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Abstract: Artificial intelligence is applied to many fields and contributes to many important applica-
tions and research areas, such as intelligent data processing, natural language processing, autonomous
vehicles, and robots. The adoption of artificial intelligence in several fields has been the subject of
many research papers. Still, recently, the space sector is a field where artificial intelligence is receiving
significant attention. This paper aims to survey the most relevant problems in the field of space
applications solved by artificial intelligence techniques. We focus on applications related to mission
design, space exploration, and Earth observation, and we provide a taxonomy of the current chal-
lenges. Moreover, we present and discuss current solutions proposed for each challenge to allow
researchers to identify and compare the state of the art in this context.

Keywords: space exploration; mission design; Earth observation; machine learning; deep learning;
reinforcement learning

1. Introduction

Over the past 60 years, artificial intelligence (AI) has been used in several applications,
such as automated reasoning, intelligent systems, knowledge representation, and game the-
ory, to cite some famous examples. However, recent advances in computational power, the
number of available data, and new algorithms have highlighted that AI can have a crucial
role in the digital transformation of society and must be a priority for any country. For this
reason, the research community has devoted much effort to designing and developing new
AI techniques in many strategic fields such as cybersecurity, e-Health, military applications,
and smart cities.

The importance of AI is witnessed by the numerous survey papers describing recent
advances in AI in almost all fields. However, we have found that in recent years, AI has
been strongly exploited in an important field that is not covered by any specific survey:
space applications. This field includes technologies for space vehicles (spacecraft, satellites,
etc.) and their communications and services for terrestrial use (weather forecasting, remote
sensing, etc.).

In all these cases, using AI-based solutions has given and can give many advantages.
To the best of our knowledge, no survey published in the last ten years has focused on

this topic. Indeed, Reference [1] focuses only on a specific branch of AI (i.e., robotics) and
provides a survey on robotics and autonomous systems for space exploration. Reference [2]
is limited to an interesting but very specific field of space applications, which concerns
satellite communication. The only survey remotely related to this topic is Reference [3],
which focuses on the following specific topics: autonomous planning and scheduling
of operations, self-awareness, anomaly detection, on-board data analysis, and on-board
operations and processing of Earth-observation data. However, these topics represent a
specific and limited aspect of space applications (this paper received 12 citations after more
than two years since its publication).

In this paper, we provide a survey of the current challenges in space applications and
discuss the most relevant state-of-the-art proposals. In order to present a self-contained
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discussion on the topic, we start by briefly introducing the major branches of AI exploited
in this field. Then, we identify thirteen challenges related to space applications, grouped
into three main categories: mission design and planning, space exploration, and Earth
observation. Each challenge is defined and discussed, and the most effective AI-based
solutions proposed in the literature are presented. To collect all relevant papers on this
topic, Google Scholar archive was used, and we searched for the terms “space applications”
and “artificial intelligence”. We extended this search, also substituting the term artificial
intelligence with its main branches (such as machine learning and neural networks). These
searches resulted in more than 200 papers, which were filtered by excluding unpublished
papers (e.g., theses) or published by low-relevance publishers. Then, we excluded papers
considered out of scope for this survey after a manual check. This resulted in more than
one hundred papers published in the last five years (2017–2022): these papers are presented
and discussed as solutions for space application challenges. The organization of this paper
allows the reader to both find the most recent solutions proposed for a given problem and
to identify the problems in which a given AI-based technique has been exploited.

The structure of the paper is as follows. In Section 2, we briefly provide the background
on AI needed to classify the different techniques. Then, in Section 3, we present the current
challenges in space applications that AI is helping to address. In Section 4, we discuss the
most recent solutions proposed for addressing each challenge. In Section 5, we provide a
high-level discussion about the problems and the solutions from recent years in the field of
space applications. Finally, in Section 6, we draw our conclusions.

2. Background on AI

This section briefly describes the major branches of AI exploited in the literature to
solve problems in space applications. These techniques are divided into macro-categories.

The first category is one of the most common forms of machine learning: supervised
learning. This type of algorithms trains on labeled datasets to predict and classify new
input data [4]. A typical application of supervised learning regards image recognition, in
which a set of labeled images are received, and the models can learn to distinguish common
attributes. An example of a supervised learning technique is the support vector machine [5],
a linear model used for classification and regression problems. This algorithm generates
a line that separates the data into classes. Another technique is random forest, whose
algorithm builds decision trees on different samples, also made of continuous variables,
and calculates their majority occurrence for classification and average for regression [6,7].

A second category is unsupervised learning, in which algorithms learn by unlabeled
data and can discover hidden patterns without any human intervention in data cata-
loging [8]. Clustering is an unsupervised learning technique that aims to find groups or
clusters in a feature based on their similarities or differences. There are several clustering
algorithms: for example, K-means clustering [9] is used mainly for image segmentation
compression, market segmentation, or document clustering. This algorithm assigns data
points into K clusters, where K is the number of groups based on the distance from each
cluster. Another interesting unsupervised learning technique is dimensionality reduction,
whose aim is to reduce the complexity of a problem. It is exploited to reduce the number of
random variables under consideration by transforming data from a high-dimensional space
into a low-dimensional space to optimize the meaningful properties of the original data.

Semi-supervised learning stands between supervised learning and unsupervised
learning and is a combination of them [10]. These algorithms involve a small number
of labeled data and many unlabeled data. They learn from the labeled data and extract
knowledge from the unlabeled data. An example is a document classifier where it is
impossible to find many labeled text documents. A small number of labeled training data
are used to train the model and, again, an unlabeled training dataset to predict the outputs.

Reinforcement learning is a quite different approach from the previously described
paradigms because it does not require a labeled dataset or a supervisor. Instead, it consists of
an agent able to observe and experiment in a complex environment where the agent learns
the optimal behavior through interactions and obtains the maximum reward. Therefore,
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any problem in which an agent must interact with an uncertain environment to meet a
specific goal can be a potential application of reinforcement learning [11]. For this reason,
this technique is widely used in robotics and autonomous driving.

Neural networks are a subset of machine learning that try to mimic how biological
neurons communicate with each other. Neural networks learn from large numbers of data,
discovering intricacies while attempting to simulate the behavior of the human brain. The
backpropagation algorithm is the basis of how the model changes its internal parameters
that are used to compute the representation in each layer from the representation in the
previous layer [12].

Convolutional neural networks (CNNs) are mainly used to analyze visual images.
CNNs are structured as a series of stages: the first few stages are composed of two types
of layers, named convolutional layers and pooling layers. These layers act as a feature
extraction tool to derive the base-level features from the images fed into the model. Then,
the fully connected layer and the output layer, which are the final stages, use the feature
extraction layers’ output and predict a class for the image depending upon the features
extracted. These networks are designed to process data in multiple arrays, including
language, images or audio spectrograms, video, or volumetric images.

Recurrent neural networks (RNNs) are used to interpret sequential and temporal
information. These networks can analyze time series, audio, text, and speech with the more
profound understanding of a sequence they allow. RNNs process an input sequence one
element at a time, maintaining information about the history of all the past elements of
the sequence [13]. Furthermore, recurrent networks can compress the whole history into
low-dimensional space and form short-term memory [14].

Deep learning is a branch of AI implementing computational models composed of
multiple processing layers able to learn representations of data with multiple levels of
abstraction [13]. Generally, neural networks and deep learning are improving the state of
the art in image recognition, speech recognition, and natural language processing.

Natural language processing (NPL) [15] focuses on the analysis of language structure
in order to develop systems for speech synthesis and recognition. These systems are applied
in several applications where a machine can understand fundamental human interactions,
such as translation engines, robot assistants, and sentiment analysis.

Furthermore, fuzzy logic reflects human reasoning in making decisions and includes all
the intermediate possibilities between digital values of yes or no [16]. This technique represents
uncertain information by analyzing how much the hypothesis is true. Key application areas
of fuzzy logic are automotive systems and electronic and environmental devices.

We conclude this background on AI branches by introducing expert systems (ESs).
Originally defined as computer programs able to solve complex problems, ESs can replace
human experts in decision-making. These systems extract knowledge stored in their
knowledge base and are called experts because they contain the expert knowledge of
a specific domain and can solve any complex problem. The performances improve by
increasing the amount of knowledge available, as well as the accuracy and efficiency [17].
An ES responds to any complex query in a brief period and in a human-understandable
way. Indeed, it takes inputs in human language and provides outputs in the same form.

The techniques presented above will be referred to in the following sections as they
are used to solve space application problems.

3. Challenges in Space Applications

In this section, we discuss and analyze the current challenges in space applications
that AI is helping to address.

Over the years, humans have tried to address several challenges in space and for space.
In this process, the collaboration between humans and machines, along with enabling
and innovative technologies, has been crucial and has made discoveries and innovation
possible. If, on the one hand, there is a necessity to expand the presence of humans in space,
on the other hand, it is the task of humans to manage the constraints of in-space resources.
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Therefore, all efforts lead to two common goals: (i) to push toward space exploration
and scientific discoveries; (ii) to improve life on Earth. Human beings play an essential
role in all this, such as specialists who work on the objectives of space missions, astronauts
who experience challenging conditions in space, and ordinary citizens involved in the
achievement of these challenges, particularly those of improving life on Earth.

In this survey, we have investigated the above challenges, starting from the mission
execution level. We live in the age of the Internet of Everything, where connections between
objects enable services and improve processes. Indeed, in designing and planning a space
mission, several connected entities collaborate to carry out the mission, including robots in
space, smart architecture and construction in space, wearable devices, and apps [18].

Such systems work through data and, at the same time, produce data in large quantities.
For example, these data concern satellites’ critical and vital conditions, so it is necessary to
work on systems capable of generating reliable responses to these parameters. Furthermore,
it is necessary to identify tools to improve access to information in the mission-design and
planning phases to manage the information necessary for its success. These tools are called
design engineering assistants and can support decision-making for complex engineering
problems such as initial input estimation, assisting experts by answering queries related to
previous design decisions, and offering new design options.

For the success of a mission, the psycho-physical conditions of the astronauts are
crucial. Some challenges regard the mitigation of adverse effects of space environments
on human physical and behavioral health with the help of intelligent assistants able to
optimize human performance in space or provide helpful information on the health of
astronauts. On the mission object level, we come to the challenges linked to reducing the
threat to spacecraft from natural and human-made space debris and developing capabilities
to detect and mitigate the risk of these objects as possible catastrophic threats to Earth.
For this reason, it is necessary to seek solutions that are able to improve the accuracy
and reliability of space situational awareness (SSA) and space surveillance and tracking
(SST) systems.

Concerning space exploration, the community requires more reliable and accurate
techniques to learn about the universe and collect, analyze, and distribute information.
For example, robot exploration needs to be enhanced by tools to produce better maps of
planets’ surfaces. These tools can also enhance the accuracy of technologies used to observe
planetary bodies.

Space applications can help improve its condition and future directions for life on
Earth. The main challenge is developing systems and technologies that can detect, analyze,
and support decision-making in high-stress situations on Earth, such as emergencies and
disasters, thanks to data or images coming from satellites. The applications are broad and
include Sustainable Development Goals [19] that have to be carried out according to the
2030 Agenda: improving life on the land, estimating and reducing the effect of climate
change, protecting the biodiversity on Earth, and assisting in clean water and atmosphere.

We discuss such challenges in terms of three main categories, which are presented in
the following sections.

3.1. Mission Design and Planning

The design and plan of a mission require incredible knowledge and expertise from all
the human and computer assets involved, and AI can help manage information, knowledge,
procedures, and operations during a space mission.

The first use of AI in mission design and planning regards the knowledge gathered
by previous missions, which, in most cases, is not fully accessible. Therefore, researchers
are working on designing an engineering assistant to gather and analyze relevant data and
produce reliable answers to save many human work hours. Daphne is an example of an
intelligent assistant that is used for designing Earth observation satellite systems [20,21],
which can assess the strengths and weaknesses of architectures proposed by engineers and
answer specific design problems using natural language processing. This system relies
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on a historical database of all Earth-observing satellite missions, domain-specific expert
knowledge associated with this field, and information extracted from data mining in the
current design space.

Another challenge regards the monitoring of satellite health. On-board AI function-
alities can address this challenge. Indeed, the performance of equipment and sensors is
continuously controlled by a system monitoring able to provide helpful information such
as alerts. Scientists use AI systems that can notify ground control about any problems
and solve them independently. An example is taken from SpaceX satellites [22], equipped
with a system of sensors that can track the device’s position and adjust it to keep them
safe from colliding with other objects in space. Furthermore, the Italian start-up company
AIKO developed an AI for mission autonomy with their MiRAGE library [23]. AIKO
technology can detect events and allow satellites to perform autonomous replanning and
react accordingly, avoiding the delays introduced by the decision-making loops on the
ground. AI is also helping Perseverance, the Mars rover, for landing [24] and navigation on
the planet, along with many other scientific tasks. The rover also uses Planetary Instrument
for X-ray Lithochemistry, or PIXL, an AI-powered device, to search for traces of microscopic
materials [25].

Moreover, the manufacturing process of satellites and spaceships can be improved
by AI algorithms. Indeed, these operations involve many repetitive procedures requiring
high precision and accuracy and should be performed in clean rooms to avoid biological
contamination. In addition, the use of collaborative robots, cobots, can provide more reliable
manufacturing steps that can be prone to human errors. Consequently, the exploitation of
AI can significantly speed up production processes and minimize contact with humans,
which is equally relevant to increasing production. Furthermore, a personal assistant in
space can provide immediate help and support in everyday activities within astronauts’
missions or in case of emergencies on-board, eliminating the communication delays with
the ground control. For example, IBM, in partnership with the German space agency DLR
and Airbus, created CIMON, the Crew Interactive Mobile Companion [26]. CIMON is an
AI robot that is able to converse with astronauts at the International Space Station and
answer astronauts’ questions.

3.2. Space Exploration

The impact of AI on defining and improving the future of space exploration is relevant.
Many AI applications exist, from planetary navigation to robot exploration and deep
space exploration of astronomical bodies. For example, the first image of a black hole was
obtained by a Bayesian algorithm used to perform deconvolution on images created in
radio astronomy [27]. Now, researchers are working on more complex AI algorithms to
obtain more accurate images of black holes. These algorithms will probably help scientists
identify and classify different deep-space objects [28]. An example is the discovery of two
Kepler Exoplanets, namely Kepler 80g and Kepler 90i, orbiting Kepler 80 star system and
Kepler 90 star system, respectively. The knowledge of the population of exoplanets is a
challenge for astronomers because such retrieval of information requires an automatic and
unbiased way to identify the exoplanets in these regions [29].

The management of space debris, such as abandoned launch vehicle stages and frag-
mentation debris, is a demanding problem [30,31] included in the field of space situational
awareness (SSA) [32]. Indeed, researchers stress the importance of maintaining a resident
space object database because of the necessary operation of SSA for a future Space Traffic
Management system [33,34]. However, the real concern with space debris is the contin-
gency of collisions with satellites or the spacecraft, generating undesirable space accidents.
Deep learning techniques can enhance the accuracy of laser-range technology traditionally
used to overcome this problem. Another challenge regards the production of better maps
of the planets’ surface. One example is a project developed by NASA and Intel on an AI
system that can help astronauts find their way on planets [35]. The program was applied
to the moon’s surface and then to the Mars exploration program. The collaboration of
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both humans and swarm robots can meet the challenges of space exploration. Indeed,
multi-robot systems can be trained by humans using AI techniques [36]. Other efforts have
been carried out in autonomous and intelligent space guidance problems with the support
of deep and reinforcement learning [37–40].

At the same time, during the space exploration missions to Mars, monitoring and
assessing the health of astronauts is crucial [41]. The applications of AI in healthcare focus
on deep learning algorithms for scientific discovery or for advanced pattern recognition
software for diagnosis, giving new perspectives on the future of astronauts’ medical care.

Furthermore, detecting astronauts’ speech and language disorder signs to interpret
their psychological behavior and to support human–robot cooperation has been explored
using natural language processing [42,43].

3.3. Earth Observation

Satellites generate thousands of images every minute of the day, collecting terabytes of
data. There are several applications of Earth Observation (EO), such as agriculture, forestry,
water and ocean resources, urban planning and rural development, mineral prospecting,
and environment and disaster management [44]. Without a data analysis tool, humans
were previously in charge of understanding these data and gathering relevant information
for the required application. This effort resulted in a long time to select, filter, refine, and
analyze a vast number of images. With the advancement of AI, there have been significant
signs of progress in reviewing and analyzing millions of images produced by satellites.
Furthermore, these algorithms can detect any issues with the images by speeding up the
image-gathering process.

Satellites are often used to respond to natural disasters from space. For example,
these images can help ground operators to detect the course of the disaster or determine
victims and damages to buildings and the environment [45]. Furthermore, geospatial
information of the area affected by the event is rapidly provided to the first responders
thanks to EO satellites. Indeed, satellite data can provide information to reduce the disaster
risk assessment and plan the post-disaster response [46]. Studies about the population’s
exposure to air pollution and demographic data have been carried out to highlight the
highest exposure risks [47]. Therefore, EO can analyze several of Earth’s physical, chemical,
and biological parameters to understand the Earth’s conditions better and propose action
plans to improve life on the planet.

4. State of the Art

Now that we have defined the challenges in space applications and presented the basic
approaches, in this section, we discuss the most recent solutions proposed for addressing
each challenge. Moreover, in Figure 1, we provide a mind map that associates the solutions
proposed in the literature with each challenge. In addition, in Figure 2, we group these
solutions based on the AI technique exploited.

4.1. Works on Mission Design and Planning

In the early stages of a space mission, the development of AI presents several advan-
tages. To enhance information retrieval and knowledge reuse in the field of space missions,
the study presented in [48] proposes a semi-supervised Latent Dirichlet Allocation (LDA)
model for space mission design. First, the general model is trained and then used to
generate specific LDA models focused on different spacecraft subsystems or topics. The
authors of [49] analyze how knowledge management and human–machine interaction,
machine learning, and natural language processing methods can improve the responsible
use of information during a concurrent engineering study and design an AI assistant,
called the design engineering assistant, to support knowledge management strategies. A
natural language processing system, called AstroNLP, is presented in [50]. The solution can
automatically extract and visualize useful information from the mission in a direct graph
to optimize the documentation’s inspection of a mission. The study in [51] stresses the
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importance of developing an expert system used as a design engineering assistant in the
field of space mission design. The detailed software architecture of both front and back
ends and the tool requirements are presented. Given the diversification and number of
available data (e.g., implicit and explicit knowledge), the highlighted problem consists in
querying and finding the needed information in a reasonable time.

Considering the perspective of the ground segment, the increase in volume and type
of data, processes, and procedures requires innovative solutions and methodologies. There-
fore, in [52], an expert system is proposed to tackle the challenges of systems engineering,
optimization of development, management, and implementation of the ground system.
In [53], an AI-driven design tool for the transfer of orbital payload via a space tether is
proposed. The authors investigate the recent proposals on space tethers, utilized in applica-
tions such as the orbiting or deorbiting of space vehicles, payload transfer, inter-planetary
propulsion, plasma physics, and electrical science in the Earth’s upper layer atmosphere.
In addition, AI tools support recent space elevator projects. Indeed, the proposed solution
relies on a computational-intelligence-assisted design framework that exploits the Artificial
Wolf Pack algorithm with logsig randomness.

The optimization of resource-constrained Internet-of-Space-Things [54] during next-
generation space missions requires a flexible and autonomous framework that overcomes
the limitations of existing space architecture. In this regard, the authors of [55] propose an
AI-based cognitive cross-layer decision engine to bolster next-generation space missions.
The system exploits deep reinforcement learning and cross-layer optimization. The pa-
pers [56,57] review existing satellite health monitoring solutions and present an analysis
of remote data mining and AI techniques used to address the needs in this field. Usually,
satellite telemetry data and integrated information are used to produce an advanced health
monitoring system and prevent unexpected failures. The authors of [58] present a guideline
for intelligent health monitoring solutions exploiting data mining techniques. Furthermore,
the study contains operations and applications of such systems related to the ground
control station.

Multimodality and high dimensionality are two critical characteristics of satellite
data. In [56,59], the reduction and clustering of probabilistic dimensionality are applied to
telemetry data of the Japan Aerospace Exploration Agency (JAXA)’s Small Demonstration
Satellite-4. These methods analyze anomalies and understand the health status of the
system. The study [60] investigates the importance of integrating a fault-diagnosis system
into a space vehicle to isolate, detect, and classify faults in the system. In [61], a support
vector machine for regression is applied to data coming from the Egyptsat-1 satellite
launched in April 2007 to analyze the satellite performance and build a fault diagnosis
system to determine the origin of this satellite failure.

The authors of [62] envision a new deep learning approach for telemetry analysis
of space operations. The proposed architecture consists of three modules developed
for automatic feature extraction, anomaly detection, and telemetry prediction. First, an
autoencoder neural network is created for feature vector extraction and anomaly detection.
Then, a multi-layer long short-term memory network is evaluated for telemetry forecasting
and anomaly prediction. The study in [63] provides an analysis aimed at improving the
autonomy level of space missions, and in particular of small satellites. The author presents
several case studies such as event and failure detection tradespace exploration where neural
networks, expert systems, and genetic algorithms are used. AI-Express is a space system
providing services to demonstrate AI algorithms, qualify technologies, and validate mission
concepts, in-orbit and as-a-service [64]. The system is built to consider the requirements of
small satellite missions and explore innovative approaches in communications, planning,
tasks, and data processing.

The authors of [65] envision the need to integrate machine learning with medical
care during a space mission. The current human missions and future deep space missions
open several challenges so that the medical care of the crew needs to become more and
more independent and autonomous. Aligned with this need, improving astronauts’ work



Appl. Sci. 2022, 12, 5106 8 of 21

efficiency and mental health becomes crucial for space missions. Indeed, monitoring crew
members’ stress and reliability in isolation is an essential parameter for the success of a
human mission. In [66], natural language processing is exploited to monitor the crew’s psy-
chological health in stressful conditions during long missions. In [67–69], in-cabin astronaut
assistance and person-following nanosatellites are studied and developed for the China
Space Station. The satellite follows assisted flying autonomously and offers immediate
assistance. Furthermore, a deep convolution neural network (DCNN)-based detection
module and a probabilistic-model-based tracking module are trained to accomplish the
cited tasks.

In conclusion, we observed that gathering and retrieving information for a space
mission is widely achieved with the support of expert systems coupled with natural
language processing techniques. These solutions aim to enable access to useful information
in a reasonable time. However, natural language processing techniques and convolutional
neural network approaches are exploited to support astronauts by offering immediate
assistance in conditions of need. Concerning satellite health monitoring, several proposals
show how dimensionality reduction, clustering, and deep learning can be applied for
telemetry analysis of space operations to improve the usability and the exploitation of
these data.

4.2. Works on Space Exploration

Artificial intelligence will enhance space exploration in the near future [70]. Indeed,
intelligent tools that analyze data and predict events will be used in every aspect of
space settlement. Automation and robotics have always played a significant role in space
exploration [71], opening new frontiers and improvements since the beginning. The
exploitation of AI contributes to creating independent and intelligent robots able to learn
while in orbit. In addition, the management of space traffic and the assistance of ground
operators can be supported by AI techniques. In [72], the authors trained predictive models
through Multiple Regression Analysis. Their study aimed to forecast collision avoidance
maneuvers and better manage space traffic.

Improving the autonomous functions of space robots, spacecraft, and equipment is a
need that can be achieved through AI systems. The authors of [73] survey the impact of
AI on the field of spacecraft guidance dynamics and control. They focus on evolutionary
optimization, tree searches, and machine learning using deep learning and reinforcement
learning, analyzing interesting use cases where these algorithms improved the perfor-
mances of guidance and control of well-known problems [74]. The authors of [75] consider
the advantages of a multi-agent system in terms of robustness and reliability of space oper-
ations. Furthermore, the intelligent use of multi-robots integrated with a human-to-loop
approach mission costs and human efforts. The study in [76] provides a methodology for
designing and controlling elastic, computing self-organization for AI space exploration.
The use of swarm cooperative rovers is based on a set of shared information supporting
the mission planned to reach a common target [77]. In [75], a cooperative, coevolutionary
algorithm able to train a multi-robot system is presented.

Any space exploration scenario presents several challenges that can be met jointly
by both humans and swarm robots. The authors of [36] explore a scenario based on
Mars, where human scientists train robots and multi-robot systems to perform primary
tasks. A multi-agent deep deterministic policy gradient algorithm is exploited. In [78],
a decentralized multi-robot system operation technique is presented. The approach is
evaluated in a rough terrain environment artificially generated to perform a collaborative
object transportation mission. The technique is based on a fuzzy genetic system exploiting
a genetic algorithm to optimize a fuzzy inference system.

AI techniques play an important role in astrophysics and astronomy. AI searches space
in planetary studies and conducts real-time monitoring of instruments and investigations
of stellar clusters and non-stellar components of the Milky Way (for example, see [79]).
Notably, as suggested in [80], deep learning and neural networks can automate the detec-
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tion of astronomical bodies and sustain future exploration missions. The authors of [81]
introduce simulator-based methods using artificial intelligence to obtain images during
deep-space journeys in NASA Starlight and Breakthrough Starshot using a Grow When
Required Network, an unsupervised technique. In addition, to better understand Mars,
several Mars images have been collected and need to be analyzed. In [82], semi-supervised
contrastive learning is exploited to classify Mars rover images.

Regarding the Jovian system, the authors of [83] proposed an approach based on
reinforcement learning for the solution of the J2-perturbed Lambert problem in the field of
space trajectory design [84] and to overcome errors due to incomplete information about
pursuit-evasion missions. Furthermore, ANNs have been exploited to model accurate and
efficient maps of Jovian-moon gravity-assisted transfers [85–87].

Convolutional neural networks coupled with a recurrent neural network are exploited
to create a vision-based navigation system for a pinpoint landing on the Moon [88]. The
regression task is executed by a long short-term memory (LSTM) recurrent neural network,
while a CNN is used to extract features and process them. A CNN is trained with a
dataset of synthetic images of the landing area at different relative poses and illumination
conditions. Indeed, in a no-space application, the matched exploitation of CNN-LSTM has
already been proven to have excellent performance in providing image processing and
model prediction.

To summarize our analysis, we highlight that AI techniques, such as deep and re-
inforcement learning, are widely used in the field of spacecraft guidance dynamics and
control to improve the autonomous functionalities of space equipment, spacecraft, and
space robots. The main goal of such systems is also to enable constructive cooperation
between multi-robot systems and humans. As far as deep space exploration, approaches
based on neural networks make possible the automation of the detection of astronomical
bodies and the accessibility to better maps of planets’ surfaces.

4.3. Works on Earth Observation

The survey [89] reviews machine learning models used to predict and understand
components of the Earth observation system and divides the addressed problems into
four categories: (1) classification of land cover types, (2) modeling of land–atmosphere
and ocean–atmosphere, (3) detection of anomalies and extreme events, and (4) causal
discovery. AI and Earth observations (EO) can meet the sustainable development goals
(SDGs) and specifically contribute to them. Indeed, in [19] the authors demonstrate how a
convolutional neural network, U-net with SE blocks, can perform an efficient segmentation
of satellite imagery for crop detection. The study [90] reviews machine learning techniques
applied to monitor SDGs and proposes explore furthering random forest, support vector
machine, and neural networks to analyze EO data. Finally, in [91,92], deep neural networks
are exploited for on-board spacecraft. The main motivations of this approach concern
the full use of real-time sensing data of multiple satellites from a smart constellation and
therefore the on-the-edge processing of data and the resulting benefits in terms of the
imaging product value.

AI algorithms can be considered for consuming data at the source rather than on the
ground, lightening the down-link load, and allowing the development of value-added
applications in space. The studies in [19,93] present a Copernicus Access Platform Interme-
diate Layers SmallScale Demonstrator, where AI methods are used to analyze and interpret
Earth observation satellite images. As a primary step, the authors of [19] include the instan-
tiation of a deep neural network able to extract meaningful information from the archived
images and create a semantic scheme with several EO sensors (e.g., TerraSAR-X, WorldView,
Sentinel-1, and Sentinel-2). The authors of [94] review the efficiency of Gaussian processes
(GPs) in solving EO problems. GPs can accurately estimate parameters in acquired images
at local and global scales. Furthermore, these processes can quickly adapt to multimodal
data from different sensors and multitemporal acquisitions. In [95], the Google Earth
Engine and Google Cloud Platform are used to generate a feature set where dimensionality-
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reduction methods are tested for object-based land cover classification with SVM, with the
support of Sentinel-1 and Sentinel-2 data. The authors of [96] apply dimensionality reduc-
tion to classify hyperspectral images and generate low-dimensional embedding features
of these images. Generative adversarial networks (GANs) and CNNs are coupled in [97]
for hyperspectral image classification. The study [97] presents several opportunities for
the application of GANs in remote sensing [98]. In addition, noticed anomalies on hyper-
spectral images increase the possibilities of errors and decrease the estimation accuracy.
In [99], a framework based on semi-supervised spectral learning and GANs is proposed
for hyperspectral image anomaly detection. The authors of [94] review the efficiency of
Gaussian processes (GPs) in solving EO problems. GPs can accurately estimate parameters
in acquired images at local and global scales. Furthermore, these processes can quickly
adapt to multimodal data from different sensors and multitemporal acquisitions.

Convolutional neural networks are exploited in [100] to classify and detect land use
and land cover from Sentinel-2 satellite images. The dataset EuroSAT contains 27,000
labeled and geo-referenced images made public. Furthermore, the study proposed in [101]
exploits deep learning neural networks for remote sensing to improve the production of
land cover maps and land use. In particular, the authors of [101] consider the southern
agricultural region of Manitoba in Canada.

In recent years, deep networks such as convolutional and recurrent neural networks
have been broadly used to classify hyperspectral images. In [102], the authors build
a network able to analyze the whole image with the help of a non-local graph using
convolutional layers to extract features. A semi-supervised learning algorithm enables
high-quality map classification. Nevertheless, the authors of [103,104] analyze the negative
effect of microscopic material mixtures on the processing of hyperspectral images. Another
relevant property of these data is the non-local smoothness, which has been analyzed
in [104]. Again, in [103], an innovative spectral mixture model is proposed. The authors
demonstrate that their approaches can obtain a more accurate abundance estimation and a
better reconstruction of abundance maps.

The authors of [105] develop a neural network that is able to synthesize EO images.
Notably, an energy-based model is applied, and datasets are adapted to semi-supervised
settings. Furthermore, in [106–108], semi-supervised learning is evaluated due to the lack
of labels and the speckle presence on raw images coming from EO data. Indeed, the
authors of [107] propose the MiniFrance suite, a large-scale dataset for semi-supervised
and unsupervised semantic segmentation in EO. Finally, in [106], DCNNs are coupled with
semi-supervised learning to build a framework called Boundary-Aware Semi-Supervised
Semantic Segmentation Network, which is able to obtain more accurate segmentation
results. In [109], the combination of drone-borne thermal imaging with neural networks
is produced to locate ground-nests of birds on agricultural land with high performance.
Several studies [110–112] have addressed the need to review the application of AI to solve
different agriculture-related problems [113] and improve decision support at the farm
level [110,114].

One of the most urgent needs is to respond to adversarial and life-critical situations
such as pandemics, climate change, and resource scarcity [115,116] with prompt and
sustainable agricultural and food production and improved food supply systems. As
suggested in [117,118], automation of agriculture and farming is a solution for the increasing
demands of food and nutrition, which are also aggravated by above-mentioned problems,
such as pollution and climate change, resource depletion, population growth, and the need
to control irrigation and harmful pesticides. Indeed, AI can contribute to improving and
developing sustainable food systems [119] able to revolutionize current agricultural and
supply chain systems.

Biodiversity assessments can strengthen our environments and the entire human
society. The development of innovative and high-quality models to also monitor the impact
of human activities on ecosystems is explored in [120] with the support of neural network
algorithms. Indeed, AI will improve the conservation of ecosystems and species. The



Appl. Sci. 2022, 12, 5106 11 of 21

authors of [121] propose CAPTAIN (Conservation Area Prioritization Through Artificial
Intelligence Networks), a methodology based on reinforcement learning, exploring and
analyzing multiple biodiversity metrics to protect species from extinction.

Another application field of AI that has gained close attention is disaster management.
The studies [122–124] collect different solutions exploiting AI techniques to support the
challenges of the different phases of disaster management phases, i.e., mitigation, prepared-
ness, response, and recovery. The methods are discussed and categorized according to
these phases.

Furthermore, public engagement in AI-driven applications for disaster management is
analyzed in [125] thanks to data provided by Australian residents. The results confirm the
benefits of using AI for mitigating and responding to a disaster, and they encourage public
and private sectors to adopt AI in disaster-management applications. The authors of [126]
analyzed reactions on social media during the 2017 Atlantic Hurricane season to develop a
system able to improve situational awareness and help organizations handle crises. The
information retrieved consists of textual and imagery content from several tweets posted
during the disaster. The tweet classification was performed by developing a random
forest learning scheme. Furthermore, the K-means algorithm was used to find high-level
categories of similar messages. Finally, deep-learning-based techniques were advocated
to extract useful information from social media images. In [127], a machine-learning-
based disaster prediction model was proposed to identify disaster situations by analyzing
information coming from social messaging platforms such as Twitter. Multinomial Naive
Bayes and XGB classifiers are used to individuate both tweets that are relevant to a flood
and tweets irrelevant to a flood, with an accuracy of above 90%.

Climate change is having a considerable impact on the future of lives on Earth by modi-
fying crucial climatic parameters such as temperature, precipitation, and wind [128,129]. On
the other hand, the future implications of greenhouse gas emissions are discussed [130,131]
related to these parameters. AI offers the means to reduce uncontrollable risks and predict
extreme weather events and climate conditions [132] and, at the same time, to assess human
responsibilities and duties [133–135]. As suggested in [136], leveraging AI techniques holds
the opportunities to combat the climate crisis effectively by finding procedures to monitor,
analyze, and predict climate change indicators. One application is proposed in [137], where
generative adversarial networks are used to develop an interactive climate impact visual-
ization tool that is able to predict and visualize the future of a specific location based on the
effect of current climate indicators, such as floods, storms, and wildfires. The study [138]
goes in the same direction to predict daily energy consumption of a buildnig using a
data-driven explainable AI model. Instead, the authors of [139] show the effectiveness of
support vector machine models to predict solar and wind energy resources. The authors
of [138] apply different AI models to the proposed problem: extreme gradient boosting,
linear regression, random forest, support vector machine, deep neural networks, and long
short-term memory.

The impact of climate change on precipitation and temperature over Famagusta,
Nicosia, and Kyrenia stations is analyzed in [140]. With the support of a neural network,
an adaptive neuro-fuzzy inference system, and multiple linear regression models, these
parameters are analyzed and forecasted for 2018–2040. Climate change is intensifying
challenges in water resource management [141]. Indeed, understanding our oceans and
monitoring the surface water quality are presently priorities that AI can meet, as suggested
in [142,143]. Notably, in [142], a systematic literature analysis on the application of AI
models is presented, focusing on the physical location of experiments, input parameters,
and output metrics. In [144], a concern about the application of responsible AI in the water
domain is investigated. Although recent contributions show that this domain is limited for
AI, insights on its optimization are reported.

The monitoring of water is challenging and crucial for every organism on Earth and
for water precipitation measurements. For example, the authors of [145] adopt artificial
neural networks and multiple linear regression for the downscaling of satellite precipitation
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estimates. In [146], non-linear autoregressive neural networks and long short-term memory
deep learning algorithms were developed to model and predict water quality. Then,
support vector machines, K-nearest neighbors, and Naive Bayes were used to predict water
classification. The authors of [147] exploit an adaptive neuro-fuzzy inference system to
predict the water quality index, a feed-forward neural network and a K-nearest neighbors
algorithm to classify water quality. In [147], the focus is shifted towards the case of drinking
water. The presence of bacteria in water is monitored by automated identification of
colors and their intensity from sensor image using a deep convolutional neural networks
algorithm developed in [148].

The problem of air pollutants requires attention and puts public health in danger if not
adequately monitored [149]. The authors of [150] analyze one of the most critical air pollu-
tants in the atmosphere, namely particulate matter. Several AI techniques are exploited
to study and predict its components measured in a selected industrial zone, namely the
neuro-fuzzy inference system, support vector regression, classification and regression trees,
random forest, K-nearest neighbor, and extreme learning machine methods. Ozone concen-
tration is another crucial measure related to global warming, air pollution management,
and many relevant environmental issues. In [151], a wavelet transform approach combined
with an artificial neural network predict one-hour-ahead ozone gas concentration.

From our analysis, we note that among the diversified contributions, the necessity
to classify and analyze hyperspectral images emerges and converges towards several
scopes such as land use, agriculture, food supply systems, and water and atmosphere
cleaning. However, most of the solutions consider the benefit of AI-based systems regarding
the imaging product value. An important number of proposals couple the use of semi-
supervised learning and deep learning. Furthermore, convolutional and generative neural
networks are employed to increase the accuracy of hyperspectral images.

5. Discussion

The challenges in the space sector impact our lives and the perception of our future
more than we can imagine. Nevertheless, at the same time, AI is enabling progress and
innovation in several sectors. Notably, in the space sector, AI is helping scientists and
industries provide robust solutions to the most relevant problems, but most of all, AI
enables discoveries. The problems that AI addresses are categorized into three main areas:
(i) mission design and planning, (ii) space exploration, and (iii) Earth observation, as shown
in Figures 1 and 2. It is worth noting that we did not explore these categories as watertight
compartments, because we found several studies that promote the exploitation of AI in
new, overlapping, and disruptive areas [70,73,89,90,115,117,122–124,136]. Indeed, many
of the solutions that can innovate one area also impact the results and possibilities of
other areas. For example, improving health satellite monitoring systems is helping both
space exploration and Earth observation applications [57]. Again, supporting knowledge
management strategies can facilitate the planning of a space mission, but at the same time, it
provides input for the challenges in data management for space situational awareness [32].

Moreover, new AI-based techniques used to map and investigate the lunar or Martian
surfaces [24,82,88] can improve our knowledge of the health status of the Earth [21]. There-
fore, the presented challenges and discoveries that we report here are all connected, as
Figure 2 shows. Firstly, the diversified approach of reinforcement learning has applications
in new frontiers of space exploration [38–40], where multi-robot systems on Mars [36,152]
or internet space things [55] can be trained to perform primary tasks by adapting to the
complex environment as requested by the technique. At the same time, this approach is
also exploited to automate processes in the areas of agriculture and farming [90,118].

Deep learning has recently been widely used by researchers to respond to the space
sector’s countless challenges. For example, neural networks are used to improve the land
use for agriculture [101,109], mitigate the consequences of climate change [138,140], and
monitor water quality [147]. Another example is the use of CNNs [67,68] to assist astronauts
during a mission by facilitating the astronauts’ work and lives through an intelligent
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assistant. Furthermore, RNNs can improve telemetry analysis of space operations [62] in
order to temporally predict anomalies on board. GANs are also eing applied to improve
the classification of hyperspectral images and to detect anomalies in them [97–99].

For the same aims, unsupervised learning has been already exploited with satellite
telemetry data to produce an advanced health monitoring system and prevent unexpected
failures [56,59]. Another challenge pertains to information retrieval and knowledge reuse
in space missions: there is a need to develop a design engineering assistant to design a
space mission. Several approaches exploit expert systems to address this problem [52,63],
but also a semi-supervised technique [48].

In addition, semi-supervised learning has been exploited in remote sensing, partic-
ularly for high-resolution EO images [106–108] but also for the classification of Mars im-
agery [82]. The application of supervised learning covers the most disparate problems, start-
ing from supporting the challenges of the disaster management phases [126,127], to satellite
fault diagnosis [61], to automation of agriculture[118], and environmental issues such as
water quality prediction [146,147] and mitigation of climate change’s effects [138,140,150].
Furthermore, fuzzy logic solves similar issues related to climate change [140], water [147]
and atmosphere [150] quality monitoring, but also to space exploration with multi-robot
systems [78].

Natural language processing is widely exploited to ensure the physiological health of
astronauts on a mission and improve their work efficiency [42,43] or help astronauts with
the support of an intelligent assistant [20,21].

Challenges

Mission Object

Earth observation

Land use [7,19,89–91,93–96,100,101,106–119]

Water and atmosphere monitoring [141–151]

Biodiversity protection [120,121]

Climate change [128–138,138–140]

Emergency and disaster recovery [122–127]

Space exploration

Space traffic management [30,31,34,72,73]

Multi-Agent systems [36,43,75–78]

Deep exploration [24,27,29,38–40,81,82,88]

Study of astronomical bodies [79–81]

Mission Execution

Planning

Satellite health monitoring [56–59,61–64]

Astronaut assistant [26,41,42,65–69]

Design

Design engineering assistant [20,21,48–53]

Internet of space things [18,54,55]

Figure 1. Challenges in Space Applications.
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AI tech.

Expert systems [51,52,63]

Fuzzy logic [78,140,147,150]

Natural language processing [20,42,43,50,66,89]

Neural networks

Deep learning [37,41,60,67–69,80,81,84,86,92,101,126]

GANs [97–99,137]

RNNs [62,88,102,138]

CNNs [28,31,67–69,100,102,106,147,148]

ANNs [63,80,81,85,87,91,105,109,120,121,138,142,151]

Reinforcement learning [24,36,38–40,55,73,83,90,118]

Unsupervised learning

Dimensionality reduction [56,59,95]

Clustering [56,59,107,118,126]

Semi-supervised Learning [48,82,99,102,105–108]

Supervised learning

K-nearest neighbors [118,146,147,150]

Linear regression [113,138,140,145]

Support vector machine [7,61,90,95,139]

Random forest [7,73,90,126,138,150]

Naive Bayesian algorithms [34,127,146]

Figure 2. Artificial Intelligence techniques for space challenges.

6. Conclusions

AI is exploited in the contexts of many application to perform tasks in a human-like
way, and it has an important position in the digital transformation of society. As always, the
research community has an important role in developing new AI-based solutions for the
most arduous engineering challenges, and survey papers have been published discussing
such solutions in almost all fields except the field of space applications.

In this paper, we filled this gap by presenting a framework that surveys all the recent
AI-based solutions used in space applications and classifies them based on (1) the specific
problem to which they are applied and (2) the typology of the AI approach used to solve
the problem, thus developing a taxonomy of all recently proposed solutions. In particular,
we organized and classified over a hundred papers based on two main challenges (mission
execution and mission object) and thirteen sub-challenges.

The presented classification allows the reader to identify the most recent solutions
applied to solve specific challenges and the most important challenges of space applications
that AI-based approaches can help face.

Our analysis has highlighted some future directions to follow. A first direction con-
cerns applying artificial intelligence techniques to the field of satellite communication
with the purpose of making communication systems more efficient and secure. Another
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interesting direction regards the next frontiers of artificial intelligence for navigation in
terms of the global navigation satellite systems.
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14. Mikolov, T.; Karafiát, M.; Burget, L.; Cernockỳ, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings
of the Interspeech, Makuhari, Japan, 26–30 September 2010; Volume 2, pp. 1045–1048.

15. Chowdhary, K. Natural language processing. In Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020;
pp. 603–649.

16. Zadeh, L.A.; Klir, G.J.; Yuan, B. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers; World Scientific: Singapore, 1996;
Volume 6.

17. Liebowitz, J. The Handbook of Applied Expert Systems; CRC Press: Boca Raton, FL, USA, 2019.
18. Kua, J.; Loke, S.W.; Arora, C.; Fernando, N.; Ranaweera, C. Internet of Things in Space: A Review of Opportunities and Challenges

from Satellite-Aided Computing to Digitally-Enhanced Space Living. Sensors 2021, 21, 8117. [CrossRef]
19. Dumitru, C.O.; Schwarz, G.; Castel, F.; Lorenzo, J.; Datcu, M. Artificial intelligence data science methodology for Earth

Observation. In Advanced Analytics and Artificial Intelligence Applications; InTech Publishing: London, UK, 2019; pp. 1–20.
20. Bang, H.; Virós Martin, A.; Prat, A.; Selva, D. Daphne: An intelligent assistant for architecting earth observing satellite systems.

In Proceedings of the 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, Kissimmee, FL, USA, 8–12 January 2018;
p. 1366.

21. Viros Martin, A.; Selva, D. Explanation Approaches for the Daphne Virtual Assistant. In Proceedings of the AIAA Scitech 2020
Forum, Orlando, FL, USA, 6–10 January 2020; p. 2254.

22. Joey Roulette. OneWeb, SpaceX Satellites Dodged a Potential Collision in Orbit. 2021. Available online: https://www.theverge.
com/2021/4/9/22374262/oneweb-spacex-satellites-dodged-potential-collision-orbit-space-force (accessed on 15 September 2021).

23. Weiss, T.R. AIKO: Autonomous Satellite Operations Thanks to Artificial Intelligence. 2019. Available online: https:
//www.esa.int/Applications/Telecommunications_Integrated_Applications/Technology_Transfer/AIKO_Autonomous_
satellite_operations_thanks_to_Artificial_Intelligence (accessed on 15 September 2021).

24. Gaudet, B.; Linares, R.; Furfaro, R. Deep reinforcement learning for six degree-of-freedom planetary landing. Adv. Space Res.
2020, 65, 1723–1741. [CrossRef]

25. Weiss, T.R. The AI Inside NASA’s Latest Mars Rover, Perseverance. 2021. Available online: https://www.datanami.com/2021/0
2/18/the-ai-inside-nasas-latest-mars-rover-perseverance (accessed on 15 September 2021).

26. Airbus. “Hello, I am CIMON*!”. 2018. Available online: https://www.airbus.com/newsroom/press-releases/en/2018/02/
hello--i-am-cimon-.html (accessed on 15 September 2021).

27. Larry Hardesty. A Method to Image Black Holes. 2016. Available online: https://news.mit.edu/2016/method-image-black-
holes-0606 (accessed on 15 September 2021).

28. Linares, R.; Furfaro, R.; Reddy, V. Space objects classification via light-curve measurements using deep convolutional neural
networks. J. Astronaut. Sci. 2020, 67, 1063–1091. [CrossRef]

29. Dattilo, A.; Vanderburg, A.; Shallue, C.J.; Mayo, A.W.; Berlind, P.; Bieryla, A.; Calkins, M.L.; Esquerdo, G.A.; Everett, M.E.; Howell,
S.B.; et al. Identifying exoplanets with deep learning. ii. two new super-earths uncovered by a neural network in k2 data. Astron.
J. 2019, 157, 169. [CrossRef]

30. Li, B.; Huang, J.; Feng, Y.; Wang, F.; Sang, J. A machine learning-based approach for improved orbit predictions of LEO space
debris with sparse tracking data from a single station. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4253–4268. [CrossRef]

31. Linares, R.; Furfaro, R. Space object classification using deep convolutional neural networks. In Proceedings of the 2016 19th
International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 1140–1146.

32. Oltrogge, D.L.; Alfano, S. The technical challenges of better space situational awareness and space traffic management. J. Space
Saf. Eng. 2019, 6, 72–79. [CrossRef]

33. Hilton, S.; Cairola, F.; Gardi, A.; Sabatini, R.; Pongsakornsathien, N.; Ezer, N. Uncertainty Quantification for Space Situational
Awareness and Traffic Management. Sensors 2019, 19, 4361. [CrossRef]

34. Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R. Resident space object characterization and behavior understanding via
machine learning and ontology-based Bayesian networks. In Proceedings of the Advanced Maui Optical and Space Surveillance
Technologies Conference (AMOS), Maui, HI, USA, 20–23 September 2016.

35. Lonnie Shekhtman. NASA Takes a Cue From Silicon Valley to Hatch Artificial Intelligence Technologies. 2019. Available
online: https://www.nasa.gov/feature/goddard/2019/nasa-takes-a-cue-from-silicon-valley-to-hatch-artificial-intelligence-
technologies (accessed on 15 September 2021).

36. Huang, Y.; Wu, S.; Mu, Z.; Long, X.; Chu, S.; Zhao, G. A Multi-agent Reinforcement Learning Method for Swarm Robots in
Space Collaborative Exploration. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics
(ICCAR), Singapore, 20–23 April 2020; pp. 139–144.

37. Furfaro, R.; Bloise, I.; Orlandelli, M.; Di Lizia, P.; Topputo, F.; Linares, R. Deep learning for autonomous lunar landing. In
Proceedings of the 2018 AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, USA, 19–23 August 2018; Volume 167,
pp. 3285–3306.

38. Gaudet, B.; Furfaro, R.; Linares, R. Reinforcement learning for angle-only intercept guidance of maneuvering targets. Aerosp. Sci.
Technol. 2020, 99, 105746. [CrossRef]

39. Furfaro, R.; Scorsoglio, A.; Linares, R.; Massari, M. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via
a deep reinforcement learning approach. Acta Astronaut. 2020, 171, 156–171. [CrossRef]

http://dx.doi.org/10.3390/s21238117
https://www.theverge.com/2021/4/9/22374262/oneweb-spacex-satellites-dodged-potential-collision-orbit-space-force
https://www.theverge.com/2021/4/9/22374262/oneweb-spacex-satellites-dodged-potential-collision-orbit-space-force
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Technology_Transfer/AIKO_Autonomous_satellite_operations_thanks_to_Artificial_Intelligence
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Technology_Transfer/AIKO_Autonomous_satellite_operations_thanks_to_Artificial_Intelligence
https://www.esa.int/Applications/Telecommunications_Integrated_Applications/Technology_Transfer/AIKO_Autonomous_satellite_operations_thanks_to_Artificial_Intelligence
http://dx.doi.org/10.1016/j.asr.2019.12.030
https://www.datanami.com/2021/02/18/the-ai-inside-nasas-latest-mars-rover-perseverance
https://www.datanami.com/2021/02/18/the-ai-inside-nasas-latest-mars-rover-perseverance
https://www.airbus.com/newsroom/press-releases/en/2018/02/hello--i-am-cimon-.html
https://www.airbus.com/newsroom/press-releases/en/2018/02/hello--i-am-cimon-.html
https://news.mit.edu/2016/method-image-black-holes-0606
https://news.mit.edu/2016/method-image-black-holes-0606
http://dx.doi.org/10.1007/s40295-019-00208-w
http://dx.doi.org/10.3847/1538-3881/ab0e12
http://dx.doi.org/10.1109/TAES.2020.2989067
http://dx.doi.org/10.1016/j.jsse.2019.05.004
http://dx.doi.org/10.3390/s19204361
https://www.nasa.gov/feature/goddard/2019/nasa-takes-a-cue-from-silicon-valley-to-hatch-artificial-intelligence-technologies
https://www.nasa.gov/feature/goddard/2019/nasa-takes-a-cue-from-silicon-valley-to-hatch-artificial-intelligence-technologies
http://dx.doi.org/10.1016/j.ast.2020.105746
http://dx.doi.org/10.1016/j.actaastro.2020.02.051


Appl. Sci. 2022, 12, 5106 17 of 21

40. Scorsoglio, A.; D’Ambrosio, A.; Ghilardi, L.; Gaudet, B.; Curti, F.; Furfaro, R. Image-Based Deep Reinforcement Meta-Learning
for Autonomous Lunar Landing. J. Spacecr. Rocket. 2022, 59, 153–165. [CrossRef]

41. Cinelli, I. The Role of Artificial Intelligence (AI) in Space Healthcare. Aerosp. Med. Hum. Perform. 2020, 91, 537–539. [CrossRef]
42. Trofin, R.S.; Chiru, C.; Vizitiu, C.; Dinculescu, A.; Vizitiu, R.; Nistorescu, A. Detection of Astronauts’ Speech and Language

Disorder Signs during Space Missions using Natural Language Processing Techniques. In Proceedings of the 2019 E-Health and
Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–4.

43. Yan, F.; Shiqi, L.; Kan, Q.; Xue, L.; Li, C.; Jie, T. Language-facilitated human–robot cooperation within a human cognitive modeling
infrastructure: A case in space exploration task. In Proceedings of the 2020 IEEE International Conference on Human-Machine
Systems (ICHMS), Rome, Italy, 7–9 September 2020; pp. 1–3.

44. Durbha, S.S.; King, R.L. Semantics-enabled framework for knowledge discovery from Earth observation data archives. IEEE
Trans. Geosci. Remote Sens. 2005, 43, 2563–2572. [CrossRef]

45. Denis, G.; de Boissezon, H.; Hosford, S.; Pasco, X.; Montfort, B.; Ranera, F. The evolution of Earth Observation satellites in Europe
and its impact on the performance of emergency response services. Acta Astronaut. 2016, 127, 619–633. [CrossRef]

46. The European Commission’s Science and Knowledge Service. Earth Observation. 2021. Available online: https://ec.europa.eu/
jrc/en/research-topic/earth-observation (accessed on 15 September 2021).

47. OECD. Earth Observation for Decision-Making. 2017. Available online: https://www.oecd.org/env/indicators-modelling-
outlooks/Earth_Observation_for_Decision_Making.pdf (accessed on 15 September 2021).

48. Berquand, A.; McDonald, I.; Riccardi, A.; Moshfeghi, Y. The automatic categorisation of space mission requirements for
the Design Engineering Assistant. In Proceedings of the 70th International Astronautical Congress, Washington, DC, USA,
21–25 October 2019.

49. Murdaca, F.; Berquand, A.; Riccardi, A.; Soares, T.; Gerené, S.; Brauer, N.; Kumar, K. Artificial intelligence for early design of
space missions in support of concurrent engineering sessions. In Proceedings of the 8th International Systems & Concurrent
Engineering for Space Applications Conference, Glasgow, UK, 26–28 September 2018.

50. Simpson, B.C.; Selva, D.; Richardson, D. Extracting Science Traceability Graphs from Mission Concept Documentation using
Natural Language Processing. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022;
p. 1182.

51. Berquand, A.; Murdaca, F.; Riccardi, A.; Soares, T.; Generé, S.; Brauer, N.; Kumar, K. Artificial intelligence for the early design
phases of space missions. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–20.

52. Ferreirab, P.M.G.V.; Ambrosioc, P.A.M. A proposal an innovative Framework for the Conception of the Ground Segment of Space
Systems. In Proceedings of the 71st International Astronautical Congress (IAC)—The CyberSpace Edition, IAC 2020, Online,
12–14 October 2020.

53. Ren, X.; Chen, Y. How Can Artificial Intelligence Help With Space Missions—A Case Study: Computational Intelligence-Assisted
Design of Space Tether for Payload Orbital Transfer Under Uncertainties. IEEE Access 2019, 7, 161449–161458. [CrossRef]

54. Akyildiz, I.F.; Kak, A. The internet of space things/cubesats. IEEE Netw. 2019, 33, 212–218. [CrossRef]
55. Jagannath, A.; Jagannath, J.; Drozd, A. Artificial intelligence-based cognitive cross-layer decision engine for next-generation

space mission. In Proceedings of the 2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW),
Cleveland, OH, USA, 25–26 June 2019; pp. 1–6.

56. Yairi, T.; Fukushima, Y.; Liew, C.F.; Sakai, Y.; Yamaguchi, Y. A Data-Driven Approach to Anomaly Detection and Health
Monitoring for Artificial Satellites. In Advances in Condition Monitoring and Structural Health Monitoring; Springer: Singapore, 2021;
pp. 129–141.

57. Hassanien, A.E.; Darwish, A.; Abdelghafar, S. Machine learning in telemetry data mining of space mission: Basics, challenging
and future directions. Artif. Intell. Rev. 2020, 53, 3201–3230. [CrossRef]

58. Abdelghafar, S.; Darwish, A.; Hassanien, A.E. Intelligent health monitoring systems for space missions based on data mining
techniques. In Machine Learning and Data Mining in Aerospace Technology; Springer: Cham, Switzerland, 2020; pp. 65–78.

59. Yairi, T.; Takeishi, N.; Oda, T.; Nakajima, Y.; Nishimura, N.; Takata, N. A data-driven health monitoring method for satellite
housekeeping data based on probabilistic clustering and dimensionality reduction. IEEE Trans. Aerosp. Electron. Syst. 2017,
53, 1384–1401. [CrossRef]

60. Geng, F.; Li, S.; Huang, X.; Yang, B.; Chang, J.; Lin, B. Fault diagnosis and fault tolerant control of spacecraft attitude control
system via deep neural network. Chin. Space Sci. Technol. 2020, 40, 1.

61. Ibrahim, S.K.; Ahmed, A.; Zeidan, M.A.E.; Ziedan, I.E. Machine learning techniques for satellite fault diagnosis. Ain Shams Eng. J.
2020, 11, 45–56. [CrossRef]

62. OMeara, C.; Schlag, L.; Wickler, M. Applications of deep learning neural networks to satellite telemetry monitoring. In
Proceedings of the 2018 SpaceOps Conference, Marseille, France, 28 May–1 June 2018; p. 2558.

63. Feruglio, L. Artificial Intelligence for Small Satellites Mission Autonomy; Politecnico di Torino: Torino, Italy, 2017; p. 165.
64. Amoruso, L.; Abbattista, C.; Antonetti, S.; Drimaco, D.; Feruglio, L.; Fortunato, V.; Iacobellis, M. AI-express In-orbit Smart

Services for Small Satellites. In Proceedings of the 2020 International Astronautical Congress (IAC), Online, 12–14 October 2020.
65. Asrar M.F.; Saint-Jacques, D.; Williams, D.; Clark, J. Assessing current medical care in space, and updating medical training

& machine based learning to adapt to the needs of Deep Space Human Missions. In Proceedings of the 2020 International
Astronautical Congress (IAC), Online, 12–14 October 2020.

http://dx.doi.org/10.2514/1.A35072
http://dx.doi.org/10.3357/AMHP.5582.2020
http://dx.doi.org/10.1109/TGRS.2005.847908
http://dx.doi.org/10.1016/j.actaastro.2016.06.012
https://ec.europa.eu/jrc/en/research-topic/earth-observation
https://ec.europa.eu/jrc/en/research-topic/earth-observation
https://www.oecd.org/env/indicators-modelling-outlooks/Earth_Observation_for_Decision_Making.pdf
https://www.oecd.org/env/indicators-modelling-outlooks/Earth_Observation_for_Decision_Making.pdf
http://dx.doi.org/10.1109/ACCESS.2019.2951136
http://dx.doi.org/10.1109/MNET.2019.1800445
http://dx.doi.org/10.1007/s10462-019-09760-1
http://dx.doi.org/10.1109/TAES.2017.2671247
http://dx.doi.org/10.1016/j.asej.2019.08.006


Appl. Sci. 2022, 12, 5106 18 of 21

66. Alcibiade, A.; Schlacht, I.L.; Finazzi, F.; Di Capua, M.; Ferrario, G.; Musso, G.; Foing, B. Reliability in extreme isolation: A natural
language processing tool for stress self-assessment. In International Conference on Applied Human Factors and Ergonomics; Springer:
Cham, Switzerland, 2020; pp. 350–357.

67. Zhang, R.; Wang, Z.; Zhang, Y. Astronaut visual tracking of flying assistant robot in space station based on deep learning and
probabilistic model. Int. J. Aerosp. Eng. 2018, 2018, 6357185. [CrossRef]

68. Rui, Z.; Zhaokui, W.; Yulin, Z. A person-following nanosatellite for in-cabin astronaut assistance: System design and deep-
learning-based astronaut visual tracking implementation. Acta Astronaut. 2019, 162, 121–134. [CrossRef]

69. Zhang, R.; Zhang, Y.; Zhang, X. Tracking In-Cabin Astronauts Using Deep Learning and Head Motion Clues. IEEE Access 2020,
9, 2680–2693. [CrossRef]

70. Kumar, S.; Tomar, R. The role of artificial intelligence in space exploration. In Proceedings of the 2018 International Conference
on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 15–17 February 2018; pp. 499–503.

71. Acquatella, P. Development of automation & robotics in space exploration. In Proceedings of the AIAA SPACE 2009 Conference
& Exposition, Pasadena, CA, USA, 14–17 September 2009; pp. 1–7.

72. Vasile, M.; Rodríguez-Fernández, V.; Serra, R.; Camacho, D.; Riccardi, A. Artificial intelligence in support to space traffic
management. In Proceedings of the 68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and
Strengthening Security, IAC 2017, Adelaide, Australia, 25–29 September 2007; pp. 3822–3831.

73. Izzo, D.; Märtens, M.; Pan, B. A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodynamics
2019, 3, 287–299. [CrossRef]

74. Huang, X.; Li, S.; Yang, B.; Sun, P.; Liu, X.; Liu, X. Spacecraft guidance and control based on artificial intelligence: Review. Acta
Aeronaut. Astronaut. Sin 2021, 42, 524201.

75. Colby, M.; Yliniemi, L.; Tumer, K. Autonomous multiagent space exploration with high-level human feedback. J. Aerosp. Inf. Syst.
2016, 13, 301–315. [CrossRef]

76. Semenov, A. Elastic computing self-organizing for artificial intelligence space exploration. J. Phys. Conf. Ser. 2021, 1925, 012071.
[CrossRef]

77. Carpentiero, M.; Sabatini, M.; Palmerini, G.B. Swarm of autonomous rovers for cooperative planetary exploration. In Proceedings
of the 2017 International Astronautical Congress (IAC), Adelaide, Australia, 25–29 September 2017.

78. Choi, D.; Kim, D. Intelligent Multi-Robot System for Collaborative Object Transportation Tasks in Rough Terrains. Electronics
2021, 10, 1499. [CrossRef]

79. Fluke, C.J.; Jacobs, C. Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1349. [CrossRef]

80. Bird, J.; Colburn, K.; Petzold, L.; Lubin, P. Model Optimization for Deep Space Exploration via Simulators and Deep Learning.
arXiv 2020, arXiv:2012.14092.

81. Bird, J.; Petzold, L.; Lubin, P.; Deacon, J. Advances in deep space exploration via simulators & deep learning. New Astron. 2021,
84, 101517.

82. Wang, W.; Lin, L.; Fan, Z.; Liu, J. Semi-Supervised Learning for Mars Imagery Classification. In Proceedings of the 2021 IEEE
International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 499–503.

83. Yang, B.; Liu, P.; Feng, J.; Li, S. Two-stage pursuit strategy for incomplete-information impulsive space pursuit-evasion mission
using reinforcement learning. Aerospace 2021, 8, 299. [CrossRef]

84. Yang, B.; Li, S.; Feng, J.; Vasile, M. Fast solver for J2-perturbed Lambert problem using deep neural network. J. Guid. Control Dyn.
2021, 45, 1–10. [CrossRef]

85. Yang, H.; Yan, J.; Li, S. Fast computation of the Jovian-moon three-body flyby map based on artificial neural networks. Acta
Astronaut. 2022, 193, 710–720. [CrossRef]

86. Yang, B.; Feng, J.; Huang, X.; Li, S. Hybrid method for accurate multi-gravity-assist trajectory design using pseudostate theory
and deep neural networks. Sci. China Technol. Sci. 2022, 65, 595–610. [CrossRef]

87. Yan, J.; Yang, H.; Li, S. ANN-based method for fast optimization of Jovian-moon gravity-assisted trajectories in CR3BP. Adv.
Space Res. 2022, 69, 2865–2882. [CrossRef]

88. Silvestrini, S.; Lunghi, P.; Piccinin, M.; Zanotti, G.; Lavagna, M. Artificial Intelligence Techniques in Autonomous Vision-Based
Navigation System for Lunar Landing. In Proceedings of the 71st International Astronautical Congress (IAC 2020), Online,
12–14 October 2020; pp. 1–11.

89. Salcedo-Sanz, S.; Ghamisi, P.; Piles, M.; Werner, M.; Cuadra, L.; Moreno-Martínez, A.; Izquierdo-Verdiguier, E.; Muñoz-Marí, J.;
Mosavi, A.; Camps-Valls, G. Machine learning information fusion in Earth observation: A comprehensive review of methods,
applications and data sources. Inf. Fusion 2020, 63, 256–272. [CrossRef]

90. Ferreira, B.; Iten, M.; Silva, R.G. Monitoring sustainable development by means of earth observation data and machine learning:
A review. Environ. Sci. Eur. 2020, 32, 1–17. [CrossRef]

91. Furano, G.; Meoni, G.; Dunne, A.; Moloney, D.; Ferlet-Cavrois, V.; Tavoularis, A.; Byrne, J.; Buckley, L.; Psarakis, M.; Voss, K.O.;
et al. Towards the use of artificial intelligence on the edge in space systems: Challenges and opportunities. IEEE Aerosp. Electron.
Syst. Mag. 2020, 35, 44–56. [CrossRef]

92. Meng, Q.; Huang, M.; Xu, Y.; Liu, N.; Xiang, X. Decentralized Distributed Deep Learning with Low-Bandwidth Consumption for
Smart Constellations. Space Sci. Technol. 2021, 2021, 9879246. [CrossRef]

http://dx.doi.org/10.1155/2018/6357185
http://dx.doi.org/10.1016/j.actaastro.2019.06.003
http://dx.doi.org/10.1109/ACCESS.2020.3046730
http://dx.doi.org/10.1007/s42064-018-0053-6
http://dx.doi.org/10.2514/1.I010379
http://dx.doi.org/10.1088/1742-6596/1925/1/012071
http://dx.doi.org/10.3390/electronics10121499
http://dx.doi.org/10.1002/widm.1349
http://dx.doi.org/10.3390/aerospace8100299
http://dx.doi.org/10.2514/1.G006091
http://dx.doi.org/10.1016/j.actaastro.2021.08.054
http://dx.doi.org/10.1007/s11431-021-1933-7
http://dx.doi.org/10.1016/j.asr.2022.01.019
http://dx.doi.org/10.1016/j.inffus.2020.07.004
http://dx.doi.org/10.1186/s12302-020-00397-4
http://dx.doi.org/10.1109/MAES.2020.3008468
http://dx.doi.org/10.34133/2021/9879246


Appl. Sci. 2022, 12, 5106 19 of 21

93. Pastena, M.C.; Mathieu, B.; Regan, P.; Esposito, A.; Conticello, M.; Van Dijk, S.; Vercruyssen, C.; Foglia, N.; Koelemann, P.; Hefele,
R.J. ESA Earth Observation Directorate NewSpace initiatives. In Proceedings of the USU Conference on Small Satellites, Logan,
UT, USA, 3–8 August 2019.

94. Camps-Valls, G.; Sejdinovic, D.; Runge, J.; Reichstein, M. A perspective on Gaussian processes for Earth observation. Natl. Sci.
Rev. 2019, 6, 616–618. [CrossRef]

95. Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality reduction and feature selection for object-based land cover
classification based on Sentinel-1 and Sentinel-2 time series using Google Earth Engine. Remote Sens. 2019, 12, 76. [CrossRef]

96. Luo, F.; Zhang, L.; Du, B.; Zhang, L. Dimensionality reduction with enhanced hybrid-graph discriminant learning for hyperspec-
tral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5336–5353. [CrossRef]

97. Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative adversarial networks for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [CrossRef]

98. Zhang, H.; Song, Y.; Han, C.; Zhang, L. Remote sensing image spatiotemporal fusion using a generative adversarial network.
IEEE Trans. Geosci. Remote Sens. 2020, 59, 4273–4286. [CrossRef]

99. Jiang, K.; Xie, W.; Li, Y.; Lei, J.; He, G.; Du, Q. Semisupervised spectral learning with generative adversarial network for
hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5224–5236. [CrossRef]

100. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. Eurosat: A novel dataset and deep learning benchmark for land use and land cover
classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [CrossRef]

101. Storie, C.D.; Henry, C.J. Deep learning neural networks for land use land cover mapping. In Proceedings of the IGARSS 2018-2018
IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3445–3448.

102. Mou, L.; Lu, X.; Li, X.; Zhu, X.X. Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 2020, 58, 8246–8257. [CrossRef]

103. Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An augmented linear mixing model to address spectral variability for hyperspectral
unmixing. IEEE Trans. Image Process. 2018, 28, 1923–1938. [CrossRef]

104. Yao, J.; Meng, D.; Zhao, Q.; Cao, W.; Xu, Z. Nonconvex-sparsity and nonlocal-smoothness-based blind hyperspectral unmixing.
IEEE Trans. Image Process. 2019, 28, 2991–3006. [CrossRef]

105. Castillo-Navarro, J.; Le Saux, B.; Boulch, A.; Lefèvre, S. Energy-based models in earth observation: From generation to
semi-supervised learning. IEEE Trans. Geosci. Remote Sens. 2021. [CrossRef]

106. Sun, X.; Shi, A.; Huang, H.; Mayer, H. BAS4Net: Boundary-aware semi-supervised semantic segmentation network for very high
resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5398–5413. [CrossRef]

107. Castillo-Navarro, J.; Le Saux, B.; Boulch, A.; Audebert, N.; Lefèvre, S. Semi-Supervised Semantic Segmentation in Earth
Observation: The MiniFrance suite, dataset analysis and multi-task network study. Mach. Learn. 2021, 1–36. [CrossRef]

108. Dalsasso, E.; Denis, L.; Tupin, F. SAR2SAR: A semi-supervised despeckling algorithm for SAR images. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2021, 14, 4321–4329. [CrossRef]

109. Santangeli, A.; Chen, Y.; Kluen, E.; Chirumamilla, R.; Tiainen, J.; Loehr, J. Integrating drone-borne thermal imaging with artificial
intelligence to locate bird nests on agricultural land. Sci. Rep. 2020, 10, 10993. [CrossRef] [PubMed]

110. Linaza, M.T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; G Olaizola, I.; Barriguinha, A.; Moysiadis, T.; et al.
Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy 2021, 11, 1227. [CrossRef]

111. Ruiz-Real, J.L.; Uribe-Toril, J.; Torres Arriaza, J.A.; de Pablo Valenciano, J. A Look at the past, present and future research trends
of artificial intelligence in agriculture. Agronomy 2020, 10, 1839. [CrossRef]

112. Bannerjee, G.; Sarkar, U.; Das, S.; Ghosh, I. Artificial intelligence in agriculture: A literature survey. Int. J. Sci. Res. Comput. Sci.
Appl. Manag. Stud. 2018, 7, 1–6.

113. Sazib, N.; Mladenova, l.E.; Bolten, J.D. Assessing the impact of ENSO on agriculture over Africa using earth observation data.
Front. Sustain. Food Syst. 2020, 4, 509914. [CrossRef]

114. Bestelmeyer, B.T.; Marcillo, G.; McCord, S.E.; Mirsky, S.; Moglen, G.; Neven, L.G.; Peters, D.; Sohoulande, C.; Wakie, T. Scaling up
agricultural research with artificial intelligence. IT Prof. 2020, 22, 33–38. [CrossRef]

115. Ben Ayed, R.; Hanana, M. Artificial intelligence to improve the food and agriculture sector. J. Food Qual. 2021, 2021, 5584754.
[CrossRef]

116. Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial
intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [CrossRef]

117. Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif.
Intell. Agric. 2019, 2, 510–513. [CrossRef]

118. Zhang, P.; Guo, Z.; Ullah, S.; Melagraki, G.; Afantitis, A.; Lynch, I. Nanotechnology and artificial intelligence to enable sustainable
and precision agriculture. Nat. Plants 2021, 7, 864–876. [CrossRef] [PubMed]

119. Camaréna, S. Artificial intelligence in the design of the transitions to sustainable food systems. J. Clean. Prod. 2020, 271, 122574.
[CrossRef]

120. Li, C. Biodiversity assessment based on artificial intelligence and neural network algorithms. Microprocess. Microsyst. 2020,
79, 103321. [CrossRef]

121. Antonelli, A.; Goria, S.; Sterner, T.; Silvestro, D. Optimising biodiversity protection through artificial intelligence. bioRxiv 2021.
[CrossRef]

http://dx.doi.org/10.1093/nsr/nwz028
http://dx.doi.org/10.3390/rs12010076
http://dx.doi.org/10.1109/TGRS.2020.2963848
http://dx.doi.org/10.1109/TGRS.2018.2805286
http://dx.doi.org/10.1109/TGRS.2020.3010530
http://dx.doi.org/10.1109/TGRS.2020.2975295
http://dx.doi.org/10.1109/JSTARS.2019.2918242
http://dx.doi.org/10.1109/TGRS.2020.2973363
http://dx.doi.org/10.1109/TIP.2018.2878958
http://dx.doi.org/10.1109/TIP.2019.2893068
http://dx.doi.org/10.1109/TGRS.2021.3126428
http://dx.doi.org/10.1109/JSTARS.2020.3021098
http://dx.doi.org/10.1007/s10994-020-05943-y
http://dx.doi.org/10.1109/JSTARS.2021.3071864
http://dx.doi.org/10.1038/s41598-020-67898-3
http://www.ncbi.nlm.nih.gov/pubmed/32665596
http://dx.doi.org/10.3390/agronomy11061227
http://dx.doi.org/10.3390/agronomy10111839
http://dx.doi.org/10.3389/fsufs.2020.509914
http://dx.doi.org/10.1109/MITP.2020.2986062
http://dx.doi.org/10.1155/2021/5584754
http://dx.doi.org/10.1016/j.copbio.2020.09.003
http://dx.doi.org/10.1016/j.aiia.2019.05.004
http://dx.doi.org/10.1038/s41477-021-00946-6
http://www.ncbi.nlm.nih.gov/pubmed/34168318
http://dx.doi.org/10.1016/j.jclepro.2020.122574
http://dx.doi.org/10.1016/j.micpro.2020.103321
http://dx.doi.org/10.1101/2021.04.13.439752


Appl. Sci. 2022, 12, 5106 20 of 21

122. Sun, W.; Bocchini, P.; Davison, B.D. Applications of artificial intelligence for disaster management. Nat. Hazards 2020,
103, 2631–2689. [CrossRef]

123. Tan, L.; Guo, J.; Mohanarajah, S.; Zhou, K. Can we detect trends in natural disaster management with artificial intelligence? A
review of modeling practices. Nat. Hazards 2021, 107, 2389–2417. [CrossRef]

124. Schofield, M. An Artificial Intelligence (AI) Approach to Controlling Disaster Scenarios. In Future Role of Sustainable Innovative
Technologies in Crisis Management; IGI Global: Hershey, PA, USA, 2022; pp. 28–46.

125. Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A. Public perceptions on artificial intelligence driven disaster management:
Evidence from Sydney, Melbourne and Brisbane. Telemat. Inform. 2021, 65, 101729. [CrossRef]

126. Alam, F.; Ofli, F.; Imran, M. Descriptive and visual summaries of disaster events using artificial intelligence techniques: Case
studies of Hurricanes Harvey, Irma, and Maria. Behav. Inf. Technol. 2020, 39, 288–318. [CrossRef]

127. Raza, M.; Awais, M.; Ali, K.; Aslam, N.; Paranthaman, V.V.; Imran, M.; Ali, F. Establishing effective communications in
disaster affected areas and artificial intelligence based detection using social media platform. Future Gener. Comput. Syst. 2020,
112, 1057–1069. [CrossRef]

128. Stein, A.L. Artificial intelligence and climate change. Yale J. Reg. 2020, 37, 890.
129. Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to

aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [CrossRef]
130. Kaack, L.; Donti, P.; Strubell, E.; Kamiya, G.; Creutzig, F.; Rolnick, D. Aligning Artificial Intelligence with Climate Change

Mitigation. 2021. Available online: https://hal.archives-ouvertes.fr/hal-03368037/file/Kaack_2021_Aligning.pdf (accessed on
15 September 2021).

131. Malik, R.; Pande, S. Artificial Intelligence and Machine Learning to Assist Climate Change Monitoring. J. Artif. Intell. Syst. 2020,
2, 168–190. [CrossRef]

132. Walsh, T.; Evatt, A.; de Witt, C.S. Artificial Intelligence & Climate Change: Supplementary Impact Report; Technical Report; University
of Oxford: Oxford, UK, 2020.

133. Nordgren, A. Artificial intelligence and climate change: Ethical issues. J. Inform. Commun. Ethics Soc. 2022, ahead-of-print.
[CrossRef]

134. Taddeo, M.; Tsamados, A.; Cowls, J.; Floridi, L. Artificial intelligence and the climate emergency: Opportunities, challenges, and
recommendations. One Earth 2021, 4, 776–779. [CrossRef]

135. Scola, L. Artificial Intelligence Against Climate Change. In Intelligent Computing; Springer: Cham, Switzerland, 2021; pp. 378–397.
136. Cowls, J.; Tsamados, A.; Taddeo, M.; Floridi, L. The AI gambit: Leveraging artificial intelligence to combat climate change—

Opportunities, challenges, and recommendations. AI Soc. 2021, 1–25. [CrossRef]
137. Luccioni, A.; Schmidt, V.; Vardanyan, V.; Bengio, Y. Using artificial intelligence to visualize the impacts of climate change. IEEE

Comput. Graph. Appl. 2021, 41, 8–14. [CrossRef]
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