 and γ are significantly different from zero, then the novel CBT is deemed
efficacious, and its effect can be magnified or decreased by the individual engagement
with the dCBT.

• If ∆0 is significantly different from zero but γ is not, then the novel CBT is deemed
efficacious but the engagement with the dCBT is not helpful for synergizing this effect.

• If ∆xE = (µE + γxE)− µC is significantly different from zero, then a combination of
the novel CBT with the dCBT engaged at the average level observed in the trial is
more efficacious than the control condition.

We now present statistical approaches to address the research questions for the de-
scribed problem.

2.1. Analysis of Covariance (ANCOVA)

Let θ = (µE, µC, γ). Then, assuming model (1) is correctly specified, the ordinary least
squares estimator θ̂ = (µ̂E, µ̂C, γ̂) for θ is obtained using linear model theory [13] as

µ̂E = YE − γ̂xE
µ̂C = YC
γ̂ = Sxy/Sxx

(2)

where Sxy = ∑n/2
i=1(xi − xE)

(
Yi −YE

)
and Sxx = ∑n/2

i=1(xi − xE)
2.

By Gauss–Markov theorem, θ̂ is best linear unbiased estimator of θ, i.e., θ̂ has smallest
variance among all linear unbiased estimators. The variance–covariance matrix of θ is

var
(

θ̂
)
= σ2

 2
n +

x2
E

Sxx
0 − xE

Sxx
0 2

n 0
− xE

Sxx
0 1

Sxx

. (3)

Inference on ∆0 = µE − µC

The point estimate of ∆0 = µE − µC is ∆̂0 = µ̂E − µ̂C, where µ̂E and µ̂C are from
Equation (2). Note that ∆̂0 follows a normal distribution with mean (µE − µC) and variance

var(µ̂E − µ̂C) = σ2

(
4
n
+

x2
E

Sxx

)
. (4)

In practice, the error variance σ2 is unknown, as it is estimated using a residual sum
of squares obtained from model (1), as

σ̂2 =
1

n− 3

n

∑
i=1

(
Yi − Ŷi

)2
(5)

where Ŷi = µ̂E + γ̂xi, if the ith subject is in group E, or Ŷi = µ̂C, if the ith subject is in group
C. The right-hand side of Equation (5) is essentially the sum of squared residuals divided
by the degrees of freedom; the ith residual Yi − Ŷi represents the difference between the ith
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actual and linear model-fitted observations. From the classical linear model theory [13], σ̂2

in Equation (5) is an unbiased estimator of σ2 and (n−3)σ̂2

σ2 follows a chi-square distribution
with n− 3 degrees of freedom. This provides a basis for constructing statistical tests and
estimators. For instance, for testing H0 : µE − µC = 0, we use a test statistic

t =
YE −YC − γ̂xE

σ̂

√
4
n +

x2
E

Sxx

, (6)

which, under H0, follows a standard t-distribution with n− 3 degrees of freedom. H0 is
rejected at significance level α, if |t| > tα/2,n−3, where tα/2,n−3 is the upper α/2 percent
point of the t distribution with n− 3 degrees of freedom.

A 100(1− α)% confidence interval for µE − µC can be obtained as

YE −YC − γ̂xE ± tα/2,n−3σ̂

√
4
n
+

x2
E

Sxx
(7)

Inference on the linear slope γ

From Equation (2), the point estimate of γ is obtained as γ̂ = Sxy/Sxx, where
Sxy = ∑n/2

i=1(xi − xE)
(
Yi −YE

)
and Sxx = ∑n/2

i=1(xi − xE)
2.

For testing H0 : γ = 0 we use a test statistic

t =
γ̂

σ̂/
√

Sxx
(8)

which has a standard t-distribution with n− 3 degrees of freedom under H0, and H0 is
rejected at significance level α, if |t| > tα/2,n−3.

A 100(1− α)% confidence interval for γ is obtained as

γ̂± tα/2,n−3
σ̂√
Sxx

. (9)

Inference on ∆x = (µE + γx)− µC

Let x denote some pre-specified level of engagement for which we would like to
estimate the expected response in the experimental group, E(Y|x) = µE + γx, and make
a prediction for a new observation, Y(x). We have Ŷ(x) = µ̂E + γ̂x = YE + γ̂(x − xE),

var
(

Ŷ(x)
)
= σ2

(
2
n + (x−xE)

2

Sxx

)
, and therefore, we can obtain a 100(1− α)% confidence

interval for E(Y|x) as

YE + γ̂(x− xE)± tα/2,n−3σ̂

√
2
n
+

(x− xE)2

Sxx
, (10)

and a 100(1− α)% prediction interval for a new observation Y(x) as

YE + γ̂(x− xE)± tα/2,n−3σ̂

√
1 +

2
n
+

(x− xE)2

Sxx
, (11)

Furthermore, the contrast ∆x = (µE + γx)− µC is estimated as ∆̂x = YE −YC + γ̂(x− xE),
and for testing H0 : ∆x = 0 we use a statistic

t =
YE −YC + γ̂(x− xE)

σ̂
√

4
n + (x−xE)2

Sxx

. (12)
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A 100(1− α)% confidence interval for ∆x is obtained as

YE −YC + γ̂(x− xE)± tα/2,n−3σ̂

√
4
n
+

(x− xE)2

Sxx
. (13)

Note that Equation (13) with x = 0 is equivalent to Equation (7).
In practice, an investigator may be interested in the following question: What is the

smallest level of engagement that results in the statistically significant difference between
the experimental and the control groups? This question can be answered by solving the
appropriate inequality, e.g., if γ̂ < 0, we are interested in x for which the upper limit of the
100(1− α)% confidence interval in Equation (13) is < 0; or, if γ̂ > 0, we are interested in x
for which the lower limit of the 100(1− α)% confidence interval in Equation (13) is > 0. In
general, these inequalities can be solved analytically, but they are quite tedious. In practice,
once the estimates are available, the solution can be obtained numerically, as we illustrate
by example in Section 3.

2.2. Two-Sample t-Test

It is useful to investigate statistical properties of a two-sample t-test, which is a
conventional way to perform treatment comparison. With this approach, an investigator
ignores information on engagement and models’ experimental data as

Yi = δiµE + (1− δi)µC + εi, i = 1, . . . , n. (14)

The least squares estimates of µE and µC using a working model (14) are YE and YC, the
usual sample means. The treatment difference µE − µC is estimated as YE − YC, which,
under the true model (1), has a normal distribution with E(YE −YC) = µE − µC + γxE and
var(Y−YC) =

σ2

n/2 + σ2

n/2 = 4σ2

n .
One may ask a question: what is the estimand under the true model (1) for which

YE −YC can be useful? Note that YE −YC is biased for µE − µC, and the bias term γxE can
be sizable if γ 6= 0 and xE > 0. However, E(YE − YC) = ∆xE = (µE + γxE)− µC, which
implies that the sample mean difference is an unbiased estimate of the contrast between
the combined effect of the novel CBT + dCBT at the average level of engagement observed
in the trial and the control condition.

With a two-sample t-test, the error variance σ2 is estimated by the pooled sample variance

S2
p =

1
n− 2

(
n/2

∑
i=1

(Yi −YE)
2 +

n

∑
i=n/2+1

(Yi −YC)
2

)
. (15)

Using direct algebraic derivations, it can be shown that the ANCOVA-based estimate
of error variance σ̂2 from Equation (5) can be written as

σ̂2 =
1

n− 3

{
(1− r2)

n/2

∑
i=1

(Yi −YE)
2 +

n

∑
i=n/2+1

(Yi −YC)
2

}
, (16)

where r2 =
S2

xy
SxxSyy

, Sxx = ∑n/2
i=1(xi − xE)

2, Sxy = ∑n/2
i=1(Yi − YE)(xi − xE), and

Syy = ∑n/2
i=1(Yi − YE)

2. Here, 0 ≤ r2 ≤ 1 is the squared correlation coefficient (corre-
lation between response and engagement in the experimental group E).

From (15) and (16) one can see that numerically S2
p may be less than σ̂2. For instance,

if r2 = 0, then σ̂2 = n−2
n−3 S2

p, which implies that σ̂2 > S2
p (although the difference is very

small, especially when n is large). On the other hand, for larger values of r2, σ̂2 will be less
than S2

p. For example, suppose r = 0.8 and ∑n/2
i=1(Yi − YE)

2 = ∑n
i=n/2+1(Yi − YC)

2. Then
σ̂2

S2
p
= n−2

n−3

(
1− r2

2

)
≈ 1− 0.82

2 = 0.68, which implies that σ̂2 is 32% lower than S2
p.
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Furthermore, under model (1), we have (n−3)σ̂2

σ2 ∼ χ2
n−3 and E(σ̂2) = σ2, which means

that σ̂2 is an unbiased estimator of σ2. Under the same model, E(S2
p) = σ2 + γ2Sxx

n−2 , which
means that S2

p generally overestimates σ2.
The usual two-sample t-statistic

t =
YE −YC

2Sp/
√

n
(17)

is inappropriate for testing H0 : µE − µC = 0 because the numerator of (17) is biased for
µE − µC. However, the test (17) is suitable for testing H0 : ∆xE = 0. The numerator of (17)
is unbiased for ∆xE = (µE + γxE)− µC; yet, the denominator involves S2

p that is positively
biased for σ2. Therefore, the test (17) may be less powerful than the ANCOVA test (12). For
the test (17), H0 : ∆xE = 0 is rejected at level α, if |t| > tα/2,n−2.

3. Analyzing Experimental Data: An Illustrative Example

Figure 1 visualizes a dataset from a hypothetical clinical trial with n = 50 subjects
simulated from model (1) with parameters µE = −0.5, µC = 0, γ = −0.5, and σ = 1.
Individual values of engagement in the experimental group were generated from a logit-
normal distribution as follows: X =

exp (U)
1 + exp (U)

, where U ∼ Normal
(
log
( 0.6

0.4
)
, 1
)
. With this

approach, we assure that X is between 0 and 1, with E(X) ∼ 0.6 and SD(X) ∼ 0.2. The
sample summary statistics for engagement were xE = 0.6 and Sxx = 1.13.

Figure 1. An example of experimental data from a trial of n = 50 subjects (25 per group). Group 1 (ex-
perimental) observations are red circles; group 2 (control) observations are green triangles. ANCOVA-
fitted linear regression (solid black line) is µ̂E + γ̂x.

Let us analyze these data using ANCOVA, as described in Section 2.1. We have
YE = −1.04, YC = −0.18, Sxx = 1.13, Sxy = 31.12, and thus γ̂ =

Sxy
Sxx

= −1.788,
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µ̂E = YE − γ̂xE = 0.03, µ̂C = YC = −0.18, and σ̂2 = 0.899. The sample correlation
between engagement and response in the experimental group is r = Sxy√

SxxSyy
= −0.34.

The value of the t-statistic for testing H0 : µE − µC = 0 using Equation (6) is t = 0.346,
with the corresponding 2-sided p-value = 0.731, implying that µE and µC are not statistically
different. The point estimate of µE − µC is µ̂E − µ̂C = 0.207, and the corresponding 95%
confidence interval is (−1.00, 1.41), which covers both zero and the true value of the mean
difference µE − µC = −0.5.

The value of the t-statistic for testing H0 : γ = 0 using Equation (8) is t = −2.005,
with the corresponding two-sided p-value = 0.051, a marginally significant result. The 95%
confidence interval for γ is (−3.56, 0.01).

The value of the t-statistic for testing H0 : ∆xE = 0 using Equation (12) is t = −3.24,
with the corresponding two-sided p-value = 0.0022, which indicates reasonably good
evidence against H0. The 95% confidence interval for ∆xE is (−1.40,−0.33), which covers
the true value ∆xE = −0.5− 0.5× 0.60 = −0.8.

The smallest level of engagement that leads to statistically significant difference
between two groups can be found by solving an inequality for the upper limit of the
95% confidence interval for ∆x = (µE + γx) − µC; that is: 0.03− 1.78x + 0.18 + 2.01×
0.944

√
4

50 + (x−0.6)2

1.13 < 0. The solution is 0.4533 < x < 207.74, for which only the lower
limit is relevant. Thus, we conclude that ∼46% is the smallest level of engagement re-
quired to obtain a statistically significant (using two-sided α = 0.05), larger response in the
experimental group compared to the control.

A 95% confidence interval for the expected value of the response for a given level

of engagement x is found as 0.03− 1.78x± 2.01× 0.944
√

2
50 + (x−0.6)2

1.13 . For instance, if a
subject successfully completes 80% of the dCBT program (x = 0.8), the 95% confidence
interval for the mean response is obtained as (−0.87, 0.23). A 95% prediction interval

for a new observation Y(x) is found as 0.03− 1.78x± 2.01× 0.944
√

1 + 2
50 + (x−0.6)2

1.13 . For
x = 0.8, the 95% prediction interval is (−2.4, 1.77).

Suppose an investigator decides to perform statistical inference using a two-sample
t-test, as described in Section 2.2. They obtain YE−YC = −1.04+ 0.18 = −0.86, S2

p = 0.946,
and the t statistic t = −0.86√

0.946×4/50
= −3.15, with the two-sided p-value = 0.0028. (Note that

for the ANCOVA approach the t-statistic was more extreme: t = −3.24; and the two-sided
p-value was slightly smaller: p = 0.0022, indicating greater evidence against H0). A 95%
confidence interval for ∆xE based on the two-sample t-test is (−1.42,−0.31).

Overall, while the two-sample t-test leads to a similar conclusion as the ANCOVA
test, the inference for the former approach is only limited to the contrast µE + γxE − µC,
whereas ANCOVA allows investigators to address more research questions.

4. Statistical Properties of Significance Tests: A Simulation Study

To gain further insights into the properties of statistical tests described in Section 2,
we ran Monte Carlo simulations under different experimental scenarios. We considered the
following parameter values for the simulations:

• µC = 0 and µE is in the range from −1 to 1; therefore ∆ = µE − µC = −1,−0.5, 0, 0.5, 1.
• γ (slope) is in the range from −1 to 1 (γ = −1,−0.5, 0, 0.5, 1).
• σ2 = 1.
• n = 50 (25 subjects per arm).
• All tests are 2-sided, with significance level α = 0.05.

Engagement in the experimental group was simulated as a random sample of size 25
from a normal distribution with mean λ = 0.6 and standard deviation ξ = 0.2. The
sample summary statistics were xE = 0.62 and Sxx = 1.38, and these values were fixed
throughout simulations.

For each experimental scenario defined by a combination of ∆, γ, σ2, and n, we
consider testing H0 : ∆x = 0, where ∆x = ∆ + γx is the contrast between the combined
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effect of the novel CBT + dCBT engaged at level x and the effect of the control treatment
using the ANCOVA test (12) for several pre-specified levels of engagement x, namely
x = 0, 0.3, 0.5, and 0.8. Moreover, we consider testing H0 : ∆xE = 0, i.e., the significance of
the difference between the effects of the experimental treatment at the average observed
engagement xE = 0.62 and that of the control treatment. For the latter hypothesis, we
consider two tests: the ANCOVA test (12) with x = xE = 0.62 and the two-sample
t-test (17).

For each experimental scenario, the type I error rate and power of statistical tests were
estimated based on 10,000 Monte Carlo simulations. For each simulation, outcome data
were generated from model (1) with the chosen values of trial parameters. The proportion
of simulations for which a given test yielded a statistically significant result was taken as a
Monte Carlo estimate of type I error rate (or power).

Figure 2 shows the power patterns, which are plotted using different symbols for
x = 0 (red square,P), x = 0.3 (brown circle,U), x = 0.5 (dark green triangle,Q), x = 0.8
(dark green rhombus,V), x = 0.62, ANCOVA test (dark blue rhombus,V), and x = 0.62,
two-sample t-test (dark blue inverted triangle,S). The x-axis displays the true values of
the contrast ∆x = ∆ + γx. Note that several combinations of (∆, γ, x) can yield the same
value of ∆x. For instance, (∆, γ, x) = (−1,−1, 0) and (∆, γ, x) = (−0.5,−1, 0.5) correspond
to ∆x = −1. The y-axis displays the values of statistical power. For ∆x = 0, the power is
equal to 0.05 (type I error rate). For ∆x 6= 0, power > 0.05. Clearly, the power is monotone
increasing in |∆x|.

Figure 2. Statistical power for testing H0 : ∆x = 0, where ∆x = ∆ + γx, for different combinations
of ∆ = (−1,−0.5, 0, 0.5, 1), γ = (−1,−0.5, 0, 0.5, 1), and x = (0, 0.3, 0.5, 0.62, 0.8). It is assumed that
n = 50 (25 subjects per arm) and outcomes are generated from model (1) with parameters µE = ∆ in
the range from −1 to 1; µC = 0; γ in the range from −1 to 1; and σ = 1.

One remarkable observation from Figure 2 is that the power is larger for values of x
that are closer to the average observed engagement (which is equal to 0.62 in our example).
This observation is in good correspondence with the theory, which posits that the value of
the ANCOVA test statistic in Equation (12) is maximized (hence, maximizing the chance
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of obtaining a statistically significant result, i.e., achieving maximum power) for x = xE.
For instance, compare the values of power for two different scenarios that yield ∆x = −1:
for (∆, γ, x) = (−1,−1, 0), the power is 0.29, whereas for (∆, γ, x) = (−0.5,−1, 0.5), the
power is 0.89. Note that in these two scenarios we have the same value of the linear slope:
γ = −1, and in the first scenario the value of ∆ is more extreme (∆ = −1) than in the
second scenario (∆ = −0.5). Yet, the value of power in the second scenario (0.89) is much
larger than that in the first scenario (0.29). Such a drastic difference in power is due to the
fact that in the second scenario we are testing a contrast at the level of engagement x = 0.5
that is much closer to the average observed level of engagement (xE = 0.62) than the level
of engagement in the first scenario (x = 0).

Of note, ∆x = −1 can be also obtained for ∆ = −1, γ = 0 and any value of x. In this
case, the linear slope γ is zero, and the mean treatment difference is equal to −1 for any
level of engagement x. The corresponding values of power range from 0.29 (for x = 0) to
0.93 (for x = xE = 0.62).

As another example, consider (∆, γ, x) = (−0.5,−1, 0.5) for which ∆x = −1, and
(∆, γ, x) = (−1,−1, 0.3) for which ∆x = −1.3. Despite that in the latter case the treatment
difference is more extreme (∆ = −1 and ∆x = −1.3) than in the former case (∆ = −0.5 and
∆x = −1), the value of power in the latter case is smaller (0.84) than that in the former case
(0.89). This is because the engagement level in the latter case (x = 0.3) is more distant from
the average observed level of engagement (x = xE = 0.62) than the engagement level in
the former case (x = 0.5).

Overall, based on the results from Figure 2 we highlight two important observations:
1) The level of engagement at which the group comparison is made affects statistical power.
2) The values of power of the ANCOVA test and the two- sample t-test are very close. This
implies that both ANCOVA and a two-sample t-tests are appropriate for the inference on
treatment difference at the average observed level of engagement.

These findings highlight the importance of clearly formulating study objectives,
because sample size and power depend on the choice of the primary estimand. In
what follows, we discuss some statistical considerations that can be useful at the study
planning stage.

5. Design Aspects
5.1. Optimality of Equal Allocation

Throughout the chapter we assumed the trial is designed using equal (1:1) allocation,
with n participants equally randomized between experimental and control groups (n/2
per group). We now provide a formal justification for optimality of equal allocation in
this setting.

Suppose nE = nρ subjects are assigned to the experimental group and nC = n(1− ρ)
subjects are assigned to the control group, where 0 < ρ < 1 is the allocation proportion.
We are interested in the value of ρ that minimizes the variance of the treatment contrast
∆x = (µE + γx)− µC for some chosen fixed value of x. This goal is closely related to the
maximization of statistical power of testing H0 : ∆x = 0. We have ∆̂x = YE + γ̂(x− xE)−YC,
and

var
(

∆̂x

)
=

σ2

nρ
+

σ2(x− xE)
2

Sxx
+

σ2

n(1− ρ)
, (18)

which is minimized for ρ = 1/2, the equal allocation.

5.2. Sample Size Considerations

Suppose we are interested in testing H0 : ∆0 = 0, which posits that there is no
difference between the effects of the novel CBT alone and the control intervention, and we
want to determine the sample size to achieve some desired level of statistical power for
this test. The sample size is determined as a function of several design parameters whose
values must be pre-specified upfront:

• α = chance of a false positive result;
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• β = chance of a false negative result;
• ∆̃0 = the “clinically relevant” mean treatment difference that we would not like

to miss;
• σ = the presumed standard deviation of the primary outcome.

Assuming equal (1:1) allocation, the total sample size n is determined to satisfy two
major conditions: α = Pr(Reject H0|∆0 = 0) and 1− β = Pr(Reject H0|∆0 = ∆̃0). Using
the test statistic in Equation (6), H0 is rejected if |t| > tα/2,n−3. One difficulty is that the
distribution of this test statistic depends on engagement—via xE and Sxx—that are calcu-
lated for a particular value of the sample size, using individual engagement values that are
unknown upfront. Therefore, we have a conundrum: for sample size planning we need
summary statistics of engagement, which are derived from an experiment of a given size.
If we have some prior knowledge on the probability distribution of engagement, we can
use it to calibrate the sample size for a future study. A sensible approach for this purpose is
Monte Carlo simulation. There are two major steps in the simulation process that should be
implemented to calibrate the requisite sample size and quantify the associated uncertainty.

Step 1: Sample size for a given set of engagement measurements

Suppose, based on a pilot study, it is plausible to assume that individual values of
engagement follow a normal distribution with mean λ and standard deviation ξ. We
simulate a vector of engagement values: X = (X1, . . . , XM), where Xi ∼ i.i.d. N(λ, ξ2)
and M is some pre-specified large positive integer (say, M = 200). Let m ≤ M denote the
sample size for the experimental group (the total sample size is n = 2m). For a given m (say,
m = 25) we take the first m components of the vector X, i.e., X(m) = (X1, . . . , Xm), calculate
xE = 1

m ∑m
i=1 Xi and Sxx = ∑m

i=1 (Xi − xE)
2. Next, we run 10,000 simulations to generate

datasets from model (1) with the chosen parameter values (µE, µC, γ, σ), total sample size
n = 2m, keeping fixed within each simulation run the individual values of engagement
and treatment assignment indicators. For each simulation, the test statistic is computed
using Equation (6), and the test decision is recorded (reject H0, if |t| > tα/2,2m−3; or fail to
reject H0, if |t| ≤ tα/2,2m−3. The proportion of simulation runs that lead to rejection of H0 is
taken as a Monte Carlo estimate of power for the given m.

The above procedure is repeated for different values of m (say, m = 25, 26, . . . , M),
and for each m the simulated power is obtained. The smallest sample size n = 2m for
which simulated power is equal to or exceeds the target level 1− β provides the requisite
sample size. A plot of power (y-axis) vs. sample size (x-axis) can be helpful to visualize the
n’s that yield different values of power (80%, 90%, etc.)

Step 2: Distribution of the requisite sample size

The described Step 1 provides a single value of the sample size to achieve power = 1− β.
However, this sample size is obtained for a fixed set of engagement values. Since in practice
there is uncertainty around the engagement (we assume it can be quantified using N(λ, ξ2)
distribution), we can repeat the entire procedure described in Step 1 (say, 1000 times) to
obtain a distribution of the requisite sample size. An experimenter may then decide to use
some percentile of this distribution (say, 80th percentile), to ensure that their experiment
has the desired level of power = 1− β, with reasonably high confidence, for the chosen
values of trial parameters. A histogram or a box-plot of the simulated distribution of the
sample size can provide valuable insights into the required sample size and the associated
uncertainty.

Figure 3 displays box-plot distributions of the smallest sample size to achieve 80%
power of the test using 2-sided α = 5%. Individual responseses were generated from
model (1) with parameters µE = −1, µC = 0, γ = −0.5, and σ = 1. Four different
distributions of engagement were considered:

(i) X ∼ Beta(0.5, 0.5), which has mean = 0.5 and SD ∼ 0.354;
(ii) X ∼ Uni f orm(0, 1), which has mean = 0.5 and SD ∼ 0.289;
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(iii) X ∼ Normal with mean = 0.6 and SD = 0.3; and
(iv) X ∼ Normal with mean = 0.6 and SD = 0.2.

For each of the four engagement patterns, simulations were performed as described
above. In Step 1, we ran 10,000 simulations to obtain empirical power for the total sample
size n = 2m, where m = 25, 26, . . . , 200, and used the smallest n for which empirical
power ≥ 80% as an estimate of the required sample size. In Step 2, 1000 replications of Step
1 were performed.

Figure 3. Distributions of the sample size to achieve 80% power of ANCOVA t-test of H0 : ∆0 = 0 us-
ing 2-sided α = 5%. Responses were simulated from model (1) with µE = −1, µC = 0, γ = −0.5, and
σ = 1. Four different distributions of engagement were considered (top to bottom): Beta(0.5,0.5); Uni-
form(0,1); Normal with mean = 0.6 and standard deviation (SD) = 0.3; and Normal with mean = 0.6
and SD = 0.2.

From Figure 3, several important observations can be made. First, the requisite sample
size is smaller if the underlying distribution of engagement is more variable. This makes

good sense, because from Equation (4), var(µ̂E − µ̂C) = σ2
(

4
n +

x2
E

Sxx

)
, and larger sample

variance of engagement (Sxx term in the denominator) implies lower value of var(µ̂E − µ̂C),
which leads to a larger absolute value of the t-statistic in Equation (6), and therefore
higher power of the test. Second, there is uncertainty in the requisite sample size, and this
uncertainty is smaller if the engagement is more variable.

Table 1 shows the summary statistics for the sample size distributions from Figure 3.
Suppose it is plausible to assume that individual engagement values are uniformly dis-
tributed over the interval (0, 1), and an investigator wants to be 80% (or 90%) confident that
the experiment has 80% statistical power for the chosen trial parameters (µE = 0, µC = −1,
γ = −0.5, and σ = 1). Then, the required total sample size is n = 92 (or 98). On the
other hand, if it is plausible to assume that engagement follows a normal distribution with
mean 0.6 and standard deviation 0.2, and we want to be 80% (or 90%) confident that the
experiment has 80% statistical power, the required sample size is n = 194 (or 206).
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Table 1. Summary statistics for the total sample size distributions (cf. Figure 3).

Total Sample Size (n)

Distribution of Engagement (X) Q50 Q80 Q90 Max

Beta(0.5, 0.5) 64 74 78 98

Uni f orm(0, 1) 82 92 98 130

Normal(0.6, SD = 0.3) 98 112 120 164

Normal(0.6, SD = 0.2) 174 194 206 258
Q50 = median; Q80 = 80th percentile; Q90 = 90th percentile; Max = maximum.

Note that if we consider another research hypothesis, e.g., H0 : ∆x = 0 for some
x > 0, then the required sample size will be different. For instance, if we wish to test
H0 : ∆xE = 0, then we can follow a conventional approach to sample size determination
using the two-sample t-test, which requires no upfront knowledge on engagement. In the
considered example (assuming between-group mean difference at the average engagement
in the experimental group is equal to −1 common standard deviation σ = 1; two-sided
significance level α = 5%; and power = 80%), a sample size n = 34 (17 per group) is
required to detect the statistically significant group difference using two-sample t-test,
which is much lower than the sample sizes presented in Table 1 and Figure 3.

Sample size requirements for different estimands

It is instructive to explore sample size requirements for research hypotheses involving
different estimands. Let us assume that the underlying distribution of engagement is
normal with mean = 0.6 and SD = 0.3, and the true model parameters µE = −1, µC = 0,
γ = −0.5, and σ = 1. We consider testing H0 : ∆x = 0 for x = 0, 0.3, 0.5, 0.8, and x = xE.

Figure 4 shows box-plot distributions of the smallest sample size to achieve 80% power
(with a two-sided significance level α = 5%) of the test of H0 : ∆x = 0, and Table 2 shows
the corresponding summary statistics. As expected, the sample size is smallest when
x = xE. By choosing n = 24 (12 subjects per arm), we can be 90% confident that our trial
has 80% power to reject H0 : ∆xE = 0 at the 5% significance level. For other values of x, the
requisite sample size is larger. For instance, for x = 0.5, to achieve 80% power with 90%
confidence, one must choose n = 30. The similar number for x = 0.3 is n = 50, and for
x = 0 it is n = 114.

Note that, in general, when consider testing H0 : ∆x = 0, the sample size determination
involves the value of ∆x = (µE + γx)− µC under the alternative, which necessitates the
choice of µE, µC, γ, and x. In addition, we would need to make an assumption on the
underlying distribution of engagement, to account for an inherent uncertainty in the
engagement pattern. By contrast, if the objective is to test significance of the contrast between
the effect of the experimental treatment at the average observed value of engagement and
the control, fewer assumptions are needed; in particular, only the value of the clinically
meaningful mean difference (without assumptions on γ, x, and engagement distribution)
would suffice.

To draw a parallel between the results presented in Table 2 and the conventional
sample size calculation, note that for x = xE = 0.6, µE = −1, µC = 0, and γ = −0.5, we
have a mean treatment difference ∆x = −1− 0.5× 0.6 = −1.3. The required sample size
for a two-sample t-test with parameters ∆ = −1.3, σ = 1, α = 0.05, and 1− β = 0.8 can be
obtained using standard statistical software, and it is n ≈ 22 (11 subjects per arm). Notice
that n = 22 this is the median sample size (Q50) corresponding to x = xE in Table 2. In other
words, for the chosen parameters, a trial design with n = 22 subjects has 80% power with 50%
probability. If we want to achieve 80% power with 90% probability, the sample size should be
increased to n = 24 (which is Q90 corresponding to x = xE in Table 2). Moreover, if we are
interested in performing statistical testing at other levels of engagement (i.e., x 6= xE), then the
sample size should be further increased to maintain 80% power with due level of confidence.
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Figure 4. Distributions of the sample size to achieve 80% power of ANCOVA t-test of H0 : ∆x = 0
(using 2-sided α = 5%) for x = 0, 0.3, 0.5, 0.8, and x = xE. Responses were simulated from model (1)
with µE = −1, µC = 0, γ = −0.5, and σ = 1. Engagement values were simulated from a normal
distribution with mean = 0.6 and SD = 0.3.

Table 2. Summary statistics for the total sample size distributions (cf. Figure 4).

Total Sample Size (n)

x Q50 Q80 Q90

0 98 110 114

0.3 40 46 50

0.5 24 26 30

xE 22 24 24

0.8 24 28 30
Q50 = median; Q80 = 80th percentile; Q90 = 90th percentile.

Sample size and power for testing significance of the slope

A sample size that may be viewed as sufficient for the purpose of treatment comparison
may not be sufficient for other objectives, such as testing significance of the linear slope γ.
Consider the same experimental setting as above (underlying distribution of engagement
is normal with mean = 0.6 and SD = 0.3, and the model parameters are µE = −1, µC = 0,
γ = −0.5, and σ = 1).

Figure 5 shows box-plot distributions of power of the test in Equation (8) testing
significance of the slope: H0 : γ = 0 (top panel) and similar distributions of the test
of mean difference: H0 : ∆0 = 0 (bottom panel) for the four choices of the sample size
(n = 98, 110, 150, and 200). With n = 200, the power for testing H0 : ∆0 = 0 is > 90%;
however, the power for testing significance of the slope is in the range 20–45%.
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Figure 5. Distributions of power of the test of significance of the slope (top panel) and power of
ANCOVA t-test of H0 : ∆0 = 0 (bottom panel). Both tests used a two-sided significance level α = 5%
(two-sided). Responses were simulated from the model (1) with µE = −1, µC = 0, γ = −0.5, and
σ = 1. Engagement values were simulated from a normal distribution with mean = 0.6 and SD = 0.3.

6. Conclusions and Future Work

To obtain valid results for an RCT, both the study design and the model for statistical
analysis must be chosen judiciously. If the primary outcomes in the two groups are normally
distributed with a common standard deviation, then a two-sample t-test is appropriate
for testing the significance of the treatment mean difference. Its application rests on an
important assumption that the average values of patient characteristics are approximately
equal in the experimental and control groups (which is a reasonable assumption for a
randomized trial).

In many clinical trials, there are important covariates that are correlated with a primary
outcome. Adjusting for these covariates in the analysis can improve precision for estimating
treatment effects. For a linear model with normal error terms, ANCOVA is a valid and
well-established approach to analyze RCT data, and, in fact, it is advocated by the health
authorities [14,15]. When properly applied, ANCOVA leads to the minimum variance
of unbiased estimates of the model parameters, and it is potentially more powerful for
testing treatment difference than a simple (unadjusted) analysis using a two-sample t-
test. Furthermore, ANCOVA gains in efficiency are more pronounced for larger values of
correlation between the primary outcome and the covariates of interest.

In the present paper, we explored these ideas in a context of an RCT evaluating
cognitive behavioral therapies, assuming that engagement (quantified as the percentage of
successfully completed trainings, measured without error) is an influential covariate. Our
findings are in good correspondence with the already available statistical theory. One key
contribution of our paper (which, to our knowledge, has not been addressed previously)
is the investigation of statistical power and sample size of ANCOVA for different levels
and patterns of engagement. A two-sample t-test matches one specific goal of ANCOVA,
namely testing significance of the treatment difference at the average level of engagement
observed in the study. In this case, the two-sample t-test and ANCOVA generally yield



Appl. Sci. 2022, 12, 4952 16 of 18

similar power (which can be observed from our simulation results in Figure 2). However,
the average level of engagement is not known upfront, and investigators may wish to
compare treatment effects at several levels of engagement (including the average to be
observed in the study), to enable generalization of the RCT results to a broader population.
Our simulation results demonstrate that larger sample sizes may be required to achieve a
given value of power than one would typically expect. The pattern of engagement, the level
of engagement at which the treatment contrast is estimated, the value of the linear slope,
the mean treatment effects and the standard deviation of the response have an impact on
statistical power in this case. Therefore, it is essential that the primary research question is
clearly formulated upfront to ensure that the experiment is adequately powered.

While our considered approach in this paper was for a rather simple model (a single
covariate representing engagement in the experimental group, measured on a continuous
scale from 0 to 1), it captures an essential feature of experiments evaluating complex
interventions—the need for considering patient engagement in both the design and analysis
of the experimental data. However, our assumed model can be challenged on a number
of grounds. First, it is rather stringent and it may not hold on the boundary when the
engagement is equal to zero. Formal statistical tests may be required for checking the
plausibility of this assumption and a model-robust inference may be necessary at the
analysis stage. We designate this as an important problem and defer it to the future work.
Second, the formulation of a model adequately describing the relationship between the
primary endpoint, treatment, engagement, and possibly other factors is a major problem in
itself. It will depend on the disease area, the target patient population, the mechanism of
action of an experimental therapy, etc. Product developers and clinical investigators should
work closely with statisticians to build scientifically sound models and test/validate them
in carefully designed experiments. These considerations merit further investigation, but
they are beyond the scope of the present work.

We would like to conclude this paper by outlining some directions for future research.
In the present work, we considered engagement as a covariate, and it was assumed to be
measured without error. All estimates, standard errors, tests of hypotheses, and confidence
and prediction intervals were obtained based on this assumption. Technically, since data
on engagement is acquired after randomization, it is affected by treatment and should be
regarded as a response. If we regard both engagement (X) and response (Y) as random
variables, then different approaches to inference, such as error-in-variables regression
models [16,17] should be considered. As one of the reviewers pointed out, it may be more
appropriate to discuss patient engagement in the context of mediation analysis instead of
covariate adjustment. An approach to mediation analysis when a continuous mediator is
measured with error and the outcome follows a generalized linear model was described in
the reference [18]. This approach may be also useful in the RCTs of digital mental health
interventions, and we defer this to the future work.

Another important extension of the present work is the investigation of more complex
statistical models defining the links among treatment, engagement, response, and possibly
other factors. For instance, longitudinal models with repeated measurements at multiple
visits, nonlinear models, and models with more than one covariate may provide more accu-
rate descriptions of the phenomena of interest. Multiple ingredients of a CBT (individually
or in combination) may have an impact on the response, which should be accounted for
in both the design and the analysis. One recent paper [9] investigated the relationship
between patient engagement and depressive symptoms among people with HIV based on
data from a 3- month RCT comparing an mHealth intervention versus a wait-list control
group. The authors used latent growth curve models to link patient engagement and
depressive symptoms at multiple time points, up to 3 months of the mHealth intervention.
Such an approach holds promise and warrants further consideration.

In our work, we assumed engagement is measured for subjects in the experimental
group but not in the control group. However, in many settings the engagement is observed
in both experimental and control groups; e.g., one may have the control app as “mindfulness
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only”, whereas the experimental app may be “mindfulness + diet + weight loss”. In this
case, engagement is measurable in both groups, and different modeling strategies have to
be considered.

Recently, machine learning techniques have been applied to understand patterns of
engagement with internet-delivered CBTs [19]. These approaches can help identify different
subtypes of patients that engage differentially with the digital interventions, and this may
enable more personalized approaches to treatment. Incorporating machine learning tools
in the design and analysis of RCTs of dCBTs seems to be a valuable approach that merits
further investigation.
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