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Abstract: Numerous learning-based techniques for effective human behavior identification have
emerged in recent years. These techniques focus only on fundamental human activities, excluding
transitional activities due to their infrequent occurrence and short period. Nevertheless, postural
transitions play a critical role in implementing a system for recognizing human activity and cannot be
ignored. This study aims to present a hybrid deep residual model for transitional activity recognition
utilizing signal data from wearable sensors. The developed model enhances the ResNet model
with hybrid Squeeze-and-Excitation (SE) residual blocks combining a Bidirectional Gated Recurrent
Unit (BiGRU) to extract deep spatio-temporal features hierarchically, and to distinguish transitional
activities efficiently. To evaluate recognition performance, the experiments are conducted on two
public benchmark datasets (HAPT and MobiAct v2.0). The proposed hybrid approach achieved
classification accuracies of 98.03% and 98.92% for the HAPT and MobiAct v2.0 datasets, respectively.
Moreover, the outcomes show that the proposed method is superior to the state-of-the-art methods in
terms of overall accuracy. To analyze the improvement, we have investigated the effects of combining
SE modules and BiGRUs into the deep residual network. The findings indicates that the SE module is
efficient in improving transitional activity recognition.

Keywords: deep residual network; human activity recognition; transitional activities; hybrid deep
learning model; bidirectional GRUs

1. Introduction

Human Activity Recognition (HAR) has received considerable interest in recent years
because of its applicability in home automation systems, fall detection for the elderly, sports
performance, healthcare rehabilitation, and misbehavior identification [1,2]. For instance,
by studying the activities of elderly persons who live alone, fall behavior could be recog-
nized in order to request assistance from family members in time. Fit individuals could
collect their exercise data by tracking their steps and identifying their movement state to ac-
complish scientific exercising and fitness monitoring. Gait analysis could be used to identify
individuals with knee problems. The rehabilitation strategy could well be changed during
the rehabilitation process by the movement data collected from patients with lower limb
illnesses. There are two types of HAR technologies: vision-based and sensor-based [3,4].
The vision-based technique extracts human activity information from the video stream by
embedding a camera in the human environment. While this technique can see the minutiae
of human activity, it has privacy implications and is performance-dependent on the quality
of the environment lighting. Rather than that, the sensor-based method provides a plethora
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of benefits. It is unaffected by the surrounding environment and seems to have the potential
to achieve greater precision. Additionally, it will not raise users’ privacy concerns. As a
result, sensor-based techniques are more appropriate for recognizing human activities [5].
This work is primarily concerned with the issue of sensor-based HAR.

Sensor-based Human Activity Recognition (S-HAR) is concerned with identifying, in-
terpreting, and evaluating human activities using sensor data. Wearable sensors, including
an accelerometer, gyroscope, or other complex sensors, may be connected to various body
areas to monitor movement patterns and behaviors. Numerous S-HAR systems have been
developed to automate the applications mentioned above; nevertheless, creating a fully
automated S-HAR framework could be a difficult challenge due to the massive quantities
of movement data and the effective categorization techniques required. Additionally, it is a
complex endeavor since a single motion could be executed in several ways [6].

Human activities are often defined as fundamental Activities in Daily Living (ADL)
and the postural changes between or within these activities. Postural transition is a limited
motion between two essential activities, which differs amongst persons in terms of time
and actions. Most works do not consider the postural variations due to their short duration.
However, while executing numerous tasks in a short time frame, they play a significant
role in efficiently recognizing activities [7]. Consequently, transition activity recognition is
vital for HAR mechanisms.

For S-HAR research, learning-based approaches such as machine learning techniques
have been used effectively throughout the previous decade. Under controlled circum-
stances, behavior identification using conventional machine learning techniques such as
K-Nearest Neighborhood [8], Support Vector Machine (SVM) [9], Decision Tree (DT) [10],
and Random Forest (RF) [11] has been successfully implemented [12]. The accuracy of these
standard machine learning models is highly dependent on the process of human-manually
extracted and selected features.

Deep Learning (DL) algorithms have recently achieved notable advances in the field
of S-HAR [13,14]. One of the most significant characteristics of deep learning is its ability
to automatically determine and classify features with a high degree of accuracy, which
influenced the HAR study [15]. Deep neural networks are capable of learning discrim-
inative characteristics from raw data efficiently, and they have demonstrated immense
promise for evaluating diverse data and a high capacity for generalization. Numerous
uni-model and hybrid methods have been developed to capitalize on DL methods by com-
pensating for the weaknesses of traditional machine learning and leveraging the multiple
levels of information present at various levels of hierarchies [16]. A hierarchy of layers is
employed in DL models to handle low/high-level features and linear/nonlinear feature
modifications at different levels, which supports learning and adjusting features. To this
end, models such as Recurrent Neural Networks (RNN) [17], Convolutional Neural Net-
works (CNN) [18], and Long Short-Term Memory (LSTM) [19], among others, are used to
address the shortcomings of traditional machine learning algorithms that relied on manual
feature selection/classification, in which incorrect feature selection/classification could
have unfavorable effects. As a result, DL networks have realized a practical implementation
in identification schemes and are often utilized for feature extraction in studies on action
recognition [20]. One disadvantage of the DL paradigm, mainly when hybrid structures
are being used, is the higher expense of computing the massive quantity of accessible
information. Nevertheless, the cost is justified since an S-HAR system relies on accurate
classification performance from DL models.

While the previous investigations have made substantial advances, two fundamental
constraints remain. Conventional algorithms for transitional movement identification rely
laboriously on handmade characteristics. Such techniques, nevertheless, are not durable
and depend excessively on professional expertise. Several studies combined time-domain,
frequency-domain, and nonlinear features to generate feature vectors, a laborious and
error-prone process to extract efficient temporal characteristics from short-duration data
of transitional events. Additionally, such characteristics are often task-specific and lack
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universality. Furthermore, inaccuracies in the feature extraction phase might spread to
subsequent stages, impairing detection capability. Although a few deep learning-based
techniques have been offered to investigate the information about transitions between ADL
actions, their performance falls short of time-series ADL signal-based methods. Second,
since the categorization borders between transitional movements are not apparent, they may
be misidentified when using the same fixed-length windowing settings. Previous studies
have found that there is much scope for development in identifying transitional activities.

To solve these concerns, this work proposes a hybrid DL model in which networks
are trained to identify both fundamental and transitional human behaviors concurrently.
The innovative components include the concurrent deployment of several DL models
to improve classification accuracy and the addition of transitional behaviors to deliver a
robust method of activity identification. A summary of the significant contributions of this
study is presented as follows:

• This work presents a hybrid deep residual model based on convolutional layers and
bidirectional gated recurrent unit layers that is capable of autonomously learning local
features and modeling their temporal dependency. The proposed method augments
the deep residual model with hybrid Squeeze-and-Excitation (SE) residual blocks, al-
lowing for hierarchical extraction of deep spatio-temporal characteristics and effective
separation of transitional activities.

• The proposed model achieved the recognition of transitional activities and basic ADL
activities in short durations of continuous sensor data streams.

• We investigated the effects of recognizing transitional activities in various issues
including segmentation techniques and multimodal sensors.

• We evaluated the exploratory findings in comparison to those obtained from other
models using the same HAR dataset. The results indicate that the proposed strategy
outperforms different sophisticated approaches.

The rest of the paper is divided into the following sections: Section 2 discusses state of
the art in recognizing human activities using DL and current issues. Section 3 describes the
hybrid deep residual learning methodology for transitional activity recognition presented
in this article. Section 4 explains the experiment setting and shows the experimental results.
This section also has a discussion of the experimental results. Finally, Section 5 is the
conclusion and comments on future work.

2. Related Works

In this part, we provide a short overview of S-HAR literature that has already been
published. Basic ADL tasks and transitional activities are the focus of our ongoing analysis
of the relevant literature. The following sections go into further depth on each point.

2.1. Basic ADL Recognition

It has been shown that a fine-tuned traditional CNN effectively excels in comparison to
SVM, Multilayer Perceptrons, LSTM, and Bidirectional LSTM (BiLSTM) networks according
to Wan et al. [21]. This method outperformed other machine learning techniques, such
as DL, RF, and others. Unfortunately, there are certain drawbacks since these methods
can only extract basic features. DL architecture by Zhou et al. [22] could extract features
from inadequately labeled datasets. A distance-based reward rule mechanism was used to
label the data in the architecture, which was implemented on top of an HAR structure. The
freshly labeled data were combined with the previously labeled data and processed toward
an LSTM component to extract the features. In this technique, labeling anonymous and
inadequately labeled data was the primary goal, rather than the efficiency of categorization.
Consequently, the labeling process needed a considerable amount of unlabeled data, which
raised the computing overheads.

Chen et al. [23] developed an Attention-Based BiLSTM (ABiLSTM) structure that weights
features according to their significance in the present recognition situation. When comparing
the findings to other recent methodologies (including both shallow and DL systems), it
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was found that this method offered higher classification performance. To evaluate a signal-
based system, we used publicly available pre-processed data for all of our experiments.
No real-time data were collected for these assessments, which is crucial. The Deep LSTM
(DLSTM) design for feature identification and filtering was presented by Zhu et al. [24].
Sensors on smartphones were used to train the model using labeled and unlabeled data.
Between the input and output gates, DLSTM had numerous LSTM layers. The raw data
were augmented to produce the information measure, and Gaussian noise was removed
from the finalized input to remove abnormalities. With the DLSTM, only the high-level char-
acteristics remained after the low-level ones were removed. Following a set of guidelines,
the unlabeled data that had been lost were computed and labeled. In a user-controlled con-
text, the assessments of the proposed DLSTM revealed better outcomes than cutting-edge
semi-supervised learning frameworks.

To construct the InnoHAR model, Xu et al. [25] combined a regular RNN with an Incep-
tion Neural Network (INN) structure oriented for HAR using wearable sensors. The INN
structure comprises many deep layers, each of which is formed of several convolution layers
parallel to pooling layers, constituting the inception layer. The INN structure was evalu-
ated on various publicly accessible datasets and outperformed Deep–Convolutional–LSTM
models. The disadvantage of this architecture was the insufficient setup of INN, which
demanded a considerable amount of processing, and slight adjustments might necessitate
repeating the expensive retraining process.

2.2. Transitional Human Activity Recognition

Transitional activities are often overlooked in human movement identification due
to their low expression and limited period [26,27]. Moving between two distinct and
well-defined behaviors (for example, from standing to sitting or lying down to standing up)
is a transitional activity [28]. No matter how well the transitions are performed in practice,
the overall quality of the identification system might be adversely affected if they are
improperly handled. Many researchers have yet to include transitional tasks into their
categorization schemes [7].

According to [29], an RF technique was used to determine basic activities and tran-
sitions on a standard dataset for comparison purposes. For each transition, and when
all transitions were combined into a single category, there was 100% identification per-
formance. Improved classification performance was achieved by combining an adaptive
sliding window approach with a transition model for physical activity from [30]. A 96.5%
accuracy rate was reached by adjusting the window size depending on the signal data in its
suggested method. This algorithm’s main drawback is that it can only continuously expand
the window size. Reducing the window size to catch brief movement signals can enhance
efficiency. To account for the influence of action transitions, Reyes-Ortiz et al. [31] used a
combination of a probabilistic result from SVM-based successive movement forecasts and
an heuristic filtering technique to estimate the chance of a variety of activities occurring
within a 2.56 s time frame. They found a total error rate of 3.34%. They discovered that
a 4.13% boost in system error happened during action transitions. On the other hand,
these studies treated all transitional tasks as a single class rather than separate individuals.
Using a three-layer structure, Kozina et al. [32] recognized workout activities and seven
transitional behaviors. While classifiers’ previous knowledge and machine learning were
used in the first two levels, their results were combined and used as the input for a Hidden
Markov model in the third and final layer. For example, Gupta and Dallas [33] established
that mean and variance explain the properties of transitional actions. The total accuracy of
the approach described was 98%. Despite this, stand-to-sit and sit-to-stand were lumped
together rather than given their own categories.

Table 1 summarizes the research mentioned above. In the literature, DL models
are seen as superior to standard machine learning techniques in terms of accuracy and
data analysis. This research offers a hybrid DL model that considers core ADL tasks and
transitional operations while developing an effective and scalable HAR solution. A deep



Appl. Sci. 2022, 12, 4988 5 of 21

residual structure for feature extraction and a channel-attention component for transitional
action detection was implemented.

Table 1. A summary of the related literature.

Year Model Learning
Algorithm Accuracy (%) Dataset Weaknesses

2016 TAHAR [31] ML 96.44 HAPT An SVM with a heuristic filtering approach needs a feature mapping
layer to achieved with a high accuracy.

2018 SVM-TED [34] ML 81.62 own dataset
A conventional SVM with a transition occurrence detection module
can detect postural transitions but lacks the precision essential for
effective movement recognition.

2018 DBN [35] DL 95.80 HAPT
DBN causes it more challenging to train the network design, and ReLu
has substituted it, a more suitable lesson for the vanishing
gradient issue.

2018 GBDT [36] ML 94.90 HAPT Provides the most excellent outcomes with smaller datasets,
but accuracy declines as the size of the dataset increases.

2020 SVM + SFFS [37] ML 96.81 HAPT Increased accuracy with fewer datasets and increased data volume
results in decreased accuracy.

2020 STD-TA [38] ML 80.0 own dataset A standard SVM with moderate accuracy extracts statistical information to
distinguish between transitional and fundamental actions.

2020 Multi-LSTM [39] DL 89.00 own dataset

Multiple pipelined LSTM units are employed in this strategy, which
slows the network’s training and increases the model’s sophistication.
Any flaw or inconsistency in a single LSTM unit affects the pipeline of
LSTM units as a whole.

2020 CNN+LSTM [38] DL 95.80 HAPT
The model is complicated, and the CNN utilized is a standard CNN with
a simple three-layered construction that is not enhanced. No
consideration was given to complex tasks and their transitions.

2021 Multiple DL + Fusion
Decision Module DL 96.11 HAPT The model contains many hyperparameters and spend lots of

computation time.

2021 HiHAR [40] DL 97.98 HAPT The transitional activities were grouped into two classes to avoid
96.16 MobiAct the class imbalanced problem.

2.3. Available Transitional HAR Datasets

Although there are few datasets, specific transitional HAR datasets are publicly acces-
sible and can be used to train and verify HAR classifiers.

The HAPT dataset [31] comprises data from three-dimensional accelerometers and
three-dimensional gyroscopes for six fundamental behaviors (stepping, going up and
down stairs, sitting, standing upright, and lying) and six transitional actions (sit-to-stand,
stand-to-sit, sit-to-lie, lie-to-sit, lie-to-stand, stand-to-lie). Sensor data were collected at the
waist of 30 participants using IMU sensors placed in a smartphone (Samsung Galaxy II).
Individuals performed the predetermined 12 categories of tasks. The HAPT dataset is the
most often utilized standard dataset in transition-based HAR investigations [31,41,42].

The MobiAct v2.0 HAR dataset [43] was employed in our study since it has been
extensively used in HAR studies [38,40,44]. The dataset was created using information from
a smartphone’s 3D accelerometer, 3D gyroscope, and 3D orientation (Samsung Galaxy S3,
Samsung Electronics, Seoul, South Korea). This dataset contains 11 distinct tasks of daily life
and five fall-related actions from 67 subjects. Seven fundamental activities (walking, going
up and down stairs, jogging, leaping, seating, and standing upright) and four transitional
activities comprise the ADL activity categories (sit-to-stand, stand-to-sit, car-step in, and car-
step out). Additionally, this dataset contains five daily-life situations containing numerous
ADLs lasting between two and three minutes each, which could also be utilized to develop
and evaluate HAR models.

Along with significant everyday actions, this study discusses transitory actions.
According to assessments of the literature, a few available public datasets feature tran-
sitional activities captured using wearable sensors. As a result, this study conducts tests on
the HAPT and MobiAct v2.0 datasets. Table 2 compares the two datasets, with the primary
purpose of this study being to separate fundamental and transitional tasks correctly.
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Table 2. Details of two benchmark HAR datasets used in this study.

Dataset Sensors Number of Subjects Number of Activities
Activities

Static Dynamic Transition

HAPT [31] 3D-Acc.
3D-Gyro. 30 12

sitting
standing

laying

walking
walking-upstairs

walking-downstairs

stand-to-sit
sit-to-stand

sit-to-lie
lie-to-sit

stand-to-lie
lie-to-stand

MobiAct v2.0 [43]
3D-Acc.

3D-Gyro.
3D-Ori.

19 11 sitting
standing

walking
walking-upstairs

walling-downstairs
jogging
jumping

stand-to-sit
sit-to-stand
car-step in

car-step out

3. Proposed Methodology
3.1. Overview of the HAR Framework Used in This Study

This research investigated S-HARs that are based on DL and use deep residual net-
works to extract the relevant abstract characteristics from raw sensor data. As seen in
Figure 1, the examined S-HAR system comprises four key processes: data collecting, data
preprocessing, model training, and model assessment.

Figure 1. The proposed S-HAR system.

To begin, we compiled HAR datasets, including wearable sensor data from fun-
damental and transitional actions. Following a literature survey, we have chosen two
publicly accessible datasets to analyze in this research, namely HAPT and MobiAct. Sen-
sor data include a three-dimensional accelerometer, a three-dimensional gyroscope, and
three-dimensional orientation data. The sensor data were then denoised, normalized,
and segmented using a sliding window method to create sample data for training and
evaluating DL models. These samples are prepared using the k-fold cross-validation
methodology. Finally, we evaluated and compared the trained models using four main
HAR measurements. Each procedure is described in depth in the following subsections.

3.2. HAR Datasets

The research concentrates on building a model that can handle and utilize real-world
circumstances where activities are carried out in a continuous way; thus, we selected two
widely-used public datasets that provide raw data with sequences of actions and transitions:
HAPT [31] and MobiAct v2.0 [43]. They comprised inertial data from the accelerometer
and gyroscope sensors on smartphones. The data were gathered from individuals while
they went about their regular routines. The features of these two datasets, which solely
include the activities employed in this investigation, are summarized in Table 2. The chosen
activities might be classified as static, dynamic, or transitional. The rationale for choosing
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these activities is that the identification system may be improved by including them since
they are more prevalent in an individual’s everyday life.

3.2.1. HAPT: Human Activities and Postural Transition Dataset

Extending the UCI HAR dataset [45], the HAPT dataset [31] enables an extra six
postural changes in addition to the six standard activities. Unprocessed tri-axial signals
from the inbuilt accelerometer and gyroscope sensors in a Samsung Galaxy II mobile make
up the dataset, which is sampled at a rate of 50 Hz.

The findings are based on a study in which 30 people, ages 19 to 48, were asked
to wear a smartphone around their waists. Twelve different tasks were given to these
participants (six primary and six transitions). Moving from one activity to the next is
documented as “standing to sit” and “lying to sit”, as well as the transitions between them.
Walking is also included in the list of fundamental activities. Meanwhile, videos and photos
of the investigation are being prepared for later data marking efficiency. Figure 2 depicts a
summary of the HAPT dataset’s occurrences.
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Figure 2. The number of activity samples in the HAPT dataset.

3.2.2. MobiAct v2.0 Dataset

The Biomedical Informatics and eHealth Laboratory (BMI lab) gathered and released
the MobiAct dataset [43]. The dataset comprises raw sensor data from a smartphone taken
as subjects engaged in various everyday actions and falls. The smartphone was placed
in a trouser pocket selected randomly by the individual. We utilize only scenario data
in this work to recreate real-world scenarios as suggested in [40]. The scenario data are
divided into five sub-scenarios of everyday life: leaving home, being at work, leaving work,
exercising, and coming home. The data were gathered from 19 participants as they engaged
in 11 distinct activities: 7 fundamental ones (standing, sitting, walking, running, leaping,
going downstairs, and walking upwards) and 4 transitions (stand-to-sit, sit-to-stand, car-
step in, and car-step out). The source data were acquired using the smartphone’s maximum
sampling rate, at around 200 samples per second (Hz). Figure 3 depicts a summary of the
MobiAct dataset’s occurrences.

3.3. Data Preprocessing
3.3.1. Data Denoising

The raw sensor data contains process measurement noise or other unanticipated noise
resulting from the individual’s lively motions during the investigations. A noisy signal
distorts the signal’s actionable data. As a result, it was critical to decrease the influence
of noise to recover relevant information from the signal for the production process. The
most frequently used filtering techniques are the mean filter, the low-pass filter, the Wavelet
filter, and the Gaussian filter [46]. Our investigation used a mean smoothing filter for the
accelerometer and gyroscope sensors to denoise the signals.
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Figure 3. The number of activity samples in the MobiAct v2.0 dataset.

3.3.2. Data Normalization

As seen in Equation (1), the raw sensor data are normalized to the range 0 to 1. This
procedure assists in resolving the model learning issue by ensuring that all data values
are within a close range. Consequently, gradient descents may achieve a higher rate
of convergence.

Xnorm
i =

Xi − xmin
i

xmax
i − xmin

i
, i = 1, 2, . . . . (1)

where Xnorm
i denote the normalized data, n denoted the number of channels, xmax

i and xmin
i

are the maximum and minimum values of the i-th channel, respectively.

3.3.3. Data Segmentation

Due to the volume of signal information obtained by wearable sensors, it is impractical
to incorporate all of the data into the HAR system at once. As a result, sliding window
segmentation should be performed before feeding data into the model. The sliding window
approach is widely employed in HAR for the detection of periodic actions (e.g., running,
walking) and static actions (e.g., standing, sitting, and lying) [47]. The unprocessed sensor
data are divided into fixed-length windows. A fraction of the neighboring windows
overlaps to maximize the quantity of training data samples and prevent the loss of the
transition from one activity to the next. Figure 4 illustrates the windowing procedure.

The sample data that is segmented by a sliding window with size N is a size of K× N.
The sample Wt is denoted as:

Wt =
[

a1
t , a2

t , . . . , aK
t

]
∈ RK×N (2)

where column vector ak
t = ak

t1
, ak

t2
, . . . , ak

tN
is the signal data of sensor k at window time t,

T is the transpose operator, K is the number of sensors and N is the length of the sliding
window. To make use of window correlations and perform the training procedure, the
window data is divided into the sequencing of windows:

S =
{(

W1, y1

)
,
(

W2, y2

)
, . . . ,

(
WT , yT

)}
(3)

where T denotes the window sequence’s period, and yt represents the window’s matching
action label of W. The most often occurring sample action will be used as the window’s
label for windows with several activity classes.



Appl. Sci. 2022, 12, 4988 9 of 21
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sensor data

Sensor Data
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Figure 4. Fixed-length sliding window technique used in this work.

3.4. The Proposed SEResNet-BiGRU Model

In the proposed model, we develop an end-to-end deep-learning model as a form of
hybrid deep residual architecture based on convolutional blocks and SE residual blocks.
Figure 5 presents the overall architecture of the proposed model.
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Figure 5. Detailed and unrolled architecture of the proposed SEResNet-BiGRU model.

3.4.1. Convolutional Block

A predefined set of elements is typically employed when a CNN is used. CNNs are
often used in supervised learning. Typically, these neural networks link each neuron to
every other neuron in the network’s succeeding layers. The neural network’s activation
function converts the neurons’ input value to the output value. Two significant elements
influence the effectiveness of the activation function. These include sparsity and the
capacity of the neural network’s lower layers to tolerate the decreased gradient flow.
CNNs frequently employ pooling as a technique for dimensionality reduction. Both the
maximum and average pooling procedures are commonly utilized, known as max-pooling
and average-pooling, respectively.

Convolutional blocks (ConvB) are utilized in this study to identify low-level char-
acteristics from raw sensor data. As seen in Figure 5, ConvB comprise four layers: 1D-
convolutional (Conv1D), batch normalization (BN), exponential linear unit (ELU), and
max-pooling (MP). Multiple learnable convolutional kernels acquire distinct characteris-
tics in the Conv1D, and each kernel produces a feature map. To stabilize and expedite
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the training phase, the BN layer was chosen. The ELU layer was utilized to boost the
model’s expressive capability. The MP layer was used to compress the feature map while
maintaining the most critical elements.

3.4.2. Structure of Gated Recurrent Unit

To alleviate the vanishing gradient issue, the Gate Recurrent Unit (GRU) was presented
as a unique RNN-based paradigm; nevertheless, the memory cells in the design result in
a memory capacity demand. The GRU is a simplified variation of the LSTM since it does
not contain a distinct memory cell in its design [48]. A GRU network has an update and
reset gate that manages the update level of each hidden state. It determines which data
needs to be transferred to the next stage and which does not, as seen in Figure 6a. GRU
gathers hidden state ht at time t from the output of the update gate zt, reset gate rt, current
input xt, previous hidden state ht−1 is calculated as:

zt = σ(Wzxt ⊕Uzht−1) (4)

rt = σ(Wrxt ⊕Urht−1) (5)

gt = tanh(Wgxt ⊕Ug(rt ⊗ ht−1)) (6)

ht = ((1− zt)⊗ ht−1)⊕ (zt ⊗ gt) (7)

where s is a sigmoid function and ⊕ is an elementary addition operation, and ⊗ is an
elementary multiplication operation.

xt-1

ht-1

GRU

GRU

xt

ht

GRU

GRU

xt+1

ht+1

GRU

GRU
ht-1 ht ht+1

ht-1 ht ht+1

Forward
direction

Backward
direction

ht-1

Hidden state
input from t-1

Hidden state
output from t

ht

tanh
!

Output from t

ht

xt Current data

!
ztrt gt

1-
1-zt

(1-zt)    ht-1

zt      gt

(a) (b)

Figure 6. Structure of Bidirectional GRU (BiGRU): (a) GRU cell and (b) unroll BiGRU.

To address the limitations of a conventional (unidirectional) RNN, Schuster and Paliwal [49]
created a bidirectional recurrent neural network (BiRNN) in 1997. Apart from the present
input, the output incorporates past and future data at a given period. This is performed
by concurrently training the network both forward and backward. To accomplish this, the
neurons of a standard RNN are divided into two sections: one concerned with the forward
direction and another for the backward direction. The positive neurons’ results are not
related to the negative neurons’ results, and vice versa. This results in the overall structure
depicted in Figure 6b. The following equations detail the computations required:

−→
h t = GRU(xt,

−→
h t−1) (8)

←−
h t = GRU(xt,

←−
h t+1) (9)

ht = [
−→
ht ,
←−
ht ] (10)

3.4.3. SEResidual Block

DL networks (LeNet, AlexNet, and VGGNet) frequently start with convolutional
layers for detailed descriptions. They terminate with a fully-connected layer for catego-
rization applications, which does not need to ignore connections. Sequential networks
are architectures where each layer transmits data to the following layer. The complexity
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of disappearing or bursting gradients increases as the sequential network’s layer depth
increases. To address this issue, the residual block in a ResNet enables the omission of
interconnections between blocks of convolutional layers, improves gradient propagation,
and enables the training of even deeper CNNs to avoid gradient vanishing concerns. The
following formula could be used to represent a residual layer:

ELU(x) =

{
x x ≥ 0
α× (ex − 1) x < 0

(11)

R(x) = ELU(x + f (x)) (12)

where f (x) represents the layer’s output, x represents the input, ELU(x) represents the
exponential linear unit function and R(x) represents the output of the residual block. The
residual component f (x) is provided in this block as two consecutive duplicates of three
operations: convolution with a 3 × 1 filter, batch normalization, and ELU activation.
Afterward, the feature map from f (x) is combined with the input x. Lastly, the combined
features are processed to the ELU activation function.

In this study, we proposed the SEResidual block to retrieve hybrid features hierar-
chically by integrating spatio-temporal and channel-wise data [50]. As seen in Figure 5,
this residual block was constructed of Conv1D layers, BN layers, ELU layers, SE compo-
nents, and a direct connection to BiGRU. The SE modules were included to increase the
recommended model’s representational capability in channel attention.

The architecture of an SE module is shown in Figure 7. Following the convolution
procedure, many feature maps are obtained. Nevertheless, specific feature maps may in-
clude duplicated data. The SE module performs feature recalibration to improve significant
features and disable less beneficial ones. This module is divided into two parts: squeeze
and excitation stages.

G
A

P

FC Re
LU FC

Si
gm

oi
d

Squeeze Excitation

FC GAP ReLUFully Connected 
Layer

Global Average
Pooling Layer

Rectified Linear
Unit Sigmoid

Sigmoid
Unit

Feature maps
U

Feature maps
U’

H

C
W

H

C
W

Figure 7. Structure of the SE module.

Firstly, the squeeze stage excerpts all the data corresponding to their channels. The
size C × H ×W of the feature map U corresponding to one channel in U is H×W. Feature
maps for each channel are squeezed into 1× 1 feature maps employing a channel descriptor
function, for example Global Average Pooling (GAP) [51]. This phase generates a scalar
value, including global information about the channel. Equation (13) demonstrates the
squeeze operation, where uc(i, j) signifies a feature map relating to channel c after X has
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gone through the convolution layer. The channel descriptor method Fsqueeze was employed
in this investigation, and GAP was included.

Zc = Fsqueeze(Uc) =
1

H ×W

H

∑
i=0

W

∑
j=0

Uc(i, j) (13)

Then, during the excitation stage, the channel-wise dependencies are examined utiliz-
ing channel descriptors collected during the squeezing stage. This may be accomplished
using fully-connected (FC) layers and non-linear functions. Equation (14) illustrates the
excitation stage, where z is the squeezed value, Wi is the ith FC layer, σ is the sigmoid
function, and Fexcite is the excitation function. According to the sigmoid, the excitation
step’s resulting value is 0 and 1. It can be utilized as a calibration factor. Excitation produces
a new weight s, multiplied by the current feature map U. The SE module employed in this
investigation is shown in Figure 7, along with the architecture of the squeeze and excitation
stages inside the SE unit.

s = Fexcite(z, W) = σ(g(Z, W)) = σ(W2ReLU(W1z)) (14)

The last process reshapes the output U to deploy the activation to the side path
network, where X = [x1, x2, . . . , xn]. Where snUn denotes the channel-by-channel multi-
plication of the scalar sn by the feature map. This procedure assigns adaptive weights to
feature channels, the SE block’s concept [52].

3.5. Hyperparameters

In DL, the settings of hyperparameters are utilized to regulate the learning process.
The proposed model makes use of the following hyperparameters: (1) epochs, (2) batch size,
(3) learning rate, (4) optimization, and (5) loss function. To establish these hyperparameters,
we specified the number of epochs to 200 and the batch size to 128. After 30 epochs, if no
progress in the validation loss was seen, we implemented an early stopping call to bring
the training process to an end. We began by setting the learning rate α to 0.001. After
six subsequent epochs, we adjusted it to 75% of its original value if the suggested model
validation accuracy did not increase. To reduce error, the Adam optimizer [53] was used
with settings β1 = 0.9, β2 = 0.999, and ε = 1 × 10−8. The optimizer uses the categorical
cross-entropy function to determine the error. Cross-entropy surpasses other approaches,
such as classification error and mean squared error [54].

3.6. Model Training and Performance Evaluation
3.6.1. Training

Following the specification of the modeling hyperparameters in the preceding section,
the hybrid deep residual network was trained on the two datasets (HAPT and MobiAct
v2.0). Instead of using a fixed train-test partition, we employed the five-fold cross-validation
(CV) approach to evaluate the recommended model’s effectiveness. The five-fold CV proce-
dure partitioned the whole dataset into five distinct, non-overlapping folds of equal size.
It matched the models with four folds, leaving the new fold for interpretation measurement.

3.6.2. Evaluation Metrics

It is possible to classify transitional activities as a multi-class categorization. Accuracy
and F1-score are commonly used measures for evaluating and comparing the efficiency of
the proposed models. These performance indicators are derived using a confusion matrix
to accurately determine the model’s ability to recognize transitional activities.

Given a multiclass classification issue using a collection A having n distinct class labels
Ci, (i = 1, 2, 3, . . . , n) represented by {C1, C2, C3, . . . , Cn}. For that situation, the confusion
matrix is an n× n matrix, as seen in Figure 8. Each row of the matrix corresponds to an
actual instance of a class, whereas each column corresponds to an anticipated instance of a
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class. At row i and column j, an element Cij of the confusion matrix specifies the number of
cases for which the actual class is i and the signified class is j.

Figure 8. Confusion matrix for a multiclass classification problem.

True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN)
are all factors that can be extracted from the confusion matrix and used to determine
performance measures. Given the label class Ci, the following mathematical formulae are
used to determine the metrics of TPi, FPi, FNi, and TNi.

TP(Ci) = Cii (15)

FP(Ci) =
n

∑
l=1

Cli − TP(Ci) (16)

FN(Ci) =
n

∑
l=1

Cil − TP(Ci) (17)

TN(Ci) =
n

∑
l=1

n

∑
k=1

Clk − TP(Ci)− FP(Ci)− FN(Ci) (18)

From Equations (15)–(18), we defined accuracy, precision, recall, and f1-score, for a
multiclass confusion matrix as in Table 3.

Table 3. Performance metrics for a multiclass confusion matrix.

Metrics Formulas

Accuracy Accuracy =
∑n

i=1 TP(Ci)

∑n
i=1 ∑n

j=1 cij

Recall of class Ci
Recall(Ci) =

TP(Ci)

TP(Ci) + FN(Ci)

Precision of class Ci
Precision(Ci) =

TP(Ci)

TP(Ci) + FP(Ci)

F1-score of class Ci
F1− score(Ci) = 2× Precision(Ci)× Recall(Ci)

Precision(Ci) + Recall(Ci)

Recall Recall =
1
n

n

∑
i=1

Recall(Ci)

Precision Precision =
1
n

n

∑
i=1

Precision(Ci)

F1-score F1− score = 2× Precision× Recall
Precision + Recall
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4. Experimental Results and Discussion

Subsections could be used to split this section. It should include a brief and accurate
summary of the empirical evidence, assessment, and possible exploratory implications.

4.1. Experimental Setup

The tests in this research were performed using the Google Colab Pro+ platform. The
Tesla V100-SXM2-16GB graphics processing unit (GPU) unit was operated to accelerate
the training of the deep learning models. The suggested SEResNet-BiGRU model and
other DL models were developed by Python using the TensorFlow backend (version 3.9.1)
and CUDA (version 8.0.6). The GPU was utilized to accelerate the DL prototype training
and testing.

We performed studies to demonstrate recognition interpretation using four deep
residual models: ResNet, ResNetSE, ResNeXt, and the proposed SEResNet-BiGRU model.
The ResNetSE model combines a ResNet-based model with an SE module in the shortcut
connection. ResNeXt is a deep residual network that needs fewer hyperparameters than
ordinary ResNet. This is achieved via their cardinality usage, a dimension added to the
width and depth of ResNet [55].

4.2. Experimental Results

The purpose of this study was to examine the usage of S-HAR in conjunction with
DL models to detect transitional behaviors. We utilized two HAR datasets, including
fundamental and transitional actions, HAPT and MobiAct v2.0. Preprocessed accelerometer
and gyroscope data were utilized for training and assessing the DL models using the
five-fold cross-validation methodology. The average accuracy and Standard Deviation
(SD) obtained from the experiments are considered to assess model performance. The
experimental findings are exhibited as follows:

Following the specification of prototype hyperparameters in the preceding step, the
hybrid deep residual network was trained on the two datasets (HAPT and MobiAct v2.0).
Tables 4 and 5 provide the exploratory outcomes.

4.3. Comparison of Results

To assess the proposed SEResNet-BiGRU model’s interpretation, we begin by compar-
ing it to baseline classification models (CNN, LSTM, and BiGRU). Summary hyperparame-
ters of all models conducted in this study are described in Appendix A. Table 6 summarizes
the experiment’s findings. SEResNet-BiGRU outperforms other models with an overall
accuracy of 98.03% and 98.92% on the HAPT and MobiAct v2.0 datasets, respectively. These
findings demonstrate that the SEResNet-BiGRU combination outperforms the transitional
HAR issues.

Table 4. Recognition effectiveness of DL models on the HAPT dataset by using different sensor data.

Model
Acc. Gyro. Acc. and Gyro.

Accuracy (%) Loss F1-Score (%) Accuracy (%) Loss F1-Score (%) Accuracy (%) Loss F1-Score (%)
(±SD (%)) (±SD) (±SD (%)) (±SD (%)) (±SD) (±SD (%)) (±SD (%)) (±SD) (±SD (%))

ResNet 96.97%
(±0.44%)

0.103
(±0.017)

92.53%
(±0.39%)

89.16%
(±6.39%)

1.185
(±1.460)

87.55%
(±5.13%)

97.87%
(±0.125%)

0.088
(±0.009)

93.89%
(±0.31%)

ResNetSE 96.45%
(±0.79%)

0.107
(±0.016)

92.62%
(±0.55%)

84.73%
(±7.31%)

1.895
(±1.970)

85.59%
(±5.28%)

97.89%
(±0.33%)

0.095
(±0.018)

93.81%
(±0.43%)

ResNeXt 96.38%
(±0.35%)

0.114
(±0.014)

91.99%
(±0.72%)

96.05%
(±0.36%)

0.137
(±0.018)

91.63%
(±0.83%)

97.43%
(±0.30%)

0.093
(±0.017)

93.33%
(±0.66%)

SEResNet-
BiGRU

97.01%
(±0.30%)

0.112
(±0.010)

92.76%
(±0.48%)

93.69%
(±1.95%)

0.290
(±0.114)

91.77%
(±0.59%)

98.03%
(±0.17%)

0.080
(±0.006)

94.09%
(±0.55%)
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Table 5. Recognition effectiveness of DL models on the MobiAct v2.0 dataset by using different
sensor data.

Model
Acc. Gyro. Acc.+ Gyro.

Accuracy (%) Loss F1-Score (%) Accuracy (%) Loss F1-Score (%) Accuracy (%) Loss F1-Score (%)
(±SD (%)) (±SD) (±SD (%)) (±SD (%)) (±SD) (±SD (%)) (±SD (%)) (±SD) (±SD (%))

ResNet 98.60%
(±0.11%)

0.057
(±0.007)

94.33%
(±0.46%)

91.48%
(±9.36%)

0.751
(±1.184)

86.73%
(±5.69%)

98.84%
(±0.16%)

0.058
(±0.014)

95.50%
(±0.42%)

ResNetSE 98.65%
(±0.18%)

0.040
(±0.009)

94.34%
(±0.90%)

96.93%
(±0.33%)

0.133
(±0.019)

90.65%
(±0.54%)

98.90%
(±0.09%)

0.052
(±0.004)

95.49%
(±0.52%)

ResNeXt 98.12%
(±0.31%)

0.070
(±0.009)

92.49%
(±1.12%)

94.98%
(±0.46%)

0.225
(±0.038)

84.65%
(±1.59%)

98.64%
(±0.16%)

0.072
(±0.006)

94.53%
(±0.41%)

SEResNet-
BiGRU

98.79%
(±0.11%)

0.021
(±0.004)

95.03%
(±0.89%)

97.08%
(±0.16%)

0.108
(±0.029)

89.86%
(±0.67%)

98.92%
(±0.09%)

0.048
(±0.012)

95.71%
(±0.43%)

Table 6. Experimental findings of different DL models.

Model
Accuracy (%) ± SD (%)

HAPT Dataset MobiAct Dataset

Basic DL models
CNN 94.40 ± 0.36 93.69 ± 0.34
LSTM 91.02 ± 1.50 83.38 ± 2.95
BiGRU 94.40 ± 0.36 90.43 ± 1.48

Proposed model
SEResNet-BiGRU 98.03 ± 0.17 98.92 ± 0.09

4.4. Comparison of Results with Previous Works

The SEResNet-BiGRU model is compared against state-of-the-art DL approaches in the
scope of S-HAR. In Table 7, two conventional machine learning approaches (SVM and KNN)
and three hybrid DL approaches are compared to the proposed SEResNet-BiGRU network:
LSTM-CNN [56], Inno-HAR [25], and HiHAR [40]. Five applicable models are applied in
this section based on the descriptions provided in the related articles. The findings reveal
that DL techniques surpass conventional machine learning methods significantly in overall
accuracy. The proposed SEResNet-BiGRU model obtained the highest performance on both
datasets, with 98.03% and 98.92%, respectively, nearly 2% higher than the prior analyses’
hybrid DL models. These findings support our hypothesis that the local spatio-temporal
and long-term context variables retrieved by our hybrid DL model provide a complete
interpretation of sensor data, consequently increasing classification accuracy. The findings
imply that deep residual models operate satisfactorily on raw signals. Nonetheless, SE and
BiGRU modules enhance HAR effectiveness for transitional activity recognition.

Table 7. Comparison results of the proposed model and previous works.

Model
Accuracy (%) ± SD (%)

HAPT Dataset MobiAct Dataset

ML Models
KNNs (k = 7) [40] 75.62 65.86
SVM [40] 89.26 63.60
Hybrid DL models
LSTM-CNN [56] 90.49 ± 1.01 91.15 ± 0.79
InnoHAR [25] 95.09 ± 0.49 93.70 ± 0.49
HiHAR [40] 97.98 ± 0.24 96.16 ± 0.22

Proposed model
SEResNet-BiGRU 98.03 ± 0.17 98.92 ± 0.09
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4.5. Effect of SE and BiGRU Modules

We achieved additional investigations to explore SE modules and BiGRU modules in
the SEResidual blocks of the proposed model. As shown in Table 8, both the SE module
and BiGRU module can enhance the effectiveness of the recognition on the two stan-
dard datasets.

Table 8. Comparison results of ResNet-based models with or without the SE and BiGRU modules.

SE Module BiGRU Module Dataset Accuracy (%)

- - HAPT 97.87%
X - HAPT 97.89%
- X HAPT 97.95%
X X HAPT 98.03%

- - MobiAct v2.0 98.84%
X - MobiAct v2.0 98.90%
- X MobiAct v2.0 98.89%
X X MobiAct v2.0 98.92%

Due to the SE and BiGRU modules, the proposed SEResNet-BiGRU model has superior
overall effectiveness. The complexity of a model is compared to the mean prediction time to
determine the model’s efficiency. A collection of test data samples is fed into the Tensorflow
Lite models, and the mean prediction time is calculated from this data due to this process.
Table 9 compares the mean prediction times.

Table 9. Comparison of mean prediction times obtained from ResNet-based models with or without
the SE and BiGRU modules.

SE Module BiGRU Module Dataset Mean Prediction
Time (ms.)

- - HAPT 0.1304
X - HAPT 0.3080
- X HAPT 1.1696
X X HAPT 1.3208

- - MobiAct v2.0 0.1276
X - MobiAct v2.0 0.2857
- X MobiAct v2.0 1.8489
X X MobiAct v2.0 2.0047

Table 9 shows the results of this experiment with the mean prediction time in seconds
to process one window of the deep learning models performing on the two datasets (HAPT
and MobiAct v2.0). The comparative results show that the mean prediction times vary by
added SE and BiGRU modules, and it was noticed that the BiGRU modules need more
computational time than the SE module. The proposed SEResNet-BiGRU model shows the
mean prediction time is 1.3208 ms. and 2.0047 ms. for HAPT and MobiAct v2.0, respectively.

4.6. Convergence Process

Figures 9 and 10 describe the convergence processes of the proposed SEResNet-BiGRU
model on HAPT and MobiAct v2.0, respectively. The loss rate of the proposed model
(figures on the right side) decreased gradually, and the accuracy rate increased smoothly
without any appearance of dilemma. These findings demonstrate that the SEResNet-BiGRU
model learns correctly and without any overfitting problems.
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Figure 9. The change of model accuracy and loss in the training and validation data of the SEResNet-
BiGRU on HAPT dataset.

Figure 10. The change of model accuracy and loss in the training and validation data of the SEResNet-
BiGRU on MobiAct v2.0 dataset.

5. Conclusions and Future Works

This research aimed to investigate the recognition of transitional activities using DL
and to develop the HAR model using a hybrid deep residual network. The proposed HAR
model, named the SEResNet-BiGRU model, initially learns hybrid spatial features from
raw sensor data via a convolutional block, and then learns spatio-temporal features via
SEResidual blocks composed of an SE module in the main path and a BiGRU in the parallel
path of the connection.

Physical activities identified in this article comprised everyday fundamental activities
and transitional activities gathered from two benchmark datasets (HAPT and MobiAct v2.0).
According to the experimental findings, the suggested hybrid model outperformed other
models in the HAR challenge (98.03% for the HAPT dataset and 98.92% for the MobiAct
v2.0 dataset). Additionally, we evaluated the suggested model in comparison to previously
published models for the same transitional HAR problem. The comparison findings
demonstrate that the SEResNet-BiGRU model outperforms all prior models.

Nevertheless, in the situation of the MobiAct scenario dataset, one constraint of the
proposed model is visible. Because the smartphone is held on an arbitrary side of the
pants and in an arbitrary orientation, there are certain instances in which the model cannot
distinguish between walking, walking upstairs, and walking downstairs. In both datasets,
transition classes are sometimes misclassified concerning their associated static postures.
There is no precise border between the prior posture, the transition, and the subsequent
posture, which creates the issue of many activities occurring inside the same data window.

In future studies, we will emphasize the generalization of our proposed model by
incorporating additional data segmentation techniques to address the constraints: for
instance, event-defined window strategies which require preprocessing to identify specific
events that are then used to specify successive data partitioning, and activity-defined
window strategies, which partition data based on activity adjustments.
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Appendix A. The Summary of Hyperparameters

Table A1. The summary of hyperparameters for the CNN network used in this work.

Stage Hyperparameters Values

Architecture

1D-Convolution
Kernel Size 5

Stride 1
Filters 64

Dropout 0.25
Max Pooling 2
Flatten -

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200

Table A2. The summary of hyperparameters for the LSTM network used in this work.

Stage Hyperparameters Values

Architecture
LSTM Unit 128
Dropout 0.25
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200

Table A3. The summary of hyperparameters for the BiGRU network used in this work.

Stage Hyperparameters Values

Architecture
BiGRU Unit 128
Dropout 0.25
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200
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Table A4. The summary of hyperparameters for the SEResNet-BiGRU network used in this work.

Stage Hyperparameters Values

Architecture

Convolutional Block

1D-Convolution
Kernel Size 5

Stride 1
Filters 64

Batch Normalization -
Activation ELU
Max Pooling 2

SE-ResNet Block × 8
(Main Path)

1D-Convolution
Kernel Size 5

Stride 1
Filters 32

Batch Normalization -
Activation ELU

1D-Convolution
Kernel Size 5

Stride 1
Filters 64

Batch Normalization -
SE Module -

(Parallel Path)
BiGRU Unit 128

Global Average Pooling -
Flatten -
Dense 128

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Number of Epochs 200
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