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Featured Application: This system is applicable to the detection of adversarial attacks on differ-
ent machine learning (ML) models.

Abstract: In machine learning (ML), adversarial attack (targeted or untargeted) in the presence of
noise disturbs the model prediction. This research suggests that adversarial perturbations on pictures
lead to noise in the features constructed by any networks. As a result, adversarial assaults against
image categorization systems may present obstacles and possibilities for studying convolutional
neural networks (CNNs). According to this research, adversarial perturbations on pictures cause
noise in the features created by neural networks. Motivated by adversarial perturbation on image
pixel attacks observation, we developed a novel exploit feature map that describes adversarial
attacks by performing individual object feature-map visual description. Specifically, a novel detection
algorithm calculates each object’s class activation map weight and makes a combined activation
map. When checked with different networks like VGGNet19 and ResNet50, in both white-box and
black-box attack situations, the unique exploit feature-map significantly improves the state-of-the-art
in adversarial resilience. Further, it will clearly exploit attacks on ImageNet under various algorithms
like Fast Gradient Sign Method (FGSM), DeepFool, Projected Gradient Descent (PGD), and Backward
Pass Differentiable Approximation (BPDA).

Keywords: adversarial attack; convolutional neural networks; feature-map; VGGNet19; ResNet50;
white box; black box

1. Introduction

Due to clear advantages in terms of the prediction accuracy of deep learning (DL)
models that are presently being applied in a broad variety of disciplines. VGGNet and
AlexNet, two of the most popular DL models for computer vision tasks, have a lot of
hype because they promise things such as superhuman autonomous driving or health
diagnostics [1]. Simultaneously, a drawback of DL is becoming more generally recognized
as the opaque nature of its decision-making process. Pre-trained models, commonly called
black boxes, make it impossible to understand which components of the input contributed
to the output and in what way [2]. The end user may desire an exploit that is simple enough
to be easily communicated, but the CNN may be needed to conduct a highly intricate chain
of operations in order to accomplish the task. As a consequence, there is a trade-off between
how realistic the description is of the internal dynamics of the network and how explainable
it is [3].

Image classification systems are prone to adversarial attacks [4], which add tiny
alterations to photos, leading these algorithms to make erroneous predictions. These
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attacks are extremely powerful against even the most successful convolutional network-
based systems [5,6], despite the perturbations being typically unnoticed or regarded as
little “noise” in the image. The success of adversarial attacks puts real-world convolutional
network applications at risk of security breaches. The network performs calculations that
are very different from those made by human brains. As provided below, the Figures depict
original and attack images with a feature-map and also its attacked feature-map as shown
in Figure 1.
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This research describes adversarial attack detection on image classification or pre-
diction algorithms such as AlextNet, VGGNet, and ResNet. It further provides different
feature-map detection methods and proposes to exploit a feature-map that works well on
individual objects in an image possible to use.

To summarize, the following are the major contributions: (1) it presents an adversarial
attack using the “Wherefore? What? and How?” concepts. Researchers can quickly
and effectively establish adversarial attack awareness using the proposed method; (2) it
discusses the strengths and flaws of the proposed methods to explore each for a specific
application; and (3) it also describes different types of attacks on image pixel and its
detection methods.

2. Related Work

Agarwal et al. [7] proposed a non-DL approach which involves searching for features
using a set of well-known image transforms, such as the Discrete Wavelet Transform,
the Discrete Sine Transform, and classifying the features using a support-vector-machine-
based classifier. The detection algorithm yielded at least 84.2% and 80.1% detection accu-
racy under seen and unseen database test settings, respectively. Additionally, they also
emphasized how the impact of the adversarial perturbation can be neutralized using a
wavelet-decomposition-based filtering method of denoising.

Guesmi et al. [8] carried out defensive approximation classification with the same
level of accuracy without the application of retraining. The convolution neural network’s
resources and energy consumption were also decreased by using an approximation com-
puting model. If a strong transferability-based attack on a LeNet-5 or Alexnet, the proposed
implementation makes them more resistant to 99% and 87%, respectively, as the approxi-
mate logic implementation is easier to use.

Higashi et al. [9] used the sensitivities of image classifiers to offer a unique technique
for identifying adversarial pictures that is fast and accurate. Due to the fact that adversarial
pictures are formed by adding noise, they concentrate on the behavior of the outputs
of image classifiers for images that have been filtered differently. When the strength
of an image classifier is increased, the output of a SoftMax function in the classifier is
substantially altered in the case of adversarial images, but the output is rather steady in
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the case of normal images. They also explored the operation-oriented properties of several
noise reduction techniques.

Tsingenopoulos, et al. [10] proposed an auto attacker revolutionary reinforcement
learning system in which agents learn how to operate around a black-box model by ques-
tioning it, extracting the underlying decision behavior efficiently, and successfully under-
mining it. The auto attacker is a first-of-its-kind reinforcement learning system that makes
no assumptions about the differentiability or structure of the underlying function. As a
result, it is resistant to standard defenses such as gradient obfuscation and adversarial
training. The auto-attacker revolutionary reinforcement learning method works well even
if the output is less descriptive or missing.

Xie et al. [11] developed innovative network topologies that promote adversary ro-
bustness by conducting feature denoising in order to improve adversarial resilience. They
have specifically designed blocks in their networks that denoise the features by using
non-local techniques or other filters. The complete network is trained from beginning to
finish whenever new blocks come into the network. The designed system can be used in
both white-box and black-box assault contexts. The ImageNet technique achieves 55.7%
accuracy under 10-iteration on projected gradient descent white-box attacks, while the
previous algorithm achieves 27.9% accuracy. While under severe 2000-iteration on projected
gradient descent white-box attacks, their method achieved 42.6% accuracy.

Miller et al. [5] discussed an overview of the attack anomaly detection system by
considering a successful, targeted test-time evasion attack example that was developed
with a “clean” example x from a parent class cs and perturbing it until the perturbed
example’s judgement is identical to the source class cs. They also carried out work on
test-time evasion (TTE), data poisoning (DP), backdoor DP, and reverse engineering (RE)
attacks and particularly defenses against the anomaly detection.

Vargas and Su [12] considered an assault in which a pixel is selected at random to be
perturbed by the same amount that may be used to cause an attack. Propagation Maps and
Locality Analysis are two probable tools for understanding a one-pixel attack. In the CIFAR
dataset, the average of PMean over 318 successful assaults was calculated on ResNet out
of 1000 trials. Every time an attack is successful, it is carried out again at the same spot
on the picture. This process is repeated 5000 times on the CIFAR-10 dataset to achieve a
statistically significant result.

Ye et al. [13] improved model interpretability, by introducing the saliency map ap-
proach which is analogous to bringing the process of attention to the model in order to
grasp the progress of object recognition by deep networks. Then, to identify hostile cases,
provide a new saliency map that is integrated with additional sounds and makes use of
the inconsistent strategy. Using several example adversarial attacks on common data sets,
such as ImageNet and popular models, they discovered that their technique was capable of
detecting all of the assaults with a high detection success rate successfully.

Jia and Gong [2] used adversarial scenarios, to address the potential and problems
of defending against ML-equipped inference attacks. The existing adversarial example
construction approaches fall short because they do not take into account the specific
problems and needs for producing noise when fighting against inference attacks. They
used the example of defending against inferential attacks on online social networks to show
the potential and obstacles that might be encountered.

Momeny et al. [4] suggested an approach that may be used to test the resilience of
CNNs to several forms of noise at the same time. For the restoration of noisy pictures, it
does not need any preprocessing. The suggested Nested-Residual Guided CNN for the
classification of noisy pictures has a reduced time complexity when compared to other
methods. Further, it is better at classifying images compared to other methods because of
its higher accuracy and efficiency.

Akhtar and Mia [14] presented the first thorough overview of adversarial attacks on
DL in computer vision, which includes both theoretical and practical considerations. They
carried out the design of adversarial assaults, investigated the presence of such attacks,
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and proposed countermeasures. Their contribution further explored the feasibility of
adversarial attacks in real-world situations.

Martins et al. [15] provided the analysis of adversarial attacks, which is referred to as
adversarial ML. They are widely researched in the areas of picture classification and spam
detection. They concluded that adversarial attack approaches were successful in both virus
and intrusion situations, with a large variety of tactics having been examined. They also
determined adversarial defensive strategies that have not yet been properly investigated.

Harder et al. [16] demonstrated how Fourier analysis of input photos and feature-maps
may be utilized to identify benign test samples from adversarial images by comparing the
Fourier transforms. They suggested two innovative detection methods. First, they present
a technique for detecting acoustic signals that is based on acoustic signals; which makes
use of the magnitude spectrum of the input pictures. The second technique expands on
the first by extracting the phase of Fourier coefficients of feature-maps at various levels.
They were able to increase adversarial detection rates as a result of this enhancement when
compared to current best-practices detectors.

Panda et al. [6] constructed the dimensionality of inputs or parameters in a network,
on the surface, seems to restrict the “space” in which adversarial instances are found. They
show that, guided by their intuitive understanding, discretization significantly increases
the resilience of DL networks against adversarial attacks. Their work is more specific,
discretizing the input space significantly increases the adversarial resilience of the DL
network over a wide variety of perturbations while causing only a small loss inaccuracy.

Sutanto and Lee [17] offered an approach for detecting adversarial noise that does not
require prior knowledge of the kind of adversarial noise used by the adversary. In order to
do this, they offer a blurring network that is trained solely with normal pictures. They also
recommended that it be used as the starting condition of the deep image prior network.
The usage of adversarial noisy pictures for training the neural network is not required in
other neural network-based detection approaches, which need the use of a large number of
adversarial noisy photos.

Izmailov et al. [18] investigated the following two issues. How can an adversary take
advantage of the geometric and statistical aspects of data distribution when the assault is
of a certain scale and scope? When constructing a decision rule, what countermeasures
may be utilized to prevent it from malicious distribution shift within the specified size of
the attack? Even though we do not supply a complete answer to the problem, we do gather
and interpret the observations in a way that can be used to make better decisions about the
design of ML algorithms.

Raju and Lipasti [19] studied and proposed BlurNet as a protection against the Robust
Physical Perturbation (RP-2) attacks. First, they provided evidence to support their case
by carrying out a frequency analysis of the first layer feature-maps of the network using
the LISA dataset. The RP-2 technique introduces high-frequency noise into the input
picture during the training process. They conducted a black-box transfer attack in order to
demonstrate that low-pass filtering the feature-maps is more advantageous than filtering
the input data. Several regularization strategies were discussed for incorporating this low-
pass filtering characteristic into the network’s training regime, as well as white-box assaults
on the network. In the end, they carried out an adaptive assault assessment and described
that when total variation regularization, one of the recommended countermeasures, is used,
the success rate of the attack drops from 90% to 20%.

De Silva et al. [1] have suggested a solution to protect ML algorithms against test
data fabrication with a common assumption that feature entries of test data are equally
susceptible to falsification. The researchers describe an adversarial learning approach that
takes into consideration the susceptibility features of test data entries while developing an
attack-resilient classifier.

Chen et al. [20] reviewed literature primarily and conducted adversarial research on
specific application scenarios. They generated adversarial examples by adding perturba-
tions to the information carrier in order to realize the adversarial attack on reinforcement
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learning systems. They gave a detailed overview of the literature on adversarial attacks in
several fields of reinforcement learning applications, along with the best ways to defend
against them.

Chai and Velipasalar [21] offered an approach to identify the adversarial instances
created by several adversarial assaults, including the dispersion reduction technique,
projected gradient descent technique, varied inputs method, and momentum iterative fast
gradient sign technique. Their method, which uses one dimensional Gabor filter responses,
is very good at figuring out adversarial samples made from a wide range of surrogate
neural network models and datasets.

Jang et al. [22] proposed that students learn how to construct hostile instances by
using the generator. They offer a recursive and stochastic generator that, in contrast
to previous systems that generate a one-shot perturbation via a deterministic generator,
creates significantly stronger and more diversified perturbations that thoroughly show the
susceptibility of the target classifier. Tests on the MNIST and CIFAR-10 datasets confirmed
that the classifier adversarial trained with their method outperforms the classifier trained
with a recursive and stochastic generator method under a variety of white-box and black-
box attacks.

Akhtar and Dasgupta [23] presented a quick review of diverse hostile and security
measures. Frameworks in the first category are aimed at increasing the resilience of DNNs
in order to appropriately classify AEs. For example, adversarial training, which entails
training the ML approaches with both clean and malicious samples. A single step update
along the sign of the gradient of a loss function necessary to the sample is used to construct
the attack elements. Natural generative adversarial networks (NGANs) are generative
adversarial networks (GANs) that use generative adversarial networks (GANs) to produce
AAs by minimizing the distance between the inner representations.

In summary, it can be said that previous researches [1,5,13] were computationally
costly because they were based on the pre-generation of adversarial samples. The limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm [8,13], the rapid gradient sign
technique [9,11], projected gradient descent [9,11], distributional adversarial assault [24],
and DeepFool [25] were all employed in the frameworks of these threat models. Adversarial
training, which aims to increase the resilience of the DL model by integrating adversarial
samples into the training stage, is currently the most effective heuristic defense. This
research came up with an exploit feature-map method that uses picture weight data to
figure out the object weight feature-map to get attack parts.

3. Adversarial Machine Learning (ML)

When using adversarial ML, an attempt is made to trick the model by giving it
erroneous information. The most frequent reason is to induce a malfunction in an ML
model [15], which is the most prevalent kind of malfunction. Alternatively, it is the process
of optimizing the ML model by recognizing what it is meant to do and how it may be
attacked while executing its job, and then coming up with solutions to minimize those
attacks. There are two ways in which attacks can be classified.

3.1. Black-Box Attack

During a blind attack, a person does not know the model or how it works. They do
not have access to its gradients or parameters, which is depicted in Figure 2a.

3.2. White-Box Attack

The opposite of this scenario is one where the attacker has full access to the model’s
parameters and its gradients, which are shown in Figure 2b.

The use of adversarial assaults on image classification systems introduces minor
perturbations to pictures, causing the algorithms to make inaccurate predictions in the
future. Adversarial perturbations, although minor in the pixel space, cause a significant
amount of “noise” in the network’s feature-maps, which may be extremely difficult to
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detect. The deep neural network (DNN) will be readily fooled when it comes to the
prediction stage. In order to apply defensive measures to it, it is necessary to analyze these
feature-maps and detect any tiny perturbations.
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4. Methodology
4.1. ImageNet Dataset

ImageNet is an image database structured according to the WordNet hierarchy, in
which each node of the hierarchy is represented by hundreds of thousands of photos. As of
right now, each node has an average of around five hundred photographs on it. This site
will be very useful for researchers, teachers, students, and others. (https://www.kaggle.
com/c/imagenet-object-localization-challenge/overview, (accessed on 17 May 2022)).

4.2. Guided Propagation Model

ImageNet is an image database structured according to the WordNet hierarchy. Guid-
edBP [9] is a variation on raw gradient backpropagation in that it propagates gradients

https://www.kaggle.com/c/imagenet-object-localization-challenge/overview
https://www.kaggle.com/c/imagenet-object-localization-challenge/overview
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back to inputs and uses the received gradients as the saliency values of the inputs. The
main difference between the two techniques is how they deal with ReLU layers.

In GuidedBP,
Gl = Gl+1 ∗ 1Gl+1>0 and xl>0 (1)

Gl denotes the gradients of the lth layer, xl denotes the activations of the layers
preceding the ReLU layer, and 1 denotes the indicator function. It is possible that certain
input features may get zero gradients because the indicator function filters out portions of
the gradients; this is referred to as the filtering effect (FE). The filtering effect of a simple
moving average (SMA) is defined technically as follows:

sm ∗ 1sm>0 (2)

where sm is saliency map GuidedBP is discussed in detail in [12], which is a theoretical study.
They demonstrated that the filtering effects of the SMA of various classes are comparable,
indicating that GuidedBP is not discriminatory based on class membership. Specifically,
they demonstrate that the SMA generated by GuidedBP includes class-discriminative
information and provide a straightforward method for enhancing the discriminative infor-
mation in the accompanying saliency maps. It is common practice to use the pre-SoftMax
scores (logits) as output scores when creating SMA. Following the previous attribution
approaches, it can be shown that distinct classes of scores may be assigned to the same
pixels. They provide an explanation of how the scores are generated. The technique reveals
where the difference between logits originates from, and this is the precise reason why
the network predicts a greater probability for a certain class rather than another one, as
explained in the previous section. The loss of the neural network is enhanced throughout
the optimization of the process of constructing adversarial pictures, resulting in a change
in the rank of logits. Their method can identify the evidence for the difference in scores, i.e.,
the rank of logits, between two groups of scores. Misclassifications are caused by a change
in the rank of the individual. As a result, the upgraded GuidedBP may provide a more
thorough explanation of the classification judgments made on adversarial photos.

4.3. Smooth Grad

Smoothgrad has two hyper-parameters: ∂, the noise level or standard deviation of
the Gaussian perturbations and n, the number of samples to average over. The smoothed
gradient Mc(x), over random samples in a neighborhood of an input x is,

Mc(x) =
1
n ∑n

i Mc

(
x + N(0, ∂2

)
) (3)

where n, is the number of samples, and N
(
0, ∂2) represents Gaussian noise with standard

deviation ∂. In this study, the influence of noise level was seen for numerous sample photos
from ImageNet [21]. They find that adding 10 percent to 20 percent noise (middle columns)
seems to balance the sharpness of the sensitivity map while maintaining the structure of
the original picture, according to their findings. Moreover, they point out that, although
this range of noise produces generally favorable results for inception, the optimal noise
level is dependent on the input signal. The significance of the sample size, n. In accordance
with expectations, the estimated gradient grows smoother as the number of samples, n,
rises. They discovered experimentally that for n > 50, there was little apparent change in
the visualizations, indicating a declining return.

4.4. Guided-CAM Mapping

A map of the location of an image categorization system uses a special kind of archi-
tecture in which global average pooling convolutional feature-maps are sent straight into
SoftMax rather than via a pipeline. Allow the penultimate layer to generate K feature-maps
to be more specific to

Akε Ruxv (4)
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where each element indexed by i, j. So, Ak
ij refers to the activation at location (i, j) of

the feature-map Ak. These feature-maps are then geographically pooled using Global
Average Pooling (GAP) and linearly processed to give a score, Yc, for each class c, which is
subsequently used to determine the location of the feature-maps.

Yc = ∑k wc
k

1
z ∑i ∑j Ak

ij (5)

It is possible to swap the order of summations in the SCAM algorithm to yield SCAM,
which can then be used to generate the localization map for customized image classification
systems. Let us define Fk to be the global average pooled output

Fk =
1
z ∑

i
∑

j
Ak

ijw
c
k (6)

Keep in mind that this change in architecture necessitated retraining since not all
designs contain wc

k weights linking the features maps to the outputs. When Grad-CAM
is applied to these structures, the result is, Ak

ij = wc
k which makes Grad-CAM a strict

generalization of the CAM algorithm. A further application of the previously mentioned
generalization is the generation of visual explanations using CNN-based models that
cascade convolutional layers with far more intricate interconnections. A Convolutional
Neural Network (ConvNet/CNN) is a DL algorithm which can take in an input image,
assign importance (learnable weights and biases) to various aspects or objects in the image,
and be able to differentiate one from the other. Indeed, we use Grad-CAM to tasks that go
beyond classification, such as picture captioning and visual recognition models that make
use of CNNs.

4.5. Inverted Image Representations

Introducing approach for computing an approximate inverse of an image represen-
tation, which is discussed in detail in this section. This is expressed as the challenge of
identifying a picture whose representation is the most similar to the one provided. To put
it another way, given a representation function: Φ = RHXWXC → Rd and an inverted
representation Φ0 = Φ(x0), reconstruction finds the image x ε RHXWXC that reduces the
goal to the smallest possible value.

X∗ = argmin︸ ︷︷ ︸
X E RHXWXC

l(Φ(x), Φ0) + ג ∗ R(x) (7)

In which the loss l compares the image representation Φ(x), to the target representation
Φ0 and R : RHXWXC → R is a regularize that captures a natural image prior. From the
perspective of the representation, minimization (equation) results in a picture X∗ that
“resembles” the image x0 produced by minimization. There may not be a single answer to
this question but sampling the space of alternative reconstructions can be used to figure out
the space of pictures that the representation thinks are the same, revealing the invariances
of its decision.

5. Novel Exploit Feature-Map Approach

The novel exploit feature-map which is divided into two parts: the first part will detect
each and every object map on the input picture, as shown in Figure 3a. The second part
will combine all of the parts of the feature-map to achieve the final detection on the input
image, as shown in Figure 3b.
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In order to define an explanatory rule for a black box f(x), one must start by specifying
which variations of the input x will be used to study f. The aim of saliency is to identify
which regions of an image x0 are used by the black box to produce the output value f(x0).
We can do so by observing how the value of f(x) changes as x is obtained “deleting” different
regions R of x0. For example, if f (x0) = +1 denotes a robin image, we expect that f(x) = +1 as
well unless the choice of R deletes the robin from the image. Given that x is a perturbation of
x0, this is a local explanation, and we expect the explanation to characterize the relationship
between f and x0.

While conceptually simple, there are several problems with this idea. The first one is
to specify what it means by “delete” information. We are generally interested in simulating
naturalistic or plausible imaging effect, leading to more meaningful perturbations and
hence explanations. Since we do not have access to the image generation process, we
consider three obvious proxies: replacing the region R with a constant value, injecting noise,
and blurring the image.

Formally, let m : Λ→ [0, 1] be a mask, associating each pixel u ε Λ with a scalar
value m(u). Then the perturbation operator is defined as

[Φ(X0; m)](u) =


m(u)x0(u) + (1−m(u))µ0, Constant
m(u)x0(u) + (1−m(u))n(u), Noise∫

gσ0 m(u) (v− u)x0(v)dv, Blur
(8)

where µ0 represents the average color, n(u) represents the number of i.i.d. Gaussian noise
samples for each pixel, and σ0 represents the maximum isotropic standard deviation of
the Gaussian blur kernel gσ (we choose σ0 = 10, which results in a highly blurred picture).
One feature of the proposed approach is that the produced visualizations are obviously
exploiting adversarial assaults, which is a significant advantage. When one plays the
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deletion game, a minimum mask is made that stops the item from being recognized by
the network.

6. Results and Discussion

This section will discuss different methods of feature-map visualization with and
without adversarial attacks. In the end, all the methods are compared using time and
error rate.

6.1. VGGNet-19 Model with ImageNet Dataset

Figure 4a–e show VGG-19 pre-trained network for ImageNet dataset results for car
tire images. Each and every model did not have an indication on the feature-map. While
novel exploit feature-map techniques give different attack image features.
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6.2. ResNet-50 Model with ImageNet Dataset

Figure 5a–e show ResNet-50 pre-trained network for ImageNet dataset results for car
tire image. Each and every model did not have an indication on the feature-map, while
novel exploit feature-map techniques give different attack image features.
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The main difficulty faced was the weight selection of different layers in class activation-
map, epoch and image-size conversation. While applying the novel exploit feature-map
technique, the graphical processing unit (GPU) is required with a minimum configuration
of 12 GB of RAM and 500 GB of hard disk. It is preferred to use the free Google Colab
Cloud services.
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6.3. Analysis

• Time: It specifies the maximum amount of time that a job may use the processor. In
other words, it specifies the maximum CPU usage time allowed for the job to execute.
It is an optional parameter. It can be coded at the job level and step level too.

• Error rate: The error rate is expressed as a ratio and is calculated by dividing the total
number of true images classified by the total number of errors made.

∂ =

∣∣∣∣VA −VE
VE

∣∣∣∣ ∗ 100 % (9)

where ∂: % Error, VA: Actual value observation and VE : Expected error.
Table 1 depicts parameter analysis and provides a comparative study of existing al-

gorithms, i.e., image transformation [3], discretization [14], spectral defense [16], smooth
suided [6], Guided-CAM [19], BlurNet [1], inverted representation [21], guided back prop-
agation [23] with novel exploit feature-map using time and error rate. Among them, the
novel exploit feature-map works efficiently for white box and black box attacks in less time.

Table 1. Parameter analysis.

No Method Model Supported Attacks Supported Execution Time Average(s) Error Rate (%)
50 Samples

1 Image Trasformation [3] CNN White Box ≈540 s ≈36.6%

2 Discretization [14] CNN White Box ≈630 s ≈38.9%

3 Spectral Defence [16] CNN White Box ≈720 s ≈26.2%

4 Smooth Guided [6] AlexNet White Box ≈840 s ≈66.4%

5 Guided-CAM [19] ResNet50 White Box, Black Box ≈960 s ≈48%

6 BlurNet [1] ResNet50 White Box, Black Box ≈870 s ≈36%

7 Inverted Representation [21] AlexNet White Box ≈660 s ≈76%

8 Guided Back Propagation [23] ResNet50 White Box ≈720 s ≈46.8%

9 Novel Exploit Feature-Map
VGG19,
AlexNet,
ResNet50

White Box, Black Box ≈620 s ≈28.42%

7. Conclusions

According to this study, a thorough, formal framework for learning explanations as
a meta-predictor has been developed. In addition, a unique image exploit feature-map
paradigm is introduced here, which teaches an algorithm where to look by evaluating
which parts of an image have the most influence on its result when it is disturbed. The
suggested approach, in contrast to many mapping methods, makes explicit alterations to
the picture, making it more exploitable and testable. When compared to other approaches,
novel exploit feature-map works in less than 8–9 min, indicating that it has a modest
temporal complexity. Whereas the error rate for existing techniques is not less than 40%,
our method has the best performance of 50 samples, with an error rate of 28.42%, while
the error rate for existing approaches is 40%. As a result, the defensive filtering technique
will be used in the future, which will denoise the assault pixel. A method that can be used
for any ML model should also be developed to provide protection against both black-box
and white-box threats. It is revealed that there is currently no defensive mechanism exist
that is. efficient and effective when dealing with hostile samples. Adversarial training,
which is the most effective defensive mechanism, is too computationally costly for practical
deployment, and several efficient heuristic defenses have been shown to be susceptible to
adaptive white-box adversaries.

In the future it is possible to improve the interpretability of deep networks. For
instance, how can the algorithm be used to guard against assault in gray-box situations?
We anticipate that future research will address these concerns in depth.



Appl. Sci. 2022, 12, 5161 13 of 14

Author Contributions: Conceptualization, A.S.A., D.V. and V.V.K.; methodology, A.S.A., D.V. and
V.V.K.; software, D.V. and V.V.K.; validation, D.V., M.R.N.M.Q. and V.V.K.; formal analysis, D.V. and
V.V.K.; investigation, D.V. and V.V.K.; resources, A.S.A.; data curation, A.S.A., K.M.R.Q., M.R.N.M.Q.
and E.A.M.; writing—D.V., V.V.K. and E.A.M., K.M.R.Q.; writing—review and editing, M.R.N.M.Q.;
visualization D.V. and V.V.K.; supervision, A.S.A., D.V. and V.V.K. project administration, A.S.A. and
E.A.M.; funding acquisition, A.S.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Deanship of Scientific Research, King Khalid University,
Kingdom of Saudi Arabia, and the grant number is R.G.P.2/178/43.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our gratitude to the Deanship of Scientific Research,
King Khalid University, Kingdom of Saudi Arabia for funding this work, as well as family, friends,
and colleagues for their constant inspiration and encouragement.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Silva, S.; Kim, J.; Raich, R. Cost Aware Adversarial Learning Shashini De Silva, Jinsub Kim, and Raviv Raich School of EECS,

Oregon State University, Corvallis, Oregon, US 97331. In Proceedings of the (ICASSP 2020) 2020 IEEE International Conference
on Acoustics, Speech, and Signal Processing, Virtual Conference, 4–9 May 2020; pp. 3587–3591.

2. Jia, J.; Gong, N.Z. Defending Against Machine Learning Based Inference Attacks via Adversarial Examples: Opportunities and
Challenges. Adapt. Auton. Secur. Cyber Syst. 2020, 23–40. [CrossRef]

3. Xue, M.; Yuan, C.; Wu, H.; Zhang, Y.; Liu, W. Machine Learning Security: Threats, Countermeasures, and Evaluations. IEEE
Access 2020, 8, 74720–74742. [CrossRef]

4. Momeny, M.; Latif, A.M.; Agha Sarram, M.; Sheikhpour, R.; Zhang, Y.D. A noise robust convolutional neural network for image
classification. Results Eng. 2021, 10, 100225. [CrossRef]

5. Miller, D.J.; Xiang, Z.; Kesidis, G. Adversarial Learning Targeting Deep Neural Network Classification: A Comprehensive Review
of Defenses against Attacks. Proc. IEEE 2020, 108, 402–433. [CrossRef]

6. Panda, P.; Chakraborty, I.; Roy, K. Discretization Based Solutions for Secure Machine Learning Against Adversarial Attacks. IEEE
Access 2019, 7, 70157–70168. [CrossRef]

7. Agarwal, A.; Singh, R.; Vatsa, M.; Ratha, N.K. Image Transformation based Defense Against Adversarial Perturbation on Deep
Learning Models. IEEE Trans. Dependable Secur. Comput. 2020, 5971, 2106–2121. [CrossRef]

8. Guesmi, A.; Alouani, I.; Khasawneh, K.N.; Baklouti, M.; Frikha, T.; Abid, M.; Abu-Ghazaleh, N. Defensive Approximation:
Securing CNNs Using Approximate Computing; Association for Computing Machinery: New York, NY, USA, 2021; Volume 1,
ISBN 9781450383172.

9. Higashi, A.; Kuribayashi, M.; Funabiki, N.; Nguyen, H.H.; Echizen, I. Detection of Adversarial Examples Based on Sensitivities to
Noise Removal Filter. In Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference, Virtual Conference, 1 July 2020; pp. 1386–1391.

10. Tsingenopoulos, I.; Preuveneers, D.; Joosen, W. AutoAttacker: A reinforcement learning approach for black-box adversarial
attacks. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Stockholm,
Sweden, 17–19 June 2019; pp. 229–237. [CrossRef]

11. Xie, C.; Wu, Y.; van der Maaten, L.; Yuille, A.L.; He, K. Feature denoising for improving adversarial robustness. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 501–509.
[CrossRef]

12. Vargas, D.V.; Su, J. Understanding the one-pixel attack: Propagation maps and locality analysis. In Proceedings of the 2020
Workshop on Artificial Intelligence Safety, AISafety 2020, Yokohama, Japan, 11–12 July 2020; Volume 2640.

13. Ye, D.; Chen, C.; Liu, C.; Wang, H.; Jiang, S. Detection defense against adversarial attacks with saliency map. Int. J. Intell. Syst.
2021. [CrossRef]

14. Akhtar, N.; Mian, A. Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. IEEE Access 2018, 6,
14410–14430. [CrossRef]

15. Martins, N.; Cruz, J.M.; Cruz, T.; Henriques Abreu, P. Adversarial Machine Learning Applied to Intrusion and Malware Scenarios:
A Systematic Review. IEEE Access 2020, 8, 35403–35419. [CrossRef]

16. Harder, P.; Pfreundt, F.J.; Keuper, M.; Keuper, J. SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain.
In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021.
[CrossRef]

http://doi.org/10.1007/978-3-030-33432-1_2
http://doi.org/10.1109/ACCESS.2020.2987435
http://doi.org/10.1016/j.rineng.2021.100225
http://doi.org/10.1109/JPROC.2020.2970615
http://doi.org/10.1109/ACCESS.2019.2919463
http://doi.org/10.1109/TDSC.2020.3027183
http://doi.org/10.1109/EuroSPW.2019.00032
http://doi.org/10.1109/CVPR.2019.00059
http://doi.org/10.1002/int.22458
http://doi.org/10.1109/ACCESS.2018.2807385
http://doi.org/10.1109/ACCESS.2020.2974752
http://doi.org/10.1109/IJCNN52387.2021.9533442


Appl. Sci. 2022, 12, 5161 14 of 14

17. Sutanto, R.E.; Lee, S. Real-time adversarial attack detection with deep image prior initialized as a high-level representation based
blurring network. Electronics 2021, 10, 52. [CrossRef]

18. Izmailov, R.; Sugrim, S.; Chadha, R.; McDaniel, P.; Swami, A. Enablers of Adversarial Attacks in Machine Learning. In Proceedings
of the 2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 425–430.
[CrossRef]

19. Raju, R.S.; Lipasti, M. BlurNet: Defense by Filtering the Feature Maps. In Proceedings of the 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-W), Valencia, Spain, 29 June–2 July 2020;
pp. 38–46. [CrossRef]

20. Chen, T.; Liu, J.; Xiang, Y.; Niu, W.; Tong, E.; Han, Z. Adversarial attack and defense in reinforcement learning-from AI security
view. Cybersecurity 2019, 2, 11. [CrossRef]

21. Chai, W.; Velipasalar, S. Detecting Adversarial Images via Texture Analysis. In Proceedings of the 2020 54th Asilomar Conference
on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–4 November 2020; pp. 215–219. [CrossRef]

22. Jang, Y.; Zhao, T.; Hong, S.; Lee, H. Adversarial defense via learning to generate diverse attacks. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 2740–2749.
[CrossRef]

23. Akhtar, Z.; Dasgupta, D. A Brief Survey of Adversarial Machine Learning and Defense Strategies; Technical Report No. CS-19-002; The
University of Memphis: Memphis, TN, USA, 2019; p. 11.

24. Quiring, E.; Rieck, K. Adversarial machine learning against digital watermarking. In Proceedings of the 2018 26th European
Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 519–523. [CrossRef]

25. Sadeghi, K.; Banerjee, A.; Gupta, S.K.S. A System-driven taxonomy of attacks and defenses in adversarial machine learning. IEEE
Trans. Emerg. Top. Comput. Intell. 2020, 4, 450–467. [CrossRef] [PubMed]

http://doi.org/10.3390/electronics10010052
http://doi.org/10.1109/MILCOM.2018.8599715
http://doi.org/10.1109/DSN-W50199.2020.00016
http://doi.org/10.1186/s42400-019-0027-x
http://doi.org/10.1109/IEEECONF51394.2020.9443449
http://doi.org/10.1109/ICCV.2019.00283
http://doi.org/10.23919/EUSIPCO.2018.8553343
http://doi.org/10.1109/TETCI.2020.2968933
http://www.ncbi.nlm.nih.gov/pubmed/33748635

	Introduction 
	Related Work 
	Adversarial Machine Learning (ML) 
	Black-Box Attack 
	White-Box Attack 

	Methodology 
	ImageNet Dataset 
	Guided Propagation Model 
	Smooth Grad 
	Guided-CAM Mapping 
	Inverted Image Representations 

	Novel Exploit Feature-Map Approach 
	Results and Discussion 
	VGGNet-19 Model with ImageNet Dataset 
	ResNet-50 Model with ImageNet Dataset 
	Analysis 

	Conclusions 
	References

