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Abstract: Static risk analysis techniques (SRATs) use event graphs and risk analysis assessment
models. Those techniques are not time-based techniques and hence are inadequate to model dynamic
stochastic systems. This paper proposes a novel dynamic approach to model such stochastic systems
using Dynamic Fault Trees (DFT). The proposed model is called Generic Dynamic Agent-Based Model
(GDABM) for risk analysis. GDABM is built on top of the well-known Agent-Based Modeling and
Simulation (ABMS) technique. GDABM can model the dynamic system agents in both nominal
(failure-free) and degraded (failure) modes. GDABM shows the propagation of failure between
system elements and provides complete information about the system’s configurations. In this paper,
a complete detailed case study is provided to show the GDABM capabilities to model and study
the risk analysis for such dynamic systems. In the case study, the GDABM models the risk analysis
for a chemical reactor/operator and performs a complete risk analysis for the entire system. The
GDABM managed to simulate the dynamic behavior of the system’s components successfully using
Repast Simphony 2.0. Detailed agent behavioral modes and failure modes are provided with various
scenarios, including different time stamps. The proposed GDABM is compared to a reference model.
The reference model is referred to as the ABM model. GDABM has given very promising results. A
comparison study was performed on three performance measures. The performance measures used
are (1) Accuracy, (2) response time, and (3) execution time. GDABM has outperformed the reference
model by 15% in terms of accuracy and by 27% in terms of response time. GDABM incurs a slightly
higher execution time (13%) when compared to the ABM reference model. It can be concluded that
GDABM can deliver accepted performance in terms of accuracy and response time without incurring
much processing overhead.

Keywords: multi agent system; failure analysis; dependent failures; risk analysis; agent-based
simulation; stochastic systems; event-graphs; dynamic fault-trees

1. Introduction

The field of system engineering conducts risk analysis and assessment for various
real-world industrial systems. Those systems have a high complexity level which depends
on the huge size of the system, implying an important number of interactions between the
system’s components and its dynamic operational environment.

Analyzing risks related to such systems considers mainly two factors: the probability
of having a failure and the severity of the resulting outcomes. This severity could vary from
minor consequences to disastrous ones. Thus, modeling and simulation of such dynamic
systems are crucial. Due to the complexity and the dynamic aspect of the studied systems,
a dynamic representation of the system’s behavior is needed to rank its performance and
analyze its reliability.

In literature, modeling techniques are classified into static and dynamic. Static mod-
eling techniques were used to assess system reliability, such as a bow-tie diagram, which
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consists of an event tree and a fault tree, and block diagrams. Those techniques are not
adequate for studying the dynamic effects of time-dependent systems; since there are
many interesting behaviors that static modeling techniques will not be able to model. An
example of such interesting behavior is time-dependent behavior that changes over time.
On the other hand, and after many developments over the past decades, scientists devel-
oped many dynamic modeling techniques that provide means of modeling and simulation
of the time-dependent behavior of various complex systems, including a wide range of
real-world industrial systems operating in a dynamic environment. Those techniques over-
come the limitations of the conventional static risk analysis techniques. Examples of such
methods are Petrinets [1], graphical Markov models [2], state-transition graphs, Business
Process Model [3], Stochastic Hybrid Automaton (SHA), Monte Carlo simulations [4], and
Agent-Based Modelling and Simulation (ABMS) [5].

Yagi et al. [6] have proven that ABMS is one of the most adequate tools to model
dynamic systems with autonomous agents. ABMS was proven to be suitable for risk
assessment since the agents frequently cooperate and interact with each other [7]. To
the best of our knowledge, ABMS is not widely used in the field of risk analysis and its
application is limited by performing a general risk analysis without providing any details
about the failure (causes and consequences), the failure propagation between the various
system’s components and the mutual relation between agents behavioral and failure modes.

This paper aims to (1) propose an extension to the classical ABM that overcomes
the above limitations, (2) provide full details about risk analysis, (3) represent the failure
propagation and risk analysis in the agent-based model, and (4) study the failure of a
system’ component to show its effects on the agent’s behavioral mode in addition to its
transition to the other system’ components. This extension is represented by a risk model,
which allows us to model and simulate the system behavior in nominal (failure-free) and
degraded (failure) modes [8]. The proposed model is called Generic Dynamic Agent Based
Model for risk analysis (GDABM).

The remainder of the paper is organized as follows. Section 2 highlights the main
dynamic models and Section 3 presents a literature review of the most used methods
in risk analysis. Section 4 identifies the selected methods for risk analysis. Section 5
gives a complete description of the classical ABM. Section 6 discusses the proposed model
(GDABM). Section 7 has the case study of using the chemical reactor/operator to verify
and validate the proposed model. Section 8 has the simulation testbed. Section 9 has the
conclusion and the future work of the paper.

2. Dynamic Modeling

Dynamic modeling, known as simulation modeling, is described mainly using mathe-
matical models. Delany et al. [9] assume that dynamic models (DM) are defined using a set
of rules. These rules take the current states as inputs and study how the modeled systems
change over time. In this subsection, a taxonomy of the main dynamic approaches applied
to complex systems will be shown. Borshchev et al. [10] describe DM as a relationship
providing the next state of the studied system based on its present state. Min and Zhou [11]
categorized the model variables as follows:

• Non-probabilistic/Deterministic models that use static crisp parameters. They are
decomposed into two categories: (1) Single objective models and (2) multi-objective
models;

• Probabilistic/Stochastic models that include unknown or random parameters [12,13]
where Markov models can be used to model such stochastic events. Those approaches
can be further classified as (1) the optimal control theory and (2) the dynamic pro-
gramming;

• Hybrid models have mixed elements from both the deterministic and the stochastic
models. Hybrid models include both the simulation aspects and the inventories theory
to cover crisp and uncertain parameters;
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Beamon [14] and Labarthe [15] have classified the models based on the used tools
(such as economic, analytical, simulation, and organizational approaches). One of the
important strengths of dynamical modeling is the ability to illustrate the temporal aspect
throughout the simulation. Three modeling approaches of the temporal aspect could be
observed in Figure 1: Random Number Models, Continuous Time Models, and Discrete
Event Models. Hybrid modeling illustrates the combination of those approaches.

Figure 1. Classification of dynamic modeling Approaches.

2.1. Random Number Models

In the field of risk analysis, most of the work did not focus on studying the events and
hence the probability of detecting events in a simulation is very rare.

A possible solution is to conduct the experiment with a random generation of inputs.
A computer is defined as a deterministic machine capable of carrying out instructions
fed beforehand, represented as a program. Deterministic algorithms are used for the
generation of random numbers (GRN); those numbers should resemble random even on
large scales [16]. The best algorithms for GRN have been developed by mathematicians [17].
For reliability analysis, Monte Carlo Models, Markov models, and Agent-based models are
on the top of random number models.

2.2. Continuous-Time Models

In continuous-time model (CTM) and as the name indicates, a continuous description
of the variable’s changes is provided using some differential equations. CTM covers:

• System Dynamics (SD): SD is defined as a mathematical model that represents complex
systems. The applications of this model are very wide, and it is mainly discrete.

• Markov model: Markov model is a set of consecutive random variables that represent
the system evolution dynamically in continuous or discrete-time models. Although
Markov chains [18] have been implemented with success in the context of risk analy-
sis [13], they are inadequate for large systems [16], and they are inadequate for short
time interval [19].
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2.3. Discrete Event Models

In contrast to continuous models, for a discrete event system (DES), ref. [20] the state
variable changes at discrete/numerous times, with a chronological representation of each
operation as a sequence of events. Each event is described by an occurrence time that may
change the system’s state. For DES, changes may happen only at the moment of event
occurrence. DES can be done using activity-based, event-based, three-phase approaches,
and process-based [21]. In literature, the most used DES tools are

• Discrete event simulation (DES) describes entity flow and resource sharing using enti-
ties, resources, and block charts with the related changes at the prescribed occurrence
time [22]. DES is used in different applications and mainly for safety analysis and
performance evaluation [23]. Arena, ProModel, Witness, and Anylogic are the most
used software for DES.

• Petri Nets (PN) is described as a mathematical modeling language that can represent
distributed and discrete systems using some places, arcs, transitions, and tokens.
PN was applied successfully in different fields such as reliability analysis, planning
of complex production systems, modeling of automated production systems, and
management of supply chains [24–29].

• Business Processes Model (BPM): Known as BPMN (Business Process Modeling No-
tation). It is a standard method representing processes using simple diagrams easily
managed by IT and business managers [30,31].

2.4. Hybrid Models

• Agent-based modeling (ABM): ABM is a new approach used to model distributed and
intelligent systems. It is a decentralized model, highly preferred for complex systems
and characterized by the diversity of its abstraction level. ABM was tested and used
in different application as supply chain [32], air transport [33,34], health and spread
of pandemics [35], and evacuation plan in a fire situation with obstacles [36], but its
application for risk engineering science is very limited. ABM is considered a simple
modeling tool for complex system representation by modeling only the individual
units named agents and simulating their interaction to get the behavior of the whole
system [16].

• Logical-combinatorial approach (LCA): It is mainly used for supervised and unsu-
pervised dynamic pattern recognition problems. It aims to classify a set of classes as
normal or deviated [37]. The majority of the papers developed using LCA focused
on three problems: feature selection, supervised classification, and unsupervised
classification [38]. This approach can be used to perform dynamic risk analysis as it
can show two different categories of behavioral modes: Normal and Abnormal.

2.5. Why Agent-Based Model?

ABM is characterized by the definition of behavior at the individual level. In this work,
it is used because of the below:

1. It is made up of several intelligent agents that communicate and cooperate with each
other within a distributed and dynamic environment [7];

2. Its intelligence is represented by the ability to make decisions under incomplete/partial
perception of its environment [39]

3. Its capability to analyze complex models with a high level of inter-dependencies;
4. Its ability to deal with decentralized/distributed components;
5. Its flexibility: represented by the dynamic number of agents in the simulation;
6. Its ability to detect the unexpected behavior of a complex system;
7. Its very high Computational power allows users to modulate complex systems with

micro details.
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3. Risk Analysis

Risk Analysis (RA) is the first step in the risk management process that aims to identify
risk origin, impacted areas, and probable interventions [40,41]. It is defined as a measure
of losses on economic, population, and environmental levels. It is characterized by two
aspects that provide an evaluation of the related risk level: likelihood or the expected
probability ψ of an event occurrence and the severity or the effect η of its undesirable
consequences. Four risk levels can be distinguished: high (H), significant (S), moderate
(M), and low (L) risk regions, as shown in Table 1. Risk assessment process could be used
in any system type, such as insurance systems [42], nuclear industry [43], transportation of
ice-covered waters [44], building fire evacuation [45], online shopping transaction [46], and
food security system [47].

Table 1. Risk Level Classification.

Severity of Harm (η)

Likelihood of Catast-Rophic: Serious: Extensive Moderate: Medical Minor: First Negligible: No
Occurrence (ψ) Death, Injuries Toxic Release Treatment Required Aid Treatment Injuries or Illness

Very Likely H H H S S
ψ >= 10−1

Likely H H S S M
10−3 <= ψ < 10−1

Moderate H H S M L
10−6 <= ψ < 10−3

Unlikely H S M L L
10−9 <= ψ < 10−6

Rare S S M L L
ψ < 10−9

3.1. Classification of Reliability-Based Methods for Risk Analysis (RMRA)

RMRA are classified into three categories: Qualitative, Semi-Quantitative, and Quan-
titative, which depend on the type of available data [48,49]. Those categories with the
covered methods are visualized in the form of a Venn diagram, presented in Figure 2.

Qualitative Analysis Quantitative Analysis

What− i f

HAZOP

Checklists

FMEA FTA

BT

ET

DFT
POF

MCs

FST

SORM

MCDA

Semi−Quantitative Analysis

Figure 2. A classification of the presented reliability-based methods for risk analysis.

3.2. Qualitative Risk Assessment (QRA)

Insufficient data leads to a qualitative risk assessment that uses some information
about hazards, causes, and outcomes of failure, in addition to the probability of failure
events, to produce reliability. The most used methods for QRA are Hazard and Operability
Study (HAZOP) [50], What-if/Checklist, Logic diagrams, and Failure Modes and Effects
Analysis (FMEA) [51].
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3.3. Semi-Quantitative Risk Assessment (SQRA)

SQRA is to be applied whenever the studied system requires further details than the
qualitative approach [49]. It covers some quantity of probability, outcomes, and risk value.
It may be conducted using fault tree analysis (FTA), Dynamic fault tree (DFT), event tree
analysis (ETA), bow-tie analysis (BT), or risk ranking matrix [52].

3.3.1. Dynamic Fault Tree

FTA is used for different applications to study system dependability [53]. It consists of
many logic gates that represent the relationship between failures and their origin. In an
FTA, basic events are independent, and no consideration of events sequencing/order is
possible [54]. This model is called Static Fault Tree (SFT). In literature, many attempts have
been reported to overcome these constraints, with consideration of the temporal aspect and
statistical dependencies in the FT model. In 1976, Fussell et al. [55] have introduced the
concept of Priority-AND (PAND) gate. Later, many other extensions to the SFTs have been
proposed (e.g., DFT [56], temporal fault trees [57], and State/event fault trees [58]). The
most popular one is the DFT. It retains the PAND gate and adds many others like priority
OR (POR), Functional Dependency (FDEP), Warm Spare (WSP), and Sequence enforcing
(SEQ). Unlike the static fault tree, DFT uses both Boolean and dynamic gates to specify
logical relationships among events.

3.3.2. Event Tree Analysis

An event tree analysis (ETA) is performed following the bottom-up approach. It
identifies all potential event sequences which may result from the initial event. Event trees
were applied in many cases to analyze risks for chemical processes [59]. This analysis
consists of two parts: analyzing the causes of an event (failure mode) using DFTA and
identifying the sequence of events using ETA. The combination of DFTA and ETA forms a
Bow-Tie Analysis (BTA).

3.4. Quantitative Risk Assessment (QRA)

QRA is to be applied whenever the analyzed risks need further detailed analysis.
QRA assesses risks to identify and prioritize technology needs and evaluate regulatory
alternatives [60]. Quantitative methods used in the literature can be analytical (such as the
probability of failure POF, second-order reliability method SORM), probabilistic (Monte-
Carlo simulation MCS, stochastic response surface methods SRSM), or sophisticated (fuzzy
set theory FST, multi-criteria decision analysis MCDA) [61]. Those reliability-based methods
are then categorized into FM analyses (FMEA), tree and diagrammatic analyses [62–65]
(FTA, DFT, ETA, and BT), and hazard analyses (HAZOP). Ref. [66] contains further details
of risk assessment methods. Complex mathematical and statistical problems can be easily
represented and solved using Monte Carlo simulation. It was applied in many fields such as
Energy, finance, project management [67], engineering [68], insurance, transportation [69],
human health risk assessment [70], and manufacturing. Kolios et al. [71] declare that MCs
come with high computational effort, which is considered the main disadvantage.

4. Selected Methods for Risk Analysis

After providing an overview of the main methods used for risk assessment, Table 2
highlights some capabilities and limitations of those methods.



Appl. Sci. 2022, 12, 5062 7 of 33

Table 2. A comparison between the main reliability methods.

Method Capabilities Limitations Reference

FMEA Easy implementation Competent facilitator [51]
for reaching
consensus [72]

in scoring
FTA, Visual representation Cumbersomeness in [59]
ETA of events relations case of highly

granulated analysis
BTA Efficient link of Common cause and [73]

ETA and FTA dependency failures [74]
Dynamic Representation of Inaccurate results for [75]

FTA dependent events inappropriate SDE
HAZOP Structure description Extensive [61]

of hazard documentation
MCS Direct simulation, Large computational [76]

easy to implement effort [77]

As shown in Table 2, Dynamic Fault Tree (DFT) and Monte Carlo simulation (MCs)
are the most suitable method for dynamic systems. MCs is considered the ideal solution
to model random events with rare probability, which is the case of failure events [78],
but this method requires a high computational effort [71]. DFT is the best method to be
used for fully dynamic systems with consideration of probability of failure and repair
rate [79]. In this work, the authors used DFT to consider the dependencies, sequences, and
redundancies of FMs using special dynamic logic gates [73]. Furthermore, it allows the
representation of the combination of events and the effects of the order of the failure [79].
In contrast to the static fault tree, DFT covers dynamic and logical gates that represent the
relationship between the studied events.

As in this work, the authors aim to represent the dynamic agent’s behavioral and
failure modes, so DFT was used to represent the failure propagation between the system’s
components and perform risk analysis.

5. Classical Agent-Based Model (ABM)

This section discusses the classical ABM modeling technique [5]. ABM models the
agents of a specific system and simulates the interactions of these agents with the envi-
ronment to get the overall system behavior, as shown in Figure 3. ABM is used to model
and simulate systems in different sectors [80] such as traffic [81], Epidemic transmission
(COVID-19) [82], and construction [83]. The following subsections discuss the agents and
the environment modules in addition to the use of ABM to assess risk analysis.

Figure 3. Agent interaction with the environment.
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5.1. Agent

In literature, the term agent has many definitions. In this paper, an agent is defined
as an autonomous entity with an informative state and could be either software or hard-
ware [84]. The informative state S is defined as in the tuple S = <X, Y, BMs> represented
in Figure 3 where:

X. It is a finite set {x1, · · · , xθ} of variables that define the dynamic characteristics of
an agent, where θ is the total number of variables for an agent.

Y. It is a finite set
{

y1, · · · , yρ

}
of attributes that define the static characteristics of the

agent, where ρ is the total number of attributes for an agent.
BMs. It is a finite set of behavioral modes (BM)=

{
BM1, · · · , BMρ

}
that specifies the

rules under which the agent acts, where $ is the total number of behavioral mode for an
agent covering the nominal and failure modes.

5.2. Environment

An environment is the place where an agent is located [84]. For each agent Ai, there
is an environment Ωi defined as the set of all objects/agents outside Ai. A mutual re-
lationship exists between agent-environment: agents use any information sensed from
the environment to make possible decisions whenever needed and they are capable of
producing output actions that affect the environment, as shown in Figure 3. Sometimes,
the collected information is incomplete. Due to their intelligence, agents will make their
decisions in such conditions of uncertainty [39].

5.3. Risk Analysis Using Classical ABM

ABM was used for risk analysis in various fields such as reinforcement learning [85], fi-
nancial risk [86], social risk [87], oil sector [7], gas sector [88], natural disaster and emergency
systems [89–92], disease propagation stochastic modeling systems [93], supply chains [94],
intrusion detection and prevention systems for Android mobile devices [95], green edge
computing systems [96], and cloud computing [97].

Meanwhile, we have investigated state of the art in multi-agent work that took stochastic
systems into consideration and we have listed the following references: smart electricity
grids and markets, biology epidemics distribution systems, and ecological systems [98–103].
However, they didn’t show the details of the methodology used in the problem-solving
process. A limited number of authors are explicitly using ABM as a novel modeling
approach [104–106] and their proposed approach does not represent the failure propagation
between system agents. To do so, a risk model should be considered for ABM. This model
is presented in Section 5.

6. Generic Dynamic ABMS (GDABM) for Risk Analysis

This section presents a proposed extension of ABM allowing the representation of
the overall system behavior in normal and degraded modes in addition to the analysis of
existing risks. This extension forms the new risk model called Generic Dynamic Agent Based
Model (GDABM) for risk analysis. Figure 4 shows the 4 components of GDABM:

1. Behavioral Modes (BMs);
2. Failures Modes (FMs);
3. External Failure Agent Communication (EFAC);
4. Internal Failure Agent Communication (IFAC).
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1. Behavioral Modes (BMs)

2. Failures Modes (FMs) rep-
resented in a bow-tie dia-
gram showing causes and
outcomes for each failure

3. External Failure Agent
Communication (EFAC)

4. Internal Failure Agent
Communication (IFAC)

Figure 4. Proposed features to be added for the classical agent model.

Those components provide a standard pattern (or metamodel) for the system’ agents.
The first component is used to illustrate the system in its different operating modes. The
second component allows risk situations to be identified with full details and components
3 and 4 are used to assess and represent the spread of risk from one element to another.
GDABM represents the contribution of this work because these four components are the
elements necessary and sufficient to model any agent behavior and also analyze and
assess the risk according to the evolution of the system. The following sections discuss
the components.

6.1. Behavioral Modes (BMs)

In the field of risk analysis, the concept of agent mode defines the agent’s operational
behavior in the presence of failure conditions. In the same way, the nominal agent mode
defines the agent’s operational behavior without the presence of any failure. Behavioral
modes (BM) define the agent’s behavior in both its nominal and degraded modes. BM
describes the dynamic behavior of a multi-agent system by continuously measuring the
behavior of each agent in that system. As cited in Section 4, an agent is defined by a set
of variables, attributes, and behavioral modes. Its dynamic movement in a behavioral
mode Mi is defined using a set of sequential modules/blocks represented as activity blocks.
Those modules can be of 4 types, as shown in Figure 5.

Figure 5. Behavioral mode of an agent.

1. Start Module (SM) : It is the starting point at which the agent is created and ready
to process.

2. Activity Process Module (APM) : It represents the various activities to be processed
by an agent a. It describes the interaction between a and other system agents. Such
activities may include creating new agents or deleting existing ones. APM has the
following characteristics, as shown in Figure 6.

(a) A mathematical relation : It can be of two types:

• Discrete relations fi:

x(k + 1) = fi(x(k), y(k), u(k), v(k)), M( fi); (1)
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• Continuous relations gi:

x∗(k) = gi(x∗(k), y(k), u(k), v(k)), M(gi); (2)

where: x(k): finite set of agent a variables;
y(k): finite set of agent a attributes;
u(k): variables of agents in relations with a;
v(k): attributes of agents in relations with a;
M( fi): set of behavioral modes M( fi) ⊆ BM, when fi is valid;
M(gi): set of behavioral modes M(gi) ⊆ BM, when gi is valid;
x∗: subset x∗ ⊆ x of the agents variables;

(b) A duration : It is the time required to execute the activity process;
(c) Consumable Input Agents: They are consumable agents that help to generate

the output agents.
(d) Non-consumable Input Agents : They are non-consumable agents that should

be allocated to the agent activity to perform a certain task then get released on
task completion.

(e) Output Agents: They are the agents produced at the end of the activity.
(f) Activity Agent: It is the agent executing the activity.
(g) Activity engine: It is the core of the activity process that identifies the in-

puts/outputs agents and controls the actions among different activity compo-
nents. It describes how to generate output agents using input agents.

(h) Inputs Actions: They are pre-actions that should be performed just before the
execution of the APM (e.g., allocating non-consumable agents for a certain
amount of time)

(i) Outputs Actions: They are post-actions that should be performed once the
APM is performed (e.g., deallocating non-consumable agents after the task is
completed).

(j) Filtering Conditions: Which precise the criteria required for consumable/non-
consumable agents of the activity.

3. Decision Making Module (DMM): It is the module responsible for checking some
conditions on the agent’s variables. The result decides how the agent proceeds.

4. End Module (EM) : It is the point where the agent is terminated and deleted from
the system.

Making a coffee represents an example of the Activity Process Module. In the coffee
preparation process, the following assumptions are used:

• Duration is the amount of time to make a cup of coffee which is assumed to be 45 s.
• Consumable input agents are coffee powder, water, electricity, and an empty cup.
• Non-consumable input agents are coffee room and the coffee table.
• Output agent is the prepared cup of coffee.
• Input action is the process of reserving the coffee machine/making the water tempera-

ture 65.
• Output action is the process of releasing the coffee machine.
• Filtering Conditions is the process of selecting one coffee powder brand among a set

of alternatives in the kitchen.
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Figure 6. An Activity Process Module.

6.2. Failure Modes (FMs)

Failure modes (FMs) are events that describe the agents’ failures in detail. For each
agent in the system, FMs identify (1) what triggers the agents to fail and (2) what caused
the agent’s inability to comply with the expected level of performance. FMs assume
the following:

• Facts are represented by events;
• Agents can have one or more events.
• An event can be either active or inactive;

Failure modes have different attributes as described in Equation (3). They are classified
into three categories, Boolean Failure Modes BFMs , Stochastic Failure Modes SFMs , and
Complex Failure Modes CFMs.

FM =< N, A, F, S > (3)

where N, A, F, and S are:

• N is the failure mode’s name;
• A is the agent that experiences the failure;
• F is the current value of the failure whether it is active or inactive failure.
• S is the set of successor events in case of active failure, represented in an event tree.

1. Boolean Failure Modes (BFMs): A Boolean Failure Mode is an event representing a
certain condition/expression (e.g., a > b, a + b < c, · · · ) and has the value of that
expression. Once this expression is true or valid, the failure mode is said to be active.
In general, the expression is directly related to the agent’s variables. BFM is expressed
in terms of the Boolean expression B as in Equation (4):

BFM =< N, A, F, S, V > (4)

where V is the Boolean expression associated with the agent variable(s).
2. Stochastic Failure Modes (SFMs): SFM is a failure mode defined as a probability of

failure. SFM is represented in Equation (5)

SFM =< N, A, F, S, P > (5)

where P is the probability that represents the likelihood of the system’s failure;
3. Complex Failure Modes (CFMs) A CFM is defined as in Equation (6):

CFM =< N, A, F, S, D > (6)
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where D represents the set of predecessor events of the CFM represented in a dynamic
fault tree. Predecessor events could be either of type BFM or CFM. A CFM is enabled
when the result of the output of the combinational circuit is enabled.

Figure 7 has the bow-tie diagram. It consists of the combinational circuit, PAND, POR,
SEQ, SPARE and FDEP gates, representing the dynamic fault tree. The diagram also has
the event tree representing the set of consecutive events that occur on failure. The bow-tie
diagram is a typical example of the CFM.

Figure 7. A Bow-Tie Diagram Activity.

6.3. External Failure Agent Communication (EFAC)

An External Failure Agent Communication (EFAC) governs the communication among
different agents (connection d). A failure of an agent i could be propagated to other
surrounding agents. When a failure mode iFM of an agent i becomes active, this agent
broadcasts a message to all surrounding agents. The propagated message contains complete
information about the failure. This failure will be added to the set of external failure
elements of the surrounding agent’s failure modes.

For example, if we consider a multi-agent environment where the agents are trucks
moving in a highway. If a truck t1 travels from a point A to a point B, a collision between
two other trucks t2, and t3 in the same path of the truck t1, might cause a significant delay
to truck t1. This collision information will be shared with t1 and it is considered as an
external agent failure for t1.

6.4. Internal Failure Agent Communication (IFAC)

In the proposed GDABM model, there is a bidirectional influence between the FMs
and the BMs for any agent. This influence describes how the change in the value of the
agent’s variables in a behavioral mode might trigger an agent’s failure mode.

For example, in a car, many failure modes could occur. Failure modes could be
mechanical, electrical, fuel-based, car body, etc. Initially, all of these failures are assumed
to be inactive. The car, in this case, is assumed to be functioning properly (in its nominal
mode). In case of any failure activation to any of the aforementioned components, that
would lead to a degraded functionality of the car (degraded mode) and might lead to a
more severe total dysfunctional of the car.

There are two sets associated with any agent i, BMs set (iBM) and FMs set (iFM). If the
number of elements in the FM set is µ, then the number of elements in the BM set can take
up to 2µ values, one of which is considered nominal .

The following subsections have the influence of the BMs on the FMs and vice versa.
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6.4.1. BMs→ FMs

This section has the influence of the BMs on the FMs (connection a). The BMs are
assumed to have a set of variables denoted by X. These variables have constraints. The
constraints on the agent’s variables define a set of CBFM for that agent.

Equation (7) computes the FM as a function of the BM’s variables.

iFM = ϕi(X) (7)

where: iFM: is a CBFM of the agent i, ϕi(X): is a boolean expression of X for an agent i. If
ϕi(X) is true, iFM becomes active and will be added to the set of active failure modes of the
agent i.

6.4.2. FMs→ BMs

The behavior of an agent i in a multi-agent environment is assumed to be initially in
its nominal mode iNom.

Nominal mode iNom contains a set of activities υ. Each activity υ has a set of FMs. The
set iIFAC covers all possible FMs that are generated within the agent during the execution
of any activity υ. Moreover, iEFAC covers the set of all possible failure modes that occur by
other external agents.

For each agent i, a set of failure modes iFM is defined as an in Equation (8):

iFM = iIFAC ∪ iEFAC (8)

Equation (9) computes the behavioral mode iBM of an agent i as a function ϑ of the set
of the active failure modes iFM of that agent.

iBM = ϑ(iFM) (9)

If iFM does not contain any FM elements, iFM = φ, then the iBM of the agent i is nominal
iNom . On the other hand, any addition of a failure mode element to the set of active failure
modes leads to a disruption of the behavioral mode (connection b).

Figure 8 represents the proposed model (GDABM). The figure shows the interaction
between an agent i and its environment. The GDABM is composed of: (1) Risk Model Block
(FM): It has the set of failure modes available in the GDABM in addition to their causes
and consequences. Sources/causes of failure modes are described in a dynamic fault tree
and their consequences are illustrated in an event tree. For each failure mode, there is an
associated behavioral mode to be triggered (2) Behavioural Mode (BM) module contains a
set of degraded modes that are possible to occur in addition to the nominal mode. (3) Set of
Variables: It holds the static characteristics of the agent. (4) Set of Attributes: It holds the
dynamic characteristics of the agent. (5) Agent’s environment: It holds the external agents.
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Figure 8. Generic Dynamic Agent-Based Risk Model (GDABM).

7. Case Study: Modelling Chemical Reactor/Operator Using GDABM

This section has a detailed case study of a multi-agent system that uses the proposed
Generic Dynamic Agent-Based Model (GDABM) for risk analysis to models and simulates
both nominal and degraded conditions of a chemical reactor system that is widely used in
the industry [107].

The chemical reactor takes input products from two different production lines,
ProductionLine1 and ProductionLine2. The chemical reactor mixes the two products to-
gether in a chemical reaction resulting in an output product. The output product is placed
in a third production line ProductionLine3. The chemical reactor system consists of two
main agents agent reactor and agent operator as shown in Figure 9.

Figure 9. Chemical Operator/reactor.

7.1. Agent Reactor

The agent reactor has production lines ProductionLine1 and ProductionLine2.
The agent reactor is connected to the three valves (v1, v2, and v3). Valves v1 and v2

are the input valves used to load products to the reactor. Valve v3 is used to unload the
products. The reactor is equipped with a level sensor that reads the current volume of the
product inside the reactor in real-time. During a chemical reaction, the reactor enters in a
state lock then it will remain unlock once the reaction is done.

The agent reactor has one attribute (Vmax) that represents the maximum capacity of
the reactor in addition to seven variables that are described as follows:
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1. Volume V: It has the current volume of the product in the reactor,
2. Gas Concentration (GC): It has the concentration of the gas in the reactor’s environment,
3. Release Rate RR: It is the rate in which the gas is released from the reactor.
4. Input Iv1: It is the valve used to load the products from ProductionLine1 when v1

is open.
5. Input Iv2: It is the valve used to load the products from ProductionLine2 when v2

is open.
6. Output Ov3: It is the valve used to unload products to ProductionLine3 when v3

is open.
7. State S: It describe the state of the reactor that can be Locked L or Unlocked U.

The reactor’s nominal mode has two activities transform products, and wait. Transform
products is the activity that transforms two quantities of consumed elements, P1 and P2, to
produce P3 (produced element), as shown in Figure 10. The trans f orm− product activity is
only enabled when the reactor has products ready and its state is Locked. In the nominal
mode, whenever the state of the reactor is Unlocked, Wait activity is triggered.

Figure 10. Transform-Product Activity.

7.2. Agent Operator

The agent operator has two attributes. The first one is the Gas Concentration Threshold
(γ) which is the maximum value of the gas concentration above which it is considered
to be toxic and needs immediate attention. The second one is the exposureTime (τ) that
represents the maximum exposure time of an operator to a toxic Gas release before being
out of order (irreversible state). It has also four variables:

1. Input P1: It is the maximum quantity of products to be loaded from ProductionLine1.
2. Input P2: It is the maximum quantity of products to be loaded from ProductionLine2.
3. Output P3: It is the maximum quantity of products to be unloaded from the reactor.
4. State S2: It describe the state of the reactor that can be Idle , Inactive , or Out of order.

Initially, the operator and the reactor agents are assumed to be functioning properly in
their associated nominal modes.

The operator’s nominal mode has four activities:

1. Load: The load activity is the process of filling the reactor’s production lines
ProductionLine1 and ProductionLine2 with quantities P1 and P2 respectively.
The products’ incoming rates to the production lines are assumed to be dv1 and dv2

respectively.
The load activity is executed with consideration of the following: the total quantity of
the products to be added to the reactor (P1+P2) in addition to the quantity of products
inside the reactor (V) is less than or equal to Vmax as shown in Equation (10).

P1 + P2 + V <= Vmax. (10)

2. Unload: The unload activity is the process of pumping out an amount P3 through
ProductionLine3 with outgoing rate dv3 .

3. Wait1: This activity represents the process of waiting for the reactor to be Unlocked. It
is a pre-process of the load activity in a Locked reactor.
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4. Wait2: This activity represents the process of waiting for the chemical reaction to
be performed in time τ. It is an intermediate process between the load and the
unload activities.

The Load/Unload activities are only enabled when the state of the reactor is Unlocked.
In the nominal mode, whenever the state of the reactor is locked, a Wait activity is triggered.

7.3. Failure Analysis of the Chemical Reactor/Operator Using GDABM

Figure 11 illustrates the Reactor/operator system with the proposed risk model that
shows for every agent the set of all possible failure (including fault and event trees), and
behavioral modes plus the mutual relation between them.

Figure 11. Reactor/Operator with the risk model.

The Agents reactor/operator experience different failure events and failure modes.
Table 3 contains seven different failure modes that are used as examples in this paper.
The first failure mode FM0 illustrates quantity above threshold in the reactor caused by
the Transform products activity or a misread of the level sensor. The second failure FM1 is
overfilling that take place with the existence of a malfunctioned operator and level sensor
failure followed by a quantity above threshold Figure 12.

FM2 represents Over-temperature and FM3 Over-pressure. The top event for the
agent reactor is FM4 that represents gas leakage from the reactor. FM4 occurs when at least
one of the failure modes FM1, FM2 and FM3 occur.

Table 3. Agents failure modes.

Failure Mode Type Agent Description

FM0 Boolean Reactor Quantity above
threshold (V > Vmax)

FM1 Complex Reactor Overfilling
FM2 Complex Reactor Overtemperature
FM3 Complex Reactor Overpressure
FM4 Complex Reactor Leakage
FM5 Boolean Operator Toxic inhalation

(GC > γ)
FM6 Complex Operator Suffocation
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Figure 12. Dynamic Fault Tree.

By consequence, reactor’ behavior mode changes from RNom (nominal mode) to RDeg
(degraded gas leakage mode) where the gas concentration is measured continuously through
an activity called compute GC (gas concentration), and the agent reactor sends a gasleakage
message to the agent operator. FM4 is considered as an external failure mode to the
operator operatorEFAC, as the failure occurs at the reactor rather than at the operator. Once
FM4 occurs, the behavioral mode of the agent Operator change form ONom (nominal mode)
to ODeg1 (degraded mode), where the operator evaluates the risk level related to the Gas
Leakage.

FM5 is the failure mode of the operator representing a gas concentration GC exceeding
the Gas Concentration Threshold γ. FM5 is an internal failure mode reactorIFAC. FM5 is
BFM; since it depends on the condition whether the gas concentration exceeds the threshold
value or not. FM6 is a suffocation failure mode that occurs if the sequence of FM4, E1
and FM5 is valid. Once FM6 is enabled, operator’ behavior mode changes from ODeg1
(operator’s degraded mode 1) to ODeg2 (operator’s degraded mode 2), where the state of the
operator change from inactive to out of order due to the toxic inhalation.

Table 4 summarize the main events that might occur during the chemical reaction
including their descriptions and probability of failure [108].

Those events and the related failure modes are then represented in a dynamic fault
tree as shown in Figure 12.

A gas leakage eventually causes evaporation of Hydrogen sulfide H2S that reduces
the volume level inside the reactor. The atmospheric dispersion of gases continues until the
failure is fixed or the volume of the product becomes less than the capacitymax and hence it
might eventually restore its nominal mode.

Table 5 represents the various activities and their associated equations where V+,
GC+ represent the products’ volume and the gas concentration in the environment of the
reactor at the next time step (t+1), respectively. The activities ComputeGC, AnalyzeRisks,
and OutO f Order are to be executed with failure presence by the agents Reactor/Operator
as shown in Figure 11.
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Table 4. Description of the main events and their corresponding failure probabilities.

Event Description Probability Source

E1
Operator failure of

abnormal situations
cognition

2.11 × 10−3 Expert

E2
Failure of the
temperature

controller
3.52 × 10−4 Historical data

E3 Over temperature in 1.38 × 10−2 Expert

work environment

E4
Operator fails to shut
down the reactor due
to over temperature

4.52 × 10−2 Expert

E5 Air cooling system
failure 8.94 × 10−2 Expert

E6 Level sensor failure 3.54 × 10−2 Expert

E7
Operator fails to shut
down the reactor due

to over-pressure
2.67 × 10−2 Expert

E8
Over pressure in the

reactor due to
blockage

1.45 × 10−2 Expert

E9 Pressure controller
failure 3.52 × 10−4 Historical data

E10 Power supply failure 8.36 × 10−2 Expert

E11 Failure of the steam
supply 1.43 × 10−2 Expert

E12 Valve failure 6.80 × 10−6 Historical data

Table 5. Activities equations.

Activity Equation Input Output Duration

Load V+ = V + P1 + P2 Iv1 = Iv2 = 1 Iv1 = Iv2 = 0 1
Transform-product V+ = V ∗ 1.1 S1 = lock S1 = unlock 5

Unload V+ = V − P3 Ov3 = 1 Ov3 = 0 1
Compute Gas GC+ = GC + RR S1 = lock S1 = unlock 1
Concentration V+ = V − 2
Analyse Risks RL = f (ψ, η) S2 = Idle S2 = Inactive 1
Out Of Order S2 = Inactive S2 = OutOfOrder 2

Figures 13 and 14 represent the behavioral modes transitions for the agents Reactor
and Operator.

Figure 13. Behavioral modes of the Agent Reactor.
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Figure 14. Behavioral modes of the Agent Operator.

8. Simulation Testbed

In literature, many software languages and tools specifically focused on ABMS de-
velopment have become established as open-source ABMS platforms, such as NetLogo,
Swarm [109], AnyLogic, Repast [110], JADE [111], and MASON [112]. A comparison
between those simulators is presented in Table 6 according to many criteria.

Table 6. Comparison between GDABM and reference simulators.

Parameter Swarm Repast Mason GDABM

License General Public
Licence (GPL) GPL GPL GPL

User Base Diminishing Large Increasing Large

Execution’
Speed Fast Moderate Fastest Moderate

Graphical user
interface (GUI) Limited Good Good Good

Built-in ability to
create movies

and animations
No Yes Yes Yes

Easy of learning,
programming Poor Moderate Moderate Moderate

Geographical
information
system (GIS)

Yes Yes Yes Yes

Full detailed
Risk analysis No No No Yes

Failure analysis No No No Yes

Behavioral
modes

Identification
Yes Yes Yes Yes

GDABM was simulated using the Repast Simphony Simulator tool.
The simulation of this model provides the following additional features: (1) identifying

and analyzing the risk among system components, (2) studying the risk propagation among
these components, and (3) performing the risk evaluation process.

8.1. Simulation Results

The simulation results of the proposed model, when tested on the chemical reac-
tor/operator case study discussed in Section 6 are presented in this section. Those results
include a representation of the dynamic behavior of each agent in the studied system in
addition to the resulting risk level.

Two agents were defined in the above case study: operator and reactor, with their full
characteristics including (attributes, failure, and behavioral modes). A simulation of the
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chemical reactor/operator system was carried out for a duration of 45 simulation steps to
show the dynamic behavior of the various agents in the system.

To test the functionality of the GDABM, experiments were conducted using four
different values of the set (Vmax, RR) as follows: configuration 1 (30, 10,000), configuration
2 (30, 15,000), configuration 3 (20, 10,000), and configuration 4 (20, 15,000) , and considering
the following assumptions:

1. when a gas leakage occurs, the volume is to decrease by 2 L and the gas concentration
GC is to increase by 10,000 part per million (ppm) at each step of the simulation.

2. the initial values of the variables are as follow: Volume = 10, GC = 0, τ = 2, P1 = 7 L,
P2 = 5 L and P3 = 4 L.

3. once the leakage is repaired, the gas concentration is to decrease by 5000 ppm at each
step of the simulation.

The ranking scale of the severity of harm η is represented in Table 7.

Table 7. Threshold limit values for GC.

GC
(×103 ppm) ≤10 [10:20] [20:30] [30:40] ≥40

Severity Negligible Minor Moderate Serious High

As the likelihood of the Gas Leakage failure ψ is 0.02 (using failure data cited in
Table 4), which is between 10−3 ≤ P < 10−1, it is considered as likely and the Risk level is
evaluated in a dynamic way using the likelihood and the severity values as mentioned in
Table 1.

Agent’s behavioral modes with the related risk level are represented graphically in
Figures 15–18 for the configuration C1, C2, C3, and C4, respectively. Tables A1 and A2 in
Appendix A show agents’ behavioral modes and the risk level values during the simulation
of C1/C2 and C3/C4, respectively. For configurations C1/C3, the release rate is assumed
to be 10,000 and Vmax is 30 for C1 and 20 for C3. The overall risk level is Moderate in C1
except for the time interval [17, 18]; it increases to be significant and the behavioral mode
of the Operator agent is ODeg2. On the other hand, for C3, as we decreased Vmax to be 20,
which reduces the amount of released materials, the risk level remains Moderate even with
the existence of failure events. For C2/C4, the release rate is assumed to be 15,000 and Vmax
is 30 for C1 and 20 for C4. Risk level reached High in C2 for the time intervals [16, 17] and
[33, 34]. Those tables represent the failure propagation between agents and the dynamic
agents’ behavior throughout the simulation.

The chemical reactor/operator multi-agent system was successfully modeled and
simulated under the seven failure modes. The GDABM was able to study the dynamics of
the various failure mode through risk analysis and risk assessment. GDABM also studies
the correlation between agent failure and behavioral modes. GDABM has successfully
shown how a change in the agent failure mode affects its behavioral mode and vice versa.
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Figure 15. Agent’s behavioral modes with the related Risk Level during simulation C1.
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Figure 16. Agent’s behavioral modes with the related Risk Level during simulation C2.
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Figure 17. Agent’s behavioral modes with the related Risk Level during simulation C3.
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Figure 18. Agent’s behavioral modes with the related Risk Level during simulation C4.

8.2. Comparison with Other Modeling Approaches

Numerical comparisons between the results obtained by current models are provided
in [113]. Models studied in the comparison are system dynamics (SD) models, agent-based
models (ABM), and discrete Event Simulation (DES) from a well-known case study (the
spread of a disease).
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The case study presented in this work (a reactor/operator system), is new. Therefore,
similar studies based on alternative approaches are not available yet. The case study
presented in this manuscript, which is a reactor/operator system, is considered novel.
Therefore, similar studies based on alternative approaches are not available yet. The most
relevant study found in [12] discusses the dynamic reliability of a steam generator using
a Stochastic Hybrid Automaton with MCs, but this model does not provide full details
about failure and behavioral modes, which are essential for dynamic risk analysis. Another
comparison performed in [114] focuses on the limitations and capacities of different ap-
proaches, including Petri-nets and MCs to model a dynamic system rather than comparing
the obtained numerical results. The work shows that the Petri-nets approach is a tool
used for modeling systems with discrete events, but it is not adequate to be used for the
continuous complex dynamic systems. This is demonstrated in the case of product level in
the reactor agent. The strength of this method, such as modeling and simulating the system
evolution by events occurrence, is not appropriate to be utilized in continuous dynamic
systems. Numerically MCs generate the best values when used with stochastic events, but
it requires a high computational effort in complex systems.

The same case study that was used in the paper was validated and verified when
we simulated the classical ABM using Repast Simphony (2.0) open-source agent-based
modeling and simulation platform, we got consistent results. A comparison between the
proposed GDABM and the reference model (ABM) shows that GDABM provides higher
levels of accuracy (Figure 19) (>15%). This is explained due to the detailed risk analysis
performed in the proposed model, which reflects a better evaluation of the risk level with
consideration of the temporal aspect (thanks to DFT).

Figure 19. Comparison of the Accuracy for both ABM and GDABM.

Concerning the execution time (Figure 20), with the presence of the detailed analysis
and the consideration of all analysis components, GDABM takes around 476 ms which is
a bit slower than ABM (order of a few milliseconds) with consideration of a few number
of agents (<10) that can raise up to 2 s for an important number of agents. This latency
can be justified by the fact of representing the risk model in our proposed simulator and
displaying more details about the active failure modes and their propagation in the system
and the change in the informational state (attributes, behavioral mode, etc.) for every agent
in the system.
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Figure 20. Comparison of the Execution times for both ABM and GDABM.

Regarding the response time (Figure 21), GDABM is measured to be faster than the
reference model (ABM) in detecting and representing any change in the behavioral mode
in real-time as it performs a real-time evaluation and analysis of possible failure modes.
Furthermore, the details provided in the GDABM model allow the immediate detection of
any failure, and, thus, the dynamic behavioral mode is up to date.

Figure 21. Comparison of the response times for both ABM and GDABM.

A common challenge was signed regarding the output whenever we increase the
number of agents (hundreds) in the simulation and the interactions among them, a huge
amount (MegaByte) of information and simulation results (change in the agent’s behavioral
mode, change in the agent’s failure mode) should be extracted.

9. Conclusions

In this paper, a novel dynamic multi-agent model for risk analysis has been proposed
and described thoroughly. The proposed model is called Generic Dynamic Agent-Based
Model (GDABM) for risk analysis. This model represents the dynamic behavior of agents
as a result of failure occurrence. It shows the failure propagation among the system’s
components as well as the failure dependencies between those components. Each agent in
the modeled system has a set of activities, attributes, failure modes, and behavioral modes.
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By studying the behavior of each agent in the system, GDABM was able to assess and
analyze the risk of the entire system dynamically. GDABM thoroughly analyses dynamic
systems in a coherent manner. It provides a graphical illustration of agents’ behavioral
modes with failure causes and outcomes and shows the direct relation between agents’
behavioral modes transition and the activation/deactivation of a failure mode. A detailed
case study of a chemical reactor/operator was provided. The case study used the GDABM
to model various agents and their associated interactions. GDABM was able to simulate
the behavior of the system in both nominal (failure-free) and degraded (failure) conditions.
GDABM also analyzed the risk of the aforementioned systems. The goal of the proposed
model is to analyze risks and to study the dynamic behavior of dynamic systems using
multi-agents models. GDABM has proven to give very promising results when compared
to the reference model (ABM) in terms of Accuracy (15%) and Response time (27%), for
the execution time, GDABM signs an extra delay (13%) that can be accepted due to the
real-time evaluation of active failure/behavioral modes.

The future work of this paper will be to use MCs for stochastic fuzzy failure, represent
the population density in a dynamic way using a probability law, and test the model in
different systems with a higher number of active agents and failure modes. Examples of
such systems are dangerous good transportation, evacuation, and flood systems.
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Appendix A

Table A1. Agents behavioral modes for C1 and C2.

Configuration Time Step
Reactor

Behavioral
Mode

Operator
Behavioral

Mode
Risk Level

C1 [0, 14] RNom ONom M
Vmax = 30 [14, 17] RDeg ODeg1 M

RR = 10,000 [17, 18] RNom ODeg2 S
[18, 23] RNom ONom M
[23, 25] RDeg ODeg1 M
[25, 45] RNom ONom M

C2 [0, 14] RNom ONom M
Vmax = 30 [14, 15] RDeg ODeg1 M

RR = 15,000 [15, 16] RDeg ODeg1 S
[16, 17] RDeg ODeg1 S
[16, 17] RDeg ODeg2 H
[17, 18] RNom ODeg2 S
[18, 19] RNom ODeg2 S
[19, 22] RNom ODeg2 S
[22, 23] RNom ODeg2 M
[23, 24] RDeg ODeg2 M
[24, 25] RDeg ODeg2 S
[25, 31] RNom ODeg2 M
[31, 32] RDeg ODeg2 M
[32, 33] RDeg ODeg2 S
[33, 34] RDeg ODeg2 H
[34, 35] RNom ODeg2 S
[35, 40] RNom ODeg2 M
[40, 41] RDeg ODeg2 M
[41, 42] RDeg ODeg2 S
[42, 45] RNom ODeg2 M

Table A2. Agents behavioral modes for C3 and C4.

Configuration Time Step
Reactor

Behavioral
Mode

Operator
Behavioral

Mode
Risk Level

C3 [0, 7] RNom ONom M
Vmax = 20 [7, 9] RDeg ODeg1 M

RR = 10,000 [9, 15] RNom ONom M
[15, 17] RDeg ODeg1 M
[17, 23] RNom ONom M
[23, 25] RDeg ODeg1 M
[25, 31] RNom ONom M
[31, 33] RDeg ODeg1 M
[33, 39] RNom ONom M
[39, 41] RDeg ODeg1 M
[41, 45] RNom ONom M
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Table A2. Cont.

Configuration Time Step
Reactor

Behavioral
Mode

Operator
Behavioral

Mode
Risk Level

C4 [0, 7] RNom ONom M
Vmax = 20 [7, 9] RDeg ODeg1 S

RR = 15,000 [9, 10] RNom ODeg2 M
[10, 15] RNom ONom M
[15, 16] RDeg ODeg1 M
[16, 17] RDeg ODeg1 S
[17, 18] RNom ODeg2 M
[18, 23] RNom ONom M
[23, 24] RDeg ODeg1 M
[24, 25] RDeg ODeg1 S
[25, 26] RNom ODeg2 M
[26, 31] RNom ONom M
[31, 32] RDeg ODeg1 M
[32, 33] RDeg ODeg1 S
[33, 34] RNom ODeg2 M
[34, 39] RNom ONom M
[39, 40] RDeg ODeg1 M
[40, 41] RDeg ODeg1 S
[41, 42] RNom ODeg2 M
[42, 45] RNom ONom M
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