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Abstract: The liver is the most frequent organ for metastasis from colorectal cancer, one of the most
common tumor types with a poor prognosis. Despite reducing surgical planning time and providing
better spatial representation, current methods of 3D modeling of patient-specific liver anatomy are
extremely time-consuming. The purpose of this study was to develop a deep learning model trained
on an in-house dataset of 84 MRI volumes to rapidly provide fully automated whole liver and liver
lesions segmentation from volumetric MRI series. A cascade approach was utilized to address the
problem of class imbalance. The trained model achieved an average Dice score for whole liver
segmentation of 0.944 ± 0.009 and 0.780 ± 0.119 for liver lesion segmentation. Furthermore, applying
this method to a not-annotated dataset creates a complete 3D segmentation in less than 6 s per MRI
volume, with a mean segmentation Dice score of 0.994 ± 0.003 for the liver and 0.709 ± 0.171 for
tumors compared to manual corrections applied after the inference was achieved. Availability and
integration of our method in clinical practice may improve diagnosis and treatment planning in
patients with colorectal liver metastasis and open new possibilities for research into liver tumors.

Keywords: deep learning; HighResNet; cascade DL; 3D model; magnetic resonance; hepatic tumor

1. Introduction

A method that can obtain liver and liver tumor segmentation from Magnetic Resonance
Imaging (MRI) images in just a few seconds can benefit doctors and patients while reducing
the time needed for treatment planning. Colorectal liver metastases (CRLM) develop in
approximately half of patients with colorectal cancer [1], causing the second-highest number
of cancer-related deaths worldwide. In 2020 it was estimated that there were more than
1.9 million new cases of colorectal metastases worldwide [2], with more than 1700 cases
registered in Norway [3]. Magnetic resonance imaging (MRI) is the most sensitive method
for the detection of liver metastases [4–6]. Such patient-specific 3D models are also utilized
for 3D printing or 3D visualization using virtual or augmented reality [7].

One of the main limitations for using 3D models is the time required for annotation
and segmentation from MRI scans [8–10]. Traditionally, segmentation is performed semi-
automatically using tools such as a 3D-Slicer [11] or an ITK-snap [12]. The use of automatic
methods can significantly decrease the annotation and 3D model acquiring time. Image
segmentation is the most investigated area of deep learning (DL) application to medical

Appl. Sci. 2022, 12, 5145. https://doi.org/10.3390/app12105145 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12105145
https://doi.org/10.3390/app12105145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9717-2866
https://orcid.org/0000-0002-5111-1929
https://orcid.org/0000-0002-5951-7317
https://doi.org/10.3390/app12105145
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12105145?type=check_update&version=2


Appl. Sci. 2022, 12, 5145 2 of 20

images [13,14], and DL-based methods are increasingly proving to outperform conventional
automated segmentation methods [15]. The number of research papers about DL applied to
MRI liver and tumor segmentation has constantly grown over the past five years [13]. Fully
connected convolutional neural networks (FCNN) represent the current gold standard for
feature extraction from complex two and three-dimensional medical data. U-net [16,17],
V-net [18], SegResNet [19] and HighResNet [20] are representations of such networks.
While 3D U-net and V-net have already shown good literature results on liver and tumor
segmentation tasks, SegResNet and HighResNet have not previously been applied to this
task to the best of our knowledge.

This study aimed to develop a DL-based tool for fast and accurate MRI-based volu-
metric segmentation of the whole liver and liver tumors. The highlights of this study are:

• Detection and segmentation of liver metastasis from T1 MRI in less than 7 s.
• Creation of a cascade deep learning segmentation method based on the 3D FCNN.
• Comparison of four FCNN segmentation networks on the inhomogeneous MRI dataset.
• HighResNet application for the liver and liver lesion segmentation.
• Creation of a GUI to simplify the integration of the AI tool into medical practice.

Utilizing an in-house MRI dataset, a cascade DL method based on FCNN was trained
to segment CLRM and liver parenchyma from T1-weighted contrast-enhanced MRIs. In
addition, this study evaluated the performance of the four most promising FCNNs within
medical image segmentation on the validation set, which represents a highly unbalanced
problem for segmentation with a limited number of training samples. Using the GUI, our
method produced the segmentations for unannotated MRI data. Finally, we measured the
time required to manually correct the obtained segmentation by our DL-based tool in order
for the 3D model to be sufficient for further clinical use.

2. Literature Review

MRI is the most cost-efficient [5] and sensitive modality for liver tumor detection [6,21],
though it is challenging from the perspective of automatic segmentation methods. One
challenge with MRI is a variable contrast between liver and tumors depending on the
sequence and the time passed after contrast injection. Any machine learning-based method
requires expert annotated data for the desired task. That is why another challenge with
MRI is the lack of publicly available annotated data suited to train automatic segmentation
methods. Here, we used the in-house COMET dataset [22], which contains various source
input data, such as machines and protocols within the T1 contrast-enhanced MRI sequence.

The use of machine learning methods for image segmentation has seen rapid growth in
the past decade. In 2019 Bilic et al. released an open dataset of 131 CT cases with segmented
liver and tumor segmentation [23]. The number of research papers on CT-based DL in liver
and tumor segmentation has been growing [13,24]. In contrast, MRI-based DL segmentation
remains a challenge due to the lack of data availability and the demand for ground truth.
Several papers approached this problem using a private MRI dataset and different DL
solutions [25]. The most common DL methods to segment liver and liver tumors are based
on the FCNN networks [13]. The choice between 2D and 3D convolutional filters depends
on the specifics of the task and on the computational resources available. In the current
study, volumetric 3D MRI data were used where lesions extend across multiple slices in the
3D volume, and a 3D model approach was therefore chosen; 3D convolution is an extension
of a standard 2D convolution [26] into a third dimension. The benefit of using the third
dimension is utilizing 3D spatial information from MRI volumes. For example, the vessel
representation in a single 2D slice could resemble a lesion; however, with 3D information,
the difference between those structures may become more evident. Furthermore, 3D
convolutions solve the discontinuity problem across slices of the 3D image volume [27].
Despite an increasing number of 3D U-net variations [18,28–30], the original 3D U-net [31]
has the lowest number of parameters and shows good segmentation results on most of
the medical segmentation tasks [32]. Despite the higher memory consumption, V-net [18]
and SegResNet [19] show promising results in MRI segmentation tasks for brain tumor
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segmentation tasks. HighResNet is another 3D high-resolution convolutional network
designed for volumetric image segmentation [20,33,34]. The use of dilated convolutions
has already shown high-accuracy results in tumor detection on MRI brain images [35].
Compared to encode–decode networks, HighResNet has fewer training parameters (809K
parameters compared to 4.8 M for 3D U-net).

The cascade approach showed promising results for tumor detection, as it helps to
eliminate the background by finding the bounding box of the liver on both CT and MRI
sequences [29,36–39]. Using an in-house dataset of diffusion-weighted MRI, Christ et al.
segmented HCC tumors using a cascade U-net with a mean Dice score of 0.870 for liver and
0.697 for tumors [29,36–39]. Our study employed a cascade method based on four different
FCNN networks to segment liver and CLRM tumors from MRI images. In contrast with the
other methods, we proposed to use the network from the first stage as a weight initializer
for a second network which is explained in detail in the Section 3.2.2. We aimed to reduce
the training time of the second network by introducing the MRI features from one network
to another.

Studies have shown that a higher Dice score for the tumor segmentation could be
achieved mainly by using multiple sequences and/or contrast phases from MRI examina-
tion. For example, a Dice score of 0.91 for the liver and 0.68 for the tumor segmentation was
achieved for HCC tumors using 3 T1 weighted MRI from different post contrast phases [40].
Other studies also showed that by combining the T1 weighted data with other sequences
as an input for the DL networks, higher Dice scores could be achieved. For example, a Dice
score of 0.83 for HCC tumor segmentation was achieved when combining T1, T2, and DW
MRI sequences [41]. However, it is challenging to have the same image protocol for all
patients, especially in the case of multicenter datasets such as the one used in the current
study (COMET). According to the radiologist’s requirements, the image data could vary
from patient to patient. Hence, only one T1 weighted contrast-enhanced image was used in
our method.

3. Materials and Methods
3.1. Dataset

Model training and validation were performed in 84 T1-weighted contrast-enhanced
(T1CE) MRI volumes with colorectal metastasis in the liver from the ethically approved Oslo-
CoMet Study (COMET) [22]. The data were collected from seven different MR machines
(Philips Medical System: Achieva, Intera, Ingenia, and SIEMENS: Aera, Avanto, Skyra,
SonataVision). All images were T1CE MRI, with variations in the protocol, timings, and
machine-specific image parameters. Based on domain expert ground truth (GT) annotations,
there was an average of 2.8 lesions per case, with a median size of 1.574 ± 18.117 mL (range
0.021–236.23 mL). The smallest and largest lesion volumes corresponded to 0.001% and
15.61% of the total liver volume, respectively. The liver occupies, on average, 6.7 ± 2.1%,
with the largest tumor of 1.15% of the total MRI volume (Figure 1).

GT segmentations were performed by two medical image processing experts with at
least three years of experience in liver MRI diagnostics. Annotations from T1CE MRI
were done using 3D Slicer (www.slicer.org, accessed on 15 May 2022) and ITK snap
(www.itksnap.org, accessed on 15 May 2022) software tools. The number of tumors and
their approximate spatial locations were confirmed by radiology reports and 2D lesion
annotations (Figure 2d). The annotations were performed semi-automatically and applied
to 2D slices from each volume [42], which the domain expert manually corrected as needed
using a brush tool. Volumetric segmentation masks for liver and lesions were then gener-
ated from the annotations yielding non-overlapping mask values, with a background as
class zero, liver parenchyma as class one, and tumors as class two.

www.slicer.org
www.itksnap.org
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Figure 2. The process of dataset GT creation by the medical expert: (a) an example of a slice of MRI
volume; (b) liver segmentation outline; (c) liver segmented and shown in 3D on top of MRI volumes;
(d) MRI volume annotated with an arrow; (e) lesion segmentation outline; (f) lesion segmented and
shown in 3D on top of MRI volumes.

From the segmented dataset, 60 volumes (75%) were used for training, 10 (12.5%)
for validation, and 10 (12.5%) for the testing (test set #1). The data split was manual with
respect to the patient and representation of all scanner variations through the subsets.
The test set represents all machines that were presented in the dataset (Figure 3). Some
patients had several MRI sessions that were taken into account during the split to avoid the
presence of the same patient in different subsets. Four additional MRI volumes were left
unannotated and used as test set #2.
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3.2. The Method

A cascade DL method based on an FCNN was utilized to generate fast 3D segmentation
of liver and liver tumors (Figure 5). The method utilized available functions from MONAI
and Pytorch, libraries designed for medical image analysis. The deep learning model was
trained using the Dell Precision 5820 Tower with NVIDIA GeForce RTX 3090 machine with
24 GB of graphics process units (GPU) memory.

3.2.1. The Network and Hyperparameters Choice

To choose the best network for 3D segmentation of liver and tumors we compared
segmentation performances on the validation set of our designed cascade approach using
four different FCNN networks. Our input to the network is a five-dimensional tensor, with
the first two dimensions corresponding to the batch size and channel size. As we used
only one MRI image, the number of input channels in this study is equal to one. All four
networks have 3 output channels representing each from the predicted class. By applying
voxelwise voting, the final 3D segmentation mask is obtained. The use of FCNN provides
volume to volume segmentation [27]. The algorithm of the study is presented in Figure 4.
All networks used in our methods were based on the convolution filter feature extraction.
3D U-net [43] and 3D V-net [18] are two FCNN networks based on 2D U-net [17], utilizing
encoding and decoding paths with a skip connection between them. Both networks utilize
3D convolutions to produce the final segmentation. It requires the input feature matrix
with a shape (l, w, h, c) where l, w, h stand for length, width, height and c, channels, and
a 3D convolutional kernel w of size w× w× w× cI × cw, where cI , cw are the number of
channels before and after the convolution. A 3D convolution output will be computed
using Equation (1)

Gx,y,z,n = ∑l−1
i=0 ∑w−1

j=0 ∑h−1
h=0 ∑c

m=1 wi,j,k,m,n Ix+i,y+j,z+k,m (1)

By applying the stride of two, the size of the input volume is decreased by half, and
using strided transpose convolutions, the size is increased back to its origin in the decoding
part of the network. The main difference between the U-net and V-net architectures is
the additional residual layers in the downsampling stages [18]. The number of filters
of both networks begins with 16, going up to 256 at the bottleneck stage. Following
the implementation proposed by the MONAI libraries, 3DV-net uses the kernel size of
5 × 5 × 5, Elu activation function, 3D batch normalization [44] and 50% of random dropout
of 3D feature maps. A kernel size of 3 × 3 × 3 is used for3D U-net, along with Prelu
activation function, instance batch normalization [45] and no dropout.
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SegResNet is another FCNN network with a similar encoding part based on decreasing
the size of the volumes using a stride of two and kernel size of 3 × 3 × 3. According
to the MONAI implementation, the number of filters begins with eight and with each
downsampled layer, it is multiplied by two. It is utilizing the Relu activation function in
each of the blocks of the networks, group normalization [46] and without dropout. The
decoder part is similar to 3D U-net implementations, with the variational autoencoder
branch added by the authors [19].

HighResNet is another FCNN network that utilizes 3D convolutions to extract features
from volumetric images with 3× 3× 3 convolution kernels. However, this network consists
only of 20 convolution layers. By utilizing dilated convolutions (Equation (2)), the network
avoids the encoding and decoding strategy to get the higher features from the volumes.
After the first eight filters with standard 3D convolutions, the authors introduced dilated
convolutions with a dilation factor r for further feature extraction (Equation (2)). This
dilation factor increases the receptive field by preserving the spatial resolution.

Ox,y,z,n =
l−1

∑
i=0

w−1

∑
j=0

h−1

∑
h=0

c−1

∑
m=0

wi,j,k,m,n I(x+ir),(y+jr),(z+kr),m (2)

To obtain the final segmentation, the final convolution layer with a 1 × 1 × 1 con-
volution and 160 kernels is applied. The network has a Relu activation function, batch
normalization and no dropout [20].

To make a fair comparison between all four FCNN, the same hyperparameters were
applied during the training and evaluation process. The choice was made using a litera-
ture search and several experiments on the training subset. Our method relied on such
hyperparameters as augmentations, network parameters (loss function, optimizer, and the
learning rate), and a border merging used for automatic liver cropping. During the training
process, 3D image augmentations were applied to increase the data amount and variation.
The input batch from the training dataset with a probability of 20% was augmented using
random contrast adjustment, introducing random Gaussian smoothing and sharpening,
and arbitrary affine deformations such as rotation and zooming for not more than 10% [20].
The introduction of such augmentation showed improvement in the segmentation metrics
on the training dataset and aimed to overcome the overfitting problem. All hyperparame-
ters, including loss function, optimizer, and learning rate, were defined in the configuration
file, and remain constant for both networks to compare them on the validation subset.
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Between available loss functions and optimizers from the MONAI library, a DiceFocal Loss
(Equation (3)) has shown one of the best performances on medical image segmentation
tasks [47].

LDiceFocal = LDice + LFocal (3)

where LDice is a Dice loss (Equation (4)) and LFocal is Focal loss (Equation (5)). Dice loss
was proposed by the authors of V-net paper [18], which was designed to deal with the
imbalance of medical image data for binary problems:

LDice = 1−
2 ∑C

c=1 ∑N
i=1 gc

i sc
i

∑C
c=1 ∑N

i=1 (gc
i )

2 + ∑C
c=1 ∑N

i=1 (s
c
i )

2 (4)

where gc
i is the ground truth binary indicator of the class label c of the voxel i, and sc

i is
the probability of corresponding predicted segmentation. Focal loss is the modification of
standard cross-entropy loss, with a focus on misclassified examples rather than correctly
classified background pixels.

LFocal = −
1
N ∑C

c ∑N
i=1 (1− sc

i )
γgc

i logsc
i (5)

To train the algorithm, the mean value of liver class and tumor class loss function was
used by the Adam optimizer (Equation (6))

α = α0 ∗ (1−
e

Ne
)

0.9
(6)

where α0 is the initial learning rate, Ne is a number of epochs, and e is an epoch counter [48].
After a set of experiments on a training subset, a learning rate of 1 × 10−5 and an

added merging for a cropping bounding box around the liver were chosen. During the
training, it was 10 voxels for each direction, and for the inference, −20 voxels was found to
be the optimal value.

Due to the dataset inhomogeneity in terms of size, intensity and resolution, pre-
processing was applied to normalize the input into the network and fit into the memory
constraints of the GPU. Before the volumes were introduced to the network, all volumes
were moved into the isotropic space using bilinear resampling. To normalize input inten-
sities, we applied zero means and one standard deviation intensity normalization, also
known as a Gaussian kernel normalization, which is a common practice for dealing with
data source inhomogeneity for MRI datasets used in DL [31]. The GPU memory constrains
the input image sizes for DL networks, such that the input size was 320 by 320 by 160 for
3D U-net and SegResNet, 128 by 128 by 128 for V-net, and 128 by 128 by 92 for HighResNet.

The post-processing in the final pipeline reduced the noise and achieved three-class
segmentation: background, liver parenchyma, and tumors. For the liver parenchyma
mask, the biggest connected component [49] was used to illuminate unconnected islands
that might be predicted by the method. Within it, a binary opening was applied using a
structural element of the 2-voxel-radius ball to create a final tumor 3D mask. The choice
of the radius was motivated by the fact that there were no tumors smaller than 39 voxels
on the training and validation datasets. Generally, small tumors are more likely to have a
spherical shape [50].

V =
4
3
∗ π ∗ R3 (7)

where, V is the ball volume, and R the radius. A ball with a volume of 39 voxels3 will have
a radius of 2.1 voxels according to a sphere volume formula (Equation (7)) The ball’s choice
with a smaller radius (2 voxels) will remove noise while avoiding discharging potential
tumor segmentation.
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3.2.2. The Method Implementation Details

Since the liver and liver tumors only make up a small fraction of the total MRI volume,
a cascade approach was applied to overcome the class imbalance: the method was divided
into Stage 1 and Stage 2 (Figure 5). The whole MRI volume was the input in the first stage,
and in the second it was cropped around the liver region volume. For each of the stages, the
networks were trained separately. To integrate the method into medical use, we aimed to
create a user-friendly interface for users of all backgrounds by employing the PySimpleGUI
library [51].
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Figure 5. Schematic representation of the used DL method used for creating 3D segmentation of liver
parenchyma and tumors.

The networks used on the first and second stages each required different data sets for
training. The first network (Deep Learning Stage 1—DLS1) was trained on the full MRI
volumes, with applied pre-processing on them. For the second network (Deep Learning
Stage 2—DLS2), training was proceeded on manually cropped MRI volumes around
the liver. DLS2 was initialized with pre-trained weights from DLS1, as both networks
were trained to produce 3-class segmentation. The training was terminated when the
validation loss reached a plateau and did not improve for more than 20 epochs. Network
hyperparameters were preserved on both steps.

To achieve the final 3D segmentation the following five-step protocol was followed.
An MRI volume was first pre-processed to match DLS1 input constraints, and the network
produces the first inference. Second, the post-processed output was resampled back to the
original size and spacing of the input MRI volume. Third, the coordinates of a bounding
box with added merging are recorded, and the initial MRI volume was cropped using
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them. Fourth, the preprocessing was applied to the cropped MRI volume, and DLS2
was used to produce a second segmentation. Fifth, in the post-processing, as a final step,
saved coordinates of a bounding box, where the MRI volume was cropped before, are
used to insert post-processed and resampled segmentation to generate a 3D mask for the
whole MRI volume. The inference process was entirely automatic and did not require any
interaction with a user, except specifying the path of the input volume.

3.3. Evaluation

To inspect the final 3D segmentation mask, both quantitative and qualitative evaluation
approaches were used. The quantitative evaluation included binary metrics such as the
Dice coefficient, sensitivity, precision, and the number of found and missed tumors in the
test set. The time required for the method to produce results and for the medical expert
to manually correct obtained results (from test set #2) was measured. We present the best
and worst cases in terms of the Dice metric in a form of 2D slices from volumes with the
overlap of the segmentation mask from the DL method and GT in Section 4.2.2.

3.3.1. Evaluation Metrics

The Dice coefficient (Equation (8)) is the most commonly used metric in medical image
segmentation, and it evaluates an overlap between GT and prediction. True-positives (TP)
are voxels that were segmented positive and are also positive on the GT. False-positive (FP)
and false-negative (FN) are voxels segmented as positive and negative on the prediction
when they have opposite values on the GT.

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
(8)

We also measured the sensitivity (Equation (9)) and precision (Equation (10)) of the
method applied to the liver and tumors. Sensitivity measures the percentage of true-
positive voxels compared to positive samples annotated on the GT. At the same time,
precision characterizes a correlation between correctly found true-positive samples to all
positive samples that were predicted.

Sensitivity =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

Due to the small number of voxels that tumors generally contain, Dice measurements
may not always be reliable. Therefore, the total number of found and missed tumors per
volume was measured in addition to the metrics above. Using the same approach that was
taken in a Computer Tomography (CT) challenge for liver tumor segmentation, tumors
were considered to be found if at least 50% of the tumor voxels were detected [23].

3.3.2. Evaluation of the Tool by a Medical Expert

A clinical expert carried out the final evaluation. Using the created Graphical User
Interface (GUI), our deep learning-based method became an easy-to-use tool that produces
patient-specific 3D models of the whole liver and tumors from MRI volumes. The designed
workflow with the tool integration is schematically presented in Figure 3.

Each step in the procedure described in Figure 6 requires different, but sequentially
complementary actions. During step (a) CET1 MRI volume was extracted from the medical
dataset. The medical dataset of patients contains a lot of different modalities and extra
information that cannot be processed by design solution, so it was necessary first to export
MRI volume in NIFTI format and proceed with the anonymization process before putting
the volume MRI into our method. On step (b), the user needs to specify the path of the
input NIFTI image or the folder that contains one or multiple of them, and where to
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save the output segmentation. The designed GUI aimed to simplify the usability of the
method. The output is a 3D segmentation, specifying the liver and tumors as class one
and two, respectively. The evaluation part begins on step (c). The user has to evaluate
created segmentation visually, and if needed, adjust the labels manually by relying on
the professional experience and referring to radiologist annotations of tumors and their
approximate location. The time required to correct and produce the final segmentation was
recorded for the liver parenchyma and tumors together. On step (d), using ITK-snap or 3D
Slicer visualization tools, a 3D volumetric model of the liver parenchyma and tumors was
created. After a medical expert adjusted a final segmentation, the quantitative metrics of
the AI output compared to the corrected version were calculated.
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Figure 6. Designed workflow to utilize the deep learning-based tool for 3D segmentation for
liver parenchyma and tumor segmentation to create a 3D model: (a) unannotated MRI volume;
(b) segmentation inference using GUI; (c) medical expert corrections and verification; (d) 3D
model rendering.

4. Results
4.1. Network and Method Validation Results

To compare FCNN networks, with the improvement in the proposed segmentation
method by adding a cropping stage, the intermediate segmentation mask was also evalu-
ated. Table 1 shows the segmentation results on the validation dataset using four FCNN
after DLS1 with post-processing (Stage1), and after utilizing the whole pipeline proposed
in Figure 5 (Full method).

Table 1. Results achieved on the validation set on the two stages with different FCNN networks.

Network Subject Sensitivity Precision Dice

3D U-net
(Stage1)

Liver 0.940 ± 0.007 0.775 ± 0.110 0.834 ± 0.054
Tumors 0 0 0

3D U-net
(Full method)

Liver 0.995 ± 0.007 0.873 ± 0.124 0.930 ± 0.077
Tumors 0.167 ± 0.421 0.051 ± 0.412 0.093 ± 0.365

V-net
(Stage1)

Liver 0.871 ± 0.079 0.589 ± 0.141 0.693 ± 0.099
Tumors 0 0 0

V-net
(Stage2)

Liver 0.975 ± 0.026 0.762 ± 0.147 0.848 ± 0.099
Tumors 0.3278 ± 0.460 0.385 ± 0.382 0.275 ± 0.358

SegResNet
(Stage1)

Liver 0.916 ± 0.062 0.746∓0.102 0.815 ± 0.046
Tumors 0 0 0

SegResNet
(Stage2)

Liver 0.992 ± 0.008 0.796 ± 0.112 0.879 ± 0.716
Tumors 0.663 ± 0.339 0.692 ± 0.226 0.655 ± 0.281

HighResNet
(Stage 1)

Liver 0.994 ± 0.003 0.859 ± 0.044 0.919 ± 0.026
Tumors 0.948 ± 0.209 0.351 ± 0.156 0.488 ± 0.153

HighResNet
(Full method)

Liver 0.988 ± 0.008 0.896 ± 0.035 0.942 ± 0.017
Tumors 0.915 ± 0.258 0.510 ± 0.165 0.626 ± 0.134
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From Table 1, an improvement in all metrics between Stage 1 and Stage 2 for all net-
works was observed. Only HighResNet was able to detect and segment the network from
the full image, while three other networks detected tumors only using the full proposed
method. Using only the one stage approach V-net achieved the lowest segmentation metrics
for the liver segmentation with a Dice score of 0.693 ± 0.099, while HighResNet achieved
the highest value within all metrics with a Dice score of 0.919 ± 0.026. After the second
stage, all four networks were able to segment tumors from MRI volumes. SegResNet and
HighResNet had similar performances in terms of Dice score for tumor segmentation,
with higher tumor sensitivity for HighResNet of 0.915 ± 0.258, and higher precision for
SegResNet of 0.692 ± 0.226. For the liver parenchyma segmentation, the best performance
was achieved by HighResNet.

Inference time with loading the model, pre-and post-processing for one volume
varies between the networks used. For 3D U-net, it was 6.12 ± 1.34 V-net—5.41 ± 0.99,
SegResNet—6.08 ± 1.04 and for HighResNet it was 5.29 ± 0.95 s per volume.

4.2. Application on the Test Subsets

Based on the validation results, HighResNet was chosen as the final network for
our method. To allow different users to utilize our tool, a user-friendly GUI was created
(Figure 3, Stage B). In addition, the inference could also be performed with the command
line. After the medical expert manually corrected the DL method output for test set #2, a
new segmentation mask was saved in a new file and used to evaluate the method.

4.2.1. Quantitative Results

Segmentation metrics from obtained inferences for both test sets were presented
in Table 2. Binary masks of the liver and tumors were compared to GT and expert
manual corrections.

Table 2. Liver parenchyma and tumor segmentation results on the test set.

Network Subject Sensitivity Precision Dice

Test set #1
compared to GT

Liver 0.988 ± 0.003 0.903 ± 0.019 0.944 ± 0.009

Tumors 0.832 ± 0.163 0.699 ± 0.124 0.780 ± 0.119

Test set #2
compared to expert

corrections

Liver 0.996 ± 0.003 0.993 ± 0.006 0.994 ± 0.003

Tumors 0.667 ± 0.257 0.882 ± 0.146 0.709 ± 0.171

The proposed method based on the HighResNet achieved a Dice score of 0.944 ± 0.009
for the liver and 0.780 ± 0.119 for the tumor segmentation on the first test set. Out of
17 tumors defined on the GT annotation, the HighResNet found 15, while pixel-wise
tumor sensitivity was 0.832 ± 0.163. The precision of 0.699 ± 0.124 and two false-positive
tumors segmented by the network leads to many of false-positive pixels on the DL tumor
prediction mask. On the second test subset (compared to expert manual corrections) the
same method achieved a Dice score of 0.994 ± 0.003 for liver and 0.709 ± 0.171 for tumor
segmentation. Among nine tumors presented in this subset, six were detected, and the
average sensitivity was 0.667 ± 0.257. The method predicted no false-positive tumors, and
the average precision for tumor segmentation was 0.882 ± 0.146. The average Dice score
for both datasets for the liver segmentation was 0.958 ± 0.0.24, and for the CLRM tumor
segmentation, the Dice score achieved was 0.724 ± 0.130.

Figure 7 presents segmentation results on each of the test samples in terms of the Dice
score for the tumor and liver parenchyma.

On the test subset with GT (Figure 7a), the highest Dice score for tumors was 0.831 (test#1),
and the lowest was 0.466 (test#6). For the tumors that were found, the mean Dice score was
0.780 ± 0.119. The liver segmentation Dice remained high for all cases, with the lowest
result of 0.925 (test#5) and the highest of 0.960 (test#9). The average inference time was
4.82 ± 1.30 s per volume.
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Figure 7. The Dice score achieved on test datasets with a HighResNet cascade network. The red color
corresponds to the liver and blue to the tumor Dice score: (a) test set #1—compared to ground truth
mask; (b) test set #2—compared to expert corrections applied after the inference.

First, expert manual corrections were required to calculate the Dice score and other
metrics on the test subset without GT (Figure 7b). The inference time to achieve DL
segmentation was 5.35 ± 1.25 s per case. The average time to correct the volumes (both
liver and tumor segmentation masks) was 21.15 ± 10.6 min. For the liver parenchyma,
the average correction time was 10.6 ± 4.5 min. In all cases, the time required for tumor
correction was similar as for all parenchyma. The longest time per volume was 32 min
(test#11). The highest Dice score for tumors was 0.916 (test#14), and the lowest was
0.500 (test#11). The liver parenchyma’s lowest Dice score was 0.989 (test#11) and the
highest was 0.996 (test#13 and test#14).

Figure 8 demonstrates the confusion matrix for the detected tumors by the HighresNet
based methods and tumors presented on the GT. For the second test subset, the number of
tumors was checked with annotations provided by the radiologist to guide and confirm
expert segmentation correction.
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network: (a) test set #1; (b) test set #2.

From the boxplots, we can see that in both datasets, there were five tumors that were
missed by our method. Three false-positive tumors were detected in total in both test
datasets. Out of 23 lesions annotated on the dataset, 18 were segmented using our method.

4.2.2. Qualitative Results

An overlap of DL predication and GT segmentation contours on six MRI volumes
from the test set is shown in Figures 9–11 to visualize the segmentation results. The first
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two columns correspond to different slices or views that contain tumor segmentations. A
3D model rendered in 3D Slicer for each case is presented in the third column. The red
color represents DL prediction, and green is GT or segmentation corrected by a medical
expert. Though on the 2D slices, both liver and tumor contours are presented, on the 3D
model, only tumor segmentation is presented from both segmentation masks. A 3D model
of liver parenchyma is rendered using only a DL prediction mask to make the visualization
clearer and focus on the tumor segmentation.
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On the two figures below, samples with the lowest and the highest tumor segmentation
Dice score from the test set #1 is presented.

On the MRI volume test#3 and test#6, our method achieved a Dice score of 0.597 and
0.466 for the tumor segmentation. From Figure 9, two missed tumors on test#3 and one
false-positive tumor could be observed. From the 2D slices, low over-segmentation of the
liver parenchyma is presented. On test#6, the DL method has one missed tumor out of two
annotated on the GT. The liver parenchyma mask is slightly under-segmented compared to
a GT.

From the first row of Figure 10, we can observe that in addition to two correctly de-
tected tumors, the DL predicted one false-positive tumor. From 2D slices, over-segmentation
on the liver parenchyma and under-segmentation for the tumor borders is presented. The
DL method achieved a 0.809 Dice score (test#8) in the second row, demonstrating an
over-segmentation for the tumor and liver parenchyma.

On Figure 11 two MRI volumes from the second subset are presented. Consisting of a
high Dice score for the liver parenchyma for all four samples from this subset, volumes
shown below were selected by the lowest tumor Dice score. In addition, those two volumes
(case #11, case #12) took the longest to correct for the medical expert.

One out of three tumors were missed on case test#11 (Figure 11, first row). From the 2D
slices, we can see that under-segmentation on one of two detected tumors is present, while
the liver parenchyma has over-segmentation. In case test#12 DL method missed two out
of three tumors (Figure 11, second row). On the found tumor, over-segmentation requires
manual correction from the expert. Liver parenchyma did not require a lot of modification
and reached a Dice score of 0.993. The main areas requiring the most significant corrections
for the liver parenchyma were borders shared with the kidney, bladder, and diaphragm.

5. Discussion
5.1. Principal Findings

The full method was trained using four cascaded FCNN networks (3D U-net, V-net,
SegResNet, and HighResNet) and evaluated on the validation dataset by segmentation
metrics and their improvement using the cascade approach (Table 1). All four networks
improved the segmentation metrics after the cascade network was applied. The methods
based on the U-net (such as 3D U-net, V-net, and SegResNet) did not contain tumors within
the initial segmentation mask, which could be due to a significant class imbalance and
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the downsample nature of the U-net architecture. HighResNet, despite the smallest input
size (128 × 128 × 92) and the lowest amount of parameters to train, was able to find
tumors from the uncropped data. After the liver region was cropped, all networks could
detect lesion representations from the MRI input. In the method based on the HighResNet,
despite the Dice score and precision improvement, the sensitivity for the tumor class
decreased from 0.948 ± 0.209 to 0.915 ± 0.258. This indicates that the detection ability
of the HighResNet slightly decreased, while segmentation became more accurate. That
could be due to the huge variation in the tumor shape and texture representation and the
possible discharging of true-positive lesions due to overfitting on the samples from the
training dataset. The lowest segmentation results were achieved by V-net, which could
be also due to low liver segmentation after the first stage. Compared to other networks,
this network used kernels of 5 × 5 × 5 matrix, while others are using 3 × 3 × 3 kernels;
maybe changes in the filter kernel size have this influence. In general, comparing all four
networks, HighResNet achieved the best Dice score with a more stable mean value for both
liver and tumor segmentation. We also marked a slight reduction in time for the method
based on HighResNet compared to other networks, even though all were able to produce
the segmentations in less than 7 s per volume.

On the test dataset evaluation (Table 2), we observe higher tumor segmentation metrics
on test set #1, with similar liver parenchyma segmentations. As in the validation subset,
this could be caused by the inconsistent tumor shape and texture appearances throughout
the whole dataset. Within the CLRM tumors, there are different subtypes of tumor growth
patterns, and the representation of the tumors could also vary even within the same
sequence and modality [52].

Visualization of our results demonstrated that the cases with the lowest Dice score
network tend to predict similar tumor shapes with a bit of over-segmentation. The misclas-
sified vessel on the first row of Figure 9 was connected to the missed tumor, which might
be a reason for the method’s failure. On the second row of Figure 9, in the two tumors that
were located very close to each other, the second was missed. On the other hand, in the first
row of Figure 10, the network made a false-positive prediction of the completely isolated
tumor while segmenting two other tumors with high accuracy. On the second row of the
same figure, we can also see that the network reached the highest Dice score for liver tumor
(0.809), and the 3D model and 2D contour overlap were close to each other.

In Figure 11, we can observe similarities between test#8 and test#11 (first row). The
missed tumor was in close contact with another tumor that was correctly predicted and
segmented by the network. In contrast, in the second row, missed tumors were located
on the borders of the liver parenchyma. Despite that, the correction time for the tumors
was almost the same as for the liver parenchyma due to the small volume of the tumors
compared to the liver.

5.2. Comparison with Other Studies

Table 3 compares our results with previously published studies on MRI liver and
liver tumor segmentation. Table 3 presented studies done on MRI data and aimed at liver
or/and liver tumor segmentation.

The results of our study compare favorably with previous studies as listed in Table 3.
Despite being trained on a relatively small dataset of MRI images and using only one
phase from the T1 weighted modality, we achieved a Dice score for liver segmentation via
HighResNet on par with the state-of-the-art.

Owler et al. solved a two-class problem using a dataset almost twice the size as in our
study and achieved a slightly higher Dice score for the liver. Compared to Winther et al.,
the results are close in Dice scores, though being more stable in terms of standard deviation
and using less data for training. Compared to other studies aiming at lesions in the liver for
detection, to the best of our knowledge, we are the first to target secondary tumors such as
CLRM for detection for the MRI images. Furthermore, the input to the network is just one
modality compared to other research. Zhao et al. utilized three different MRI sequences
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from 255 patients to achieve a Dice score of 83.63 ± 2.16 for HCC tumor segmentation
without liver segmentation. Our method, in contrast, requires only T1 weighted MRI to
produce tumor and liver segmentation simultaneously.

Table 3. Performance comparison of MRI based liver and liver tumor segmentation studies
(n\a—not applicable).

Authors, Year Study Goal and DL Method Liver Dice Tumor Dice

Owler et al., 2020
[53]

Liver segmentation using 3D U-net via T1
weighted dataset of 153 cases 0.970 n\a

Winther et al., 2021
[54]

Liver segmentation using V-net via T1
weighted MRI dataset of 100 patients 96.0 ± 1.9 n\a

Christ et al., 2017
[36]

Liver and HCC tumor segmentation via 2D
U-net from DW-MRI T2-weighted dataset of

31 patients
87 69.7

Fabijańska et al., 2018
[55]

HCC tumor segmentation via 2D U-net from
DCE-MRI dataset of 9 patients n\a 0.482

Jansen et al., 2019
[56]

Liver segmentation via FCNN network from
6 SCE MR images and tumor detection via

dual pathway FCNN from SCE and DW NRI
images from 121 patients

0.95 n\a
Sensitivity 99.8

Bousabarahet al., 2020
[40]

Liver and HCC tumor segmentation via 3D
U-net from multiphasic contrast-enhanced
T1-weighted MRI dataset from 174 patients

0.91 ± 0.01 0.68 ± 0.03

Zhaoet al., 2021
[41]

HCC tumor and hemangioma segmentation
via united adversarial learning framework
UAL from multi modal contrast-enhances
(T1-, T2-weighted and DWI) MRI images

from 255 patients.

n\a 83.63 ± 2.16

Our method
Liver and CLRM tumor segmentation via

HighResNet from a T1-weighted
contrast-enhanced dataset of 80 MRI images

0.958 ± 0.024 0.724 ± 0.130

5.3. Strength, Limitation, and Potential Future Application of the Study

The described solution provides high-quality segmentation of liver parenchyma and
CLRM on MRI data in less than 6 s. A manual correction was applied at the end of the
method before medical use, as there were cases with low sensitivity in the test set. The
overall time for correcting predictions varied from 12 to 32 min and is very likely shorter
than creating segmentations purely using semi-automatic tools for both parenchyma and
lesions. This is especially important for the segmentation of liver parenchyma, an extensive
segmentation task covering multiple slices and challenging areas in contact with other
organs, requiring medical knowledge to orient in patient-specific anatomy and also a lot of
care and attention to determining liver borders. As lesions in the liver are often smaller and
surrounded by liver parenchyma, the corrections could be performed using purely manual
tools that are not extremely time demanding.

The choice of the network to use in the final experiments was performed by the
segmentation results achieved on our validation set. Although a large effort was made to
find the best hyperparameters for the networks, the principal architectural components
such as kernel size, batch normalization technique, and layer activation functions were
predefined by the architecture implementation authors. Those parameters were different
from FCNN, and maybe further experiments could increase the validation of the results.
However, the aim of the study was not focused on network architecture development
and modification, but rather on the application of already available DL tools into the
created dataset.
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Another set of experiments that could possibly improve the results would be the use
of different strategies for weight initialization for the final network. It could include pre-
training of the network using open medical image segmentation datasets, for example, the
LITS dataset [23]. Further experiments and training on a larger dataset using the cascade
method would make the method more robust and could further decrease the required time
for the manual segmentation editing for the clinical use of proposed AI application.

The availability of our method to create a segmentation mask will also make it possible
for further DL research in CLRM tumors within the MRI modality. Starting with a 3D
segmentation by our DL method, most of the liver is already segmented. Therefore,
only detecting and correcting the most significant over- and under-segmentation is left
in completing the segmentation. An extension of the dataset, and training the method
on more samples, will make the method more robust and increase the sensitivity of the
method. Lesion segmentations produced by the presented method still require careful
evaluation by a medical expert for its classification, and border adjustment. Even false-
positive predictions will draw medical experts’ attention to the specific location, which
might have an atypical pattern or might even be a missed lesion.

Our DL method was trained on the GT provided by just two medical experts, which
can result in overfitting to their original segmentation of the MRI data. Between medical
experts, the segmentation of the same structure will never have a 100% overlap due to
individual human visual perception. Our future plan is to expand the study and involve
more medical experts, to make the GT less biased and also to expand the method for other
types of liver tumors.

Though our GUI can be used to create fast 3D segmentation for the liver parenchyma
and tumors for an unannotated dataset (test set #2), the method is still limited by the
type of machine on which it is trained. During the past years, 3D Slicer made several
artificial intelligence (AI)-based application tools to speed up the process of medical image
segmentation (AI-Assisted Annotation Server from NVIDIA [57], MONAI label from
MONAI [58]). They require minimal manual initialization and show good segmentation
results on CT images for liver and liver tumor segmentation tasks. In the future, we aim to
integrate our trained method into this solution and make our method publicly available to
increase the usability of MRI images by them.

6. Conclusions

In conclusion, our results suggest that fast and accurate liver parenchyma and liver
tumor segmentation from MRI can be achieved using the HighResNet-based deep learning
method. Our approach got a Dice score of 0.944 ± 0.009 for the liver and 0.780 ± 0.119 for
the tumor segmentation on the annotated dataset. The time required to create and correct a
clinically accurate 3D model using our method was at an average of 23 min per volume.
Compared to performed annotations starting from inference by the presented approach,
the DL-based segmentation received a Dice score of 0.994 ± 0.003 and 0.709 ± 0.171 for the
liver and tumor. The GUI we designed for the automatic deep learning-based segmentation
can be used as an assisting tool for creating a patient-specific 3D model for radiologists,
which surgeons could also use for surgery planning. In the future, work will be performed
to create an open code application or integrate our method with already available tools
such as a 3D Slicer or ITK snap.
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