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Abstract: Online social networks are vital environments for information sharing and user interactivity.
To help users of online social services to build, expand, and maintain their friend networks or webs
of trust, trust management systems have been deployed and trust inference (or more generally, friend
recommendation) techniques have been studied in many online social networks. However, there are
some challenging issues obstructing the real-world trust inference tasks. Using only explicit yet sparse
trust relationships to predict user trust is inefficient in large online social networks. In the age of
privacy-respecting Internet, certain types of user data may be unavailable, and thus existing models
for trust inference may be less accurate or even defunct. Although some less interpretable models may
achieve better performance in trust prediction, the interpretability of the models may prevent them
from being adopted or improved for making relevant informed decisions. To tackle these problems,
we propose a probabilistic graphical model for trust inference in online social networks in this paper.
The proposed model is built upon the skeleton of explicit trust relationships (the web of trust) and
embeds various types of available user data as comprehensively-designed trust-aware features. A
message passing algorithm, loop belief propagation, is applied to the model inference, which greatly
improves the interpretability of the proposed model. The performance of the proposed model is
demonstrated by experiments on a real-world online social network dataset. Experimental results
show the proposed model achieves acceptable accuracy with both fully and partially available data.
Comparison experiments were conducted, and the results show the proposed model’s promise for
trust inference in some circumstances.

Keywords: trust inference; trust propagation; online social network; social network analysis; probabilistic
graphical model; message passing; belief propagation; model interpretability

1. Introduction

Trust exists in many different forms in various disciplines. For instance, the trust
on the World Wide Web can be trust in content, trust in services, and trust in people [1].
Although different disciplines take different definitions and forms of trust, they commonly
aim to solve the problem of accurately evaluating trust between two entities, to help
complex systems make informed decisions. For example, some peer-to-peer system may
take advantage of trust to curb malicious attacks and maintain network robustness [2].
A complex model selection system could evaluate the trustworthiness of a cloud-based
machine learning model-as-a-service (MaaS) for industrial Internet of Things and smart
city services [3]. Some online social service could use trust to improve the quality of
recommendations [4]. Some researchers leveraged a trust network to study the relational
antecedents of members’ influence in organizations [5].

Without loss of generality, we focus on user trust in online social networks (OSNs)
in this paper, which is one of the most common types of trust. We followed [6] to define
user trust in OSNs: a subjective expectation an OSN user has about another user’s future
behavior. Social trust is a basic social construct [7], and it enables people to collectively live
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and work in groups. In social networks, trust helps people find whom to trust, to build
beneficial or even reciprocal social relationships, so that the quality of interindividual
interactions could be improved and the risks of social activities reduced.

Many online social services embrace trust management systems to help their users
to build and expand their webs of trust so that users can keep being engaged in their
services [8]. For example, Twitter has deployed a user recommendation service called
“Who to Follow” to use a user’s “circle of trust” for recommending new connections to
the user [9]. Being a key contributing factor in many complex systems, trust has been
elaborately explored and researched, and it has been proven to be helpful in securing social
commerce [10], recommending trustworthy users [11], providing accurate and personalized
recommendations [4,12–14], filtering trustworthy authorities or users [15], finding opinion
leaders or trolls [16], maximizing influence diffusion [17], and decision making [18–20].
However, data of trust information, such as trust relationships, do not always explicitly
or abundantly exist for the above-mentioned tasks to use. Therefore, the study of trust
inference is necessary and practical for social network analysis and relevant decision
making tasks.

The process of inferring an unknown trust relationship in OSNs, which is often
referred to as trust inference, involves exploitation of social construct elements. The sources
of relevant trust information that assembles social constructs in OSNs include but are
not limited to existing trust relationships and data created by the users involved in the
relationships, such as their activities, including posting reviews and casting votes, and
other content generated by them (user-generated contents, UGC).

Various algorithms and models have been proposed to infer trust in OSNs [21]. Some
of them make use of topological data, i.e., the web of trust relationships or the trust network,
to predict trust relationships. However, due to the ever-present issue that observable trust
relationships in OSNs are often sparse, some vanilla algorithms for predicting trust are
prevented from achieving more accurate predicted results in large real OSNs. With the aim
of tackling the issue, other methods use both the web of trust and UGC data to achieve
more accurate results in inferring trust.

Nevertheless, there are three major problems holding back existing trust inference
models. Firstly, if additional UGC data are available, some of them and various types
of interplay among them are discarded when the trust inference framework integrates
them with the trust network, making the model prone to generating less accurate results.
Secondly, lesser types of data from OSN users are permitted to use, given the fact that
the privacy and data protection of online users are being much more respected nowadays.
Online service users may opt out of using some of or all of their data for certain data
analysis tasks conducted by online services—especially with the regulations and laws being
implemented and enforced, such as General Data Protection Regulation (EU) (GDPR) [22],
the California Consumer Privacy Act (CCPA) [23], and the Personal Information Protection
Law of the People’s Republic of China (PIPL) [24]. Thus, some crucial data may be
unobtainable for trust inference. Last but not least, most trust inference models are poorly
interpretable. The interpretability of a trust inference model should be improved alongside
achieving better performance, not only for inferring trust itself but for making other relevant
informed decisions.

Bearing the aforementioned problems in mind, we propose creating a probabilistic
graphical model in which various types of UGC data are built and then integrated as
features in such a way that not only are most of their characteristics preserved, but that the
interaction among features can also be captured and embedded. The contributions of this
paper are as follows.

• The proposed model takes advantage of the integration of the trust network and
user-generated contents in the network; the latter is embedded into a probabilistic
graphical model built upon the former. The model permits the directionality of trust
relationships and preserves various facets and properties of trust. The way of both



Appl. Sci. 2022, 12, 5186 3 of 29

building features from UGC data and embedding them into the probabilistic graph
preserves as much information as the data may contain.

• To infer trust, the proposed model uses a message passing algorithm, loopy belief
propagation, for the model’s probabilistic inference. This inference algorithm can be
viewed as a reproduction of the propagative and incomplete transitive characteristics
of trust. By using the message passing algorithm, the resulting probability for each
predicted user-to-user trust relationship can be well interpreted.

• As a binary classification task, the performance of the proposed method to infer trust is
demonstrated with a dataset derived from a real online social network in comparison
with some state-of-the-art binary classifiers. Experimental results show the proposed
model achieves better accuracy and F1 score with the whole data presented and
maintained higher recall and acceptable precision with some of data absent. Thus, one
can conclude that the proposed model shows its promising ability for trust inference
in nowadays privacy-constrained online social analysis where available data are often
limited. To address the data limitation, the problem that a model should have higher
precision or higher recall is also discussed.

Although this paper only focuses on inferring user trust in online social networks,
the proposed model may also be adopted to fulfill other inference tasks to better assist
decision making in other complex systems. The least work required for other similar tasks
is to properly define a concrete graphical model and a set of reasonably-built features,
if additional data exist.

The rest of the paper is organized as follows. In Section 2, we briefly review the
literature of related works on trust inference. In Section 3, we elaborate the prerequisites,
define the problem, and then propose the model. In Section 4, we present experiments
conducted with a dataset derived from a real-world online social network, and then analyze
the performance of the proposed model. Finally, we conclude our work in Section 5.

2. Related Work

The problem of trust inference or trust prediction between two users in online social
networks or two nodes in general networks bears some similarity with the link prediction
problem, and thus it can be modeled as a link prediction task. However, using a link
prediction method to predict trust links requires the method to work with directional links
or even signed links, which complicates the link prediction method itself.

For example, Schall [25] leverages micro-structural patterns and the resulting node
similarity to retrieve the probability of a missing directional link existing between two
users in a social network. The method’s drawback is that the micro-structural pattern is
limited to a triad, and consequently it may fail in finding links between any two arbitrary
nodes that do not have a common neighbor.

The work by Barbieri et al. [26] also employed link prediction techniques to infer
friend or trust relationships. In this work, they proposed a generative model, one of the
stochastic topic models, to generate social links for users with the consideration of user’s
interests in “topical” and “social” resources, e.g., whether a targeted user is an authority on
a topic or he/she is recognized by an acquaintance in the real world.

Trust inference models based on the trust propagation theory are often called “walk-
based” methods. In [27], Mao et al. developed a trust inference framework which obtains
the trust rate between any pair of users by aggregating a set of strong trust paths generated
with the knowledge of their weighted similarity about commonly interesting topics and
their trust propagation ability in the social network. If the trust rate is above a user-defined
threshold, the framework determines that there should be a trust link between the users.

The work by Oh et al. [28] included a unified model combining both explicit and
implicit trust, and infers trust links by using different trust propagation strategies. The three
primary trust propagation strategies include direct propagation, transposed trust, and global
trust propagation. Other complex strategies, such as co-citations and trust coupling, are
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combinations of the primary propagation strategies. Other walk-based methods include
ModelTrust [29], TidalTrust [30], AssessTrust [31], OpinionWalk [32], etc.

Trust prediction can also be achieved and improved by using collaborative filtering
techniques, particularly the matrix factorization (MF)-based methods. It is also quite conve-
nient for MF-based methods to integrate other types of data that carry trust information.
hTrust [33] incorporates low-rank matrix factorization and homophily regularization to
infer trust links. The homophily regularization controls how user rating similarity affects
predicting user trust relationships. MATRI [34] extracts user trust tendency using matrix
factorization from the user trust rating matrix and incorporates trust propagation with
trust tendency into a collective matrix factorization framework to infer trust. Another
MF-based trust inference model [35] takes advantage of not only matrix-factorized trust
tendency and propagated trust, but also similarities of users’ rating habits, and achieves
good performance.

Neural networks are also employed for trust evaluation. NeuralWalk [36] employs a
neural network named WalkNet to model single-hop trust propagation, and then iteratively
assesses unknown multi-hop trust relationships. Although NeuralWalk can achieve good
accuracy in trust prediction, it is inefficient due to the massive matrix operations involved
in training and test set selection. Besides, the interpretability for such methods based on
neural networks is an obvious drawback.

3. The Proposed Model

In this section, we propose our model for user trust inference in OSNs. Firstly, we
state the relevant assumptions and prerequisites on which the proposed model is based;
secondly, we describe our modeling approach in detail; and finally, we briefly discuss the
implementation of the model.

3.1. Prerequisites

A variety of studies and literature [6,21,37,38] have found that trust has many unique
features and characteristics, and they are embedded in user profiles and other UGC data
in OSNs. Based on relevant findings of trust and OSNs, we give some key principles and
assumptions on which our proposed model stands in this section, without formal proofs.

Assumption 1. Through activities of users in online social networks, user-generated content, such
as reviews, posts, votes, issued trust, and so on, represent and bear the user’s attitude, credibility,
and trustworthiness.

A survey [37] suggests that numerous factors, including logical trust attributes (e.g.,
experience, frequency, stability, and rationality), emotional trust attributes (e.g., hope,
fear, and regret) and relational trust attributes (e.g., similarity), contribute to construct
individual trust through social capital and social activities. Meanwhile, in online social
networks, the above factors are expressed through various types of user-generated contents
and user activities. Therefore, trust can be harvested through a variety of UGC data that
exists in OSNs, such as their posted reviews or articles, cast ratings and votes, and issued
trust relationships.

Assumption 2. For a trust relationship between a trustor and a trustee, not only the trustee but
also the trustor contributes to the relationship formation.

The formation of a trust relationship involves the trustor who evaluates and issues
trust, and the trustee who presents and receives it, which makes trust asymmetric and
subjective. The issuance of a trust relationship is determined by the trustor through their
perception of the trustee’s trustworthiness and how others perceive it. However, due to
the difficulty of modeling trust’s subjectivity, many studies only focus on making use of
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UGC data that represent trustees’ credibility [39–41], leaving trust an objective concept
and measure.

Based on this point, we bear the mind in this paper that although same types of user
data are being used for collecting trust information, they could serve different purposes for
the trustor and the trustee involved in a trust relationship. For example, the same charac-
teristics extracted from one of a user’s reviews may serve as different features: the type
of attitude features that suggest how the user trusts others, or the type of trustworthiness
features which indicate how he is being trusted by others.

Assumption 3. Users bearing similarities in their profiles or activities have a higher likelihood to
establish trust relationships.

That is suggested by the homophily effect, which is one of the most important theories
that attempt to explain why people establish trust relations with each other [42]. For exam-
ple, in the situation of product reviewing, people with similar tastes about items are more
likely to trust each other.

Taking the previous two assumptions into consideration, we could further state that a
group of similar users may build trust relationships with similar users from another group,
if there exists a trust relationship between a pair of users from each group. This also implies
trust’s incomplete transitivity property.

Assumption 4. In datasets from online social networks, no observable or explicit trust relationship
between two users does not truly guarantee there will not be any trust between them.

For example, we may infer a trust relationship issued by Alice to Bob, provided that
(1) there are many other users who have certain similar characteristics as Alice has, and they
also trust Bob, or (2) Alice trusts many other users who have traits in common with Bob.
However, it is worth noting that there are quite a few reasons that the relationship of Alice
and Bob is not present in the network. It can be explained from three perspectives:

• Due to some particular or unknown facts, Alice does not trust Bob; the trust relation-
ship does not exist, and therefore, it will never be observed.

• It might be possible that Alice would trust Bob at some time later, but at the time we
observe the social network or capture a snapshot of the network as a dataset, Alice
does not know Bob yet or Alice does not claim to trust Bob yet, so the trust relationship
from Alice to Bob does not exist.

• Alice does trust Bob and the trust relationship does exist in the real network, but it is
missing from the dataset we observe. The cause could be the inability of capturing the
whole network or capturing their relationship data being prohibited by the privacy
preference settings of relevant users.

This uniqueness of trust in OSNs makes trust inference in OSNs quite different from
general link prediction problems and general binary classification tasks. Since we only focus
on inferring trust relationships in online social networks without any distrust information,
as a binary classification task, the goal of our proposed model is to find as many trust
relations as possible, and in the meantime, maintain considerable overall accuracy. Further
discussion on this assumption is beyond the scope of this paper, and it will be left for
future work.

Assumption 5. Trust is propagative but not fully transitive, so it will be beneficial for us to learn
under what criteria trust can be transferable from one user to another.

For example, if Alice trusts Bob and Bob trusts Chris, Alice can derive some amount
of trust on Chris based on how much she trusts Bob and how much Bob trusts Chris,
but Alice may not trust Chris or even she does not know Chris. However, under some
particular circumstance which is what we need to learn, Alice will trust Chris. Based on
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this assumption, we propose two primary trust propagation strategies below so that our
model can learn from more complex trust relationship topology that commonly exists in
real-world datasets:

• Direct trust propagation may exist from Alice to Chris when Alice trusts Bob and Bob
trusts Chris.

• Transposed trust propagation may exist from Alice to Chris when Alice trusts Bob and
Chris also trusts Bob.

The proposed trust propagation strategies are demonstrated in Figure 1. Some more
complex propagation schemes can be derived from the above two primary ones. For ex-
ample, if Alice trusts Bob and Chris, and Daniel also trusts Bob and Chris, there might
be an increase in the trust between Alice and Daniel, which is a cascaded result of two
transposed trust propagation instances. In the field of citation network analysis, this very
same scheme is called co-citation and has been greatly studied. It is worth noting that the
co-citation propagation conforms to Assumption 3, but, differently from it, we derived
the “co-citation”-equivalent trust propagation from the topology perspective. The same
above-mentioned trust propagation strategies of direct trust propagation and transposed
trust propagation were also leveraged in [28], which helped the researchers build a better
trust prediction model.

Bob

Alice Chris

(a)

Bob

Alice Chris

(b)
Figure 1. Two primary trust propagation strategies. (a) Direct trust propagation. (b) Transposed
trust propagation.

3.2. Model Construction

Many modern online social services have deployed a feature which allows their users
to build friend networks. It is common understanding that trust has a dedicated role in
forming friendships between two individuals, and thus many trust-related studies also use
friend networks in OSNs as trust networks. In particular, there are several online services
that have explicitly implemented trust networks as web of trust—such online services
include Epinion (http://www.epinions.com/ (accessed on 28 February 2018)) and Ciao
(http://www.ciao.co.uk/ (accessed on 19 June 2021)).

We modeled our learning and inference tasks through a conditional random field
(CRF), one of probabilistic graphical model variations. The structure of the probabilistic
graphical model was built upon the trust network of an OSN, and the features that were
to be added to the model were extracted and then built from the UGC data from the
OSN. Due to the way that the UGC and topological features are embedded into the trust
network, the CRF model not only uses both the explicit trust information (the trust network)
and the user-generated contents from the social network, but also has the capability of
capturing the interplay among various types of features extracted from the UGC and the
network topology.

Differently from the conventional link prediction problem in which edges between
nodes represent trust relationships, our method represents relationships as nodes. In other
words, we model a real-world directional trust link as a trust relationship node in the model.

http://www.epinions.com/
http://www.ciao.co.uk/
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Therefore, the random variables in the CRF model are the predefined states or labels of
users and trust relationships. (In this paper, we use “state” and “label” interchangeably.)
In the CRF model, the two types of random variable nodes in the probabilistic graph are:

• user node. It can be either a trustor node or a trustee node;
• trustRelation node. It represents an observable or a nonexistent trust link in the network.

Figure 2 demonstrates the difference between a trust relationship commonly repre-
sented in real social networks and one modeled by our approach.

userA userB

(a)

userA userB

trustRelationAB

(A trusts B

or not)

(b)
Figure 2. Demonstration of one user trusting another in the real world and in the proposed model.
(a) Real-world trust relationship representation: userA trusts userB. (b) userA trusting userB rendered
in the proposed model.

For a user-user pair whose trust relationship is un-observed in the OSN, the objective
of the model in this paper is to infer the probabilities of labels of the corresponding
trustRelation node whose state is unknown in the probabilistic graph, so that the trust
relationship can be predicted.

It is worth looking at how we handle edges in the model. Edges in a CRF are usually
homogeneous in type. That means edges in the graph do not have to be type-specific.
However, without breaking any conventional rule for model inference, we may particularly
mark edges with dedicated types so that different edges can delegate different types of
meanings and thus serve different purposes. In our model, the type of an edge between
a trustor node and a trustRelation node is different from the type of an edge between a
trustRelation node and a trustee node. It is also worth noting that involving different edge
types grant the model the possibility of recognizing directional trust between a pair of two
users. An example of modeling the mutual relationship between two users is demonstrated
in Figure 3.

trustRelationAB

(A trusts B

or not)

trustRelationBA

(B trusts A

or not)

trustRelationAB

(A trusts B

or not)

trustRelationBA

(B trusts A

or not)

userA userBuserA userB

Figure 3. A demonstration of modeling two users’ mutual relationship in the proposed model.
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3.2.1. Notation and Problem Definition

Let Ui denote the user random variable at node i and Tj or Tab (or Ta→b) denote the
trustRelation random variable at node j or the node representing the trust relationship from
user Ua to user Ub. The notation of nodes and edges is detailed in Table 1.

Table 1. Notation of (random variable) nodes and edges in the proposed model.

Notation Description

Nodes

V The set of all (random variable,
r.v.) nodes.

user Uu
R.v. for a user node u, either a
trustor or a trustee.

trustRelation

Tt R.v. for a trustRelation node t.

Tab

R.v. for a trustRelation node
representing the trust relationship
from user Ua to user Ub.

Edges

E The set of all edges.

trustor↔ trustRelation Eut
An edge between a trustor node
Uu and a trustRelation node Tt.

trustRelation↔ trustee Etu
An edge between a trustRelation
node Tt and a trustee node Uu.

Now, we examine two users, for example, Alice and Bob, in a trust network and use a
binary variable TAlice→Bob to represent the possible trust relationship from Alice to Bob. If a
trust relationship from Alice to Bob is present in the network, it means that Alice trusts Bob
and we label the variable with value 1. If no trust relationship from Alice to Bob is observed
in the dataset, we label the variable with value 0. As trust is directional and asymmetry,
a different variable TBob→Alice also exists, and its value, which is also binary, represents
the observational result of the trust relationship from Bob to Alice. Furthermore, we use
probabilities to indicate trust relationships. For any two users A and B:

P(TA→B = 1) > P(TA→B = 0) , if A trusts B;
otherwise , if A does not express trust in B.

(1)

Additionally, particularly for trust relationships being observed in the dataset:

P(TA→B = 1) = 1

P(TA→B = 0) = 0

}
, if A trusts B; (2)

P(TA→B = 1) = 0

P(TA→B = 0) = 1

}
, if A does not express trust in B. (3)

The notation can be easily extended to support distrust, a concept that differs from
either trust or no trust being observed in the dataset. However, distrust is beyond the scope
of this paper, hence we would like to leave it for future research.

With the notation, the trust inference problem can be stated as follows. Given all
user nodes U and a set of observed existing and nonexistent trustRelation nodes (their
probability representations are either P(T = 1) = 1 or P(T = 1) = 0), the method predicts
a set of un-observed trust relationships T∗ by comparing their probability representations
P(T∗ = 1) and P(T∗ = 0) that are calculated during the model inference.
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3.2.2. Features

As stated in Assumption 1, trust information can be obtained, and trust can be har-
vested and evaluated through a user’s generated contents in online social networks, includ-
ing reviews, posts, connections, etc., as they are the representation and bearer of the user’s
attitude, credibility and trustworthiness, i.e., the trust constructs. Therefore, we extract
various types of features from the dataset and embed them to the probabilistic graphical
model to aid trust inference.

In our conditional random field, an arbitrary number of features of any arbitrary type
can be attached to any node or any edge. All the features used in the proposed model are
discrete, and they can be label-observation features for nodes, label-label-observation features
for edges or label-label features for edges. In other words, the feature function of each feature
is non-zero for a single state per node or a single state per edge (the state of an edge
is determined by the state-pair of the two nodes connected by the edge), and the type
and value of the feature are derived from observations in the UGC data from the OSN
dataset. For example, we observe in the OSN dataset that a user has 57 trustors and the
corresponding user node will be associated with a feature, whose type is “nTrustors” and
value is 57. Table 2 lists typical sets of features used in this paper and we briefly describe
them below.

Table 2. Sets of features used in the proposed model.

Feature Set Description of Features in the Set

FPRF Statistical features for user profiles (User Profile Features)
FUGC Linguistic and stylistic features for reviews (UGC Features)
FTP Propagative features for trust propagation (TP Features)
FTAUX The first category of Auxiliary features
FTPAUX The second category of Auxiliary features

Statistical features for user profiles (User profile features)

A user’s profile is the most direct depiction of the user’s social capital that reflects
their identity and status which in turns reflect their attitude, credibility and trustworthiness.
A set of typical statistical features for user profiles built from UGC data are used in this
paper. As [43] suggests, an Internet celebrity, who is in fact an active and vigorous source
for disseminating information, usually have a great many followers or trustors. Thus,
the number of trustors of a user is an obvious indicator of the evidence that how the user’s
being trusted by others. In the meantime, the number of trustees of a user also shows their
engagement and importance in the online social network. The number of reviews posted by
a user and the number of ratings cast by a user is a reflection of their experience, frequency
and involvement in the online social network. Some online social services also have a rank
system for user reviews’ helpfulness, and the numbers of a user’s reviews’ helpfulness being
rated as exceptional helpful, very helpful, helpful, somewhat helpful or not helpful are intuitive
hints for the user’s experience, expertise and credibility.

In the proposed model, for each user, we build the statistical features from the user’s
profile data and attach them to the user node; for each trust relationship, we build the
statistical features from the two involving users’ profiles as edge features and attach them
to the corresponding edge between the user node and the trustRelation node. As explained
previously, an edge between a user node and a trustRelation node may have two different
types. Herein, for either type of such edges, each user profile feature has a designated type,
either as a feature denoted by “u2TrU” for edges between a trustor node and a trustRelation
node, or as a feature denoted by “Tr2uU” for edges between a trustRelation node and a
trustee node. In this way, the model is guaranteed to distinguish the features for a user as a
trustor in a trust relationship from those features for the same user acting as a trustee in
another trust relationship, which conforms to our Assumption 2.

Feature vector construction. Using features listed in Table 3:
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• For each user Uu, we create a feature vector FU
PRF(Uu). Each feature of this type is a

label-observation feature.
• For each trustor ↔ trustRelation edge or trustRelation ↔ trustee edge, we create a

feature vector Fu2TrU
PRF (Eu↔t) or FTr2uU

PRF (Et↔u), respectively. Each feature of this type is
a label-label-observation feature.

Table 3. Statistical features for user profiles used in the proposed model.

Feature Name Description

nRatings The number of ratings a user has cast.
nRated The number of ratings a user’s reviews received.

nRated5 The number of exceptional helpful ratings a user’s reviews received.
nRated4 The number of very helpful ratings a user’s reviews received.
nRated3 The number of helpful ratings a user’s reviews received.
nRated2 The number of somewhat helpful ratings a user’s reviews received.
nRated1 The number of not helpful ratings a user’s reviews received.

nReviews The number of reviews posted by a user.
nTrustors The number of trustors a user has.
nTrustees The number of trustees a user has.

Linguistic and stylistic features for reviews (UGC features)

As previous studies [6,39,40] suggest, the linguistic characteristics and stylistic features
of a review deliver the attitude, emotional status and part of expertise of the author,
the quality of it implies whether or not the author is objective and unbiased, and the
textual content of the review conveys the author’s experience and expertise. According
to Assumption 1, features extracted from reviews contribute to each user’s attitude and
trustworthiness, and thus affect their probability of trusting others and being trusted by
others. Furthermore, according to Assumption 3, investigating this type of features also
helps in finding similar users and suggesting trust relations to similar users. The linguistic
and stylistic features for posts used in this paper include:

• Parts-of-speech (POS) used in this paper include nouns, verbs, adjectives, adverbs and
conjunctions. These POS are mostly-used classes of words and may have different
impacts across reviews. We use the ratio of the number of words in each POS type to
the number of segments in a review as the feature value.

• The Subjectivity and Polarity of a word or a phrase describes whether the segment
expresses either a positive or a negative meaning in either strong or weak subjective way.
These words can have various parts-of-speech. We use the ratio of the number of these
words or phrases to the number of segments in a review as the feature value.

• Indicative words could imply whether a post will be more credible or less convincing.
They’re functioning as assertives, factives, implicatives, report verbs, hedges or biased words.
The lexicons are from [40,44]. Similarly, we use the ratio of the number of these words
to the number of segments in a review as the feature value.

The Affective words (http://wndomains.fbk.eu/wnaffect.html (accessed on 1 June 2021))
and Sentimental words [45], which express an author’s emotions, traits, sensations, attitudes
or behaviors, can also be served as features for reviews. Using them may slightly increase
the model’s performance, however, for the sake of simplicity, we do not leverage them as
features in this work.

All UGC features are attached to edges between user nodes and trustRelation nodes.
Similarly as how we did with user profile features, we also mark UGC features with either
type “u2TrR” or type “Tr2uR” to respect the two distinct types of edges to which they
are attached.

Feature vector construction. Using features listed in Table 4:

http://wndomains.fbk.eu/wnaffect.html
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• For each trustor ↔ trustRelation edge or trustRelation ↔ trustee edge, we create a
feature vector Fu2TrR

UGC (Eu↔t) or FTr2uR
UGC (Et↔u), respectively. Each feature of this type is

a label-label-observation feature.

Table 4. Linguistic and stylistic features for reviews used in the proposed model.

Feature Type Feature Name Description: the Ratio of the Number of Specified El-
ements to All Segments in One of a User’s Reviews

– rPuncs Punctuation marks

POS

rNouns Nouns
rAdjs Adjectives
rVerbs Verbs
rAdvs Adverbs
rConjs Conjunctions

Subjectivity
& Polarity

rPositives Positive words and phrases
rNegatives Negative words and phrases

Indicative

rAssertives Assertive verbs
rFactives Factive verbs

rImplicatives Implicative words and phrases
rReports Report verbs
rBiases Biased words

rHedges Mitigating words

Propagative features for trust propagation (TP features)

According to the trust propagation strategies described in Assumption 5, we propose
two types of propagative features for trust propagation. Still take Alice, Bob and Chris for
example, the proposed features are as follows.

• Direct trust propagation feature will try to capture how much Alice will trust Chris if
Alice trusts Bob and Bob trusts Chris.

• Transposed trust propagation feature will try to describe how much Alice will trust
Chris if Alice and Chris both trust Bob.

For any arbitrary trustRelation node T1, we observe the state occurrence combina-
tions of all motifs where each motif consists of three trustRelation nodes satisfying the
following criteria:

• One of the three nodes in the motif is trustRelation node T1. The other two different
trustRelation nodes T2 and T3 are in the set of trustRelation nodes that are present in
the dataset.

• The trustor node linked to T1 is also linked to T2 as a trustor node.
• The trustee node linked to T1 is also linked to T3 as

– either a trustee node (for direct trust for trustRelation node T1) while the trustee
node of T2 is the trustor node of T3,

– or a trustor node (for transposed trust for trustRelation node T1) while the trustee
node of T2 is also the trustee node of T3.

In other words, for each motif, the observing target including the motif itself consists
of a trustor node, a trustee node, their corresponding trustRelation node, a third user in
whose trust relationships either the trustor/trustee or trustor/trustor are shared, and their
corresponding trustRelation nodes. Figure 4 illustrates the topological diagram for direct
trust and transposed trust in the proposed model.
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Figure 4. Illustration of direct trust and transposed trust for a trustRelation node in a 3-trustRelation-
nodes motif. (T2 and T3 contribute direct trust to T1; and T2′ and T3′ contribute transposed trust
to T1).

We build a trustRelation node’s trust propagation features based on the numbers of
state sequence occurrences of the three trustRelation nodes in each motif that the node has.
Use the notation from the above criteria, for a trustRelation node T1 and all its possible
3-trustRelation-nodes motifs that meet the criteria, a total of 16 trust propagation features
are built, through the eight state sequences of the three trustRelation nodes in a motif in
the specific order of T1, T2 and T3. The feature values are either 1, if at least one motif
with a corresponding state sequence exists, or 0, otherwise. Note that only trustRelation
nodes representing trust or no trust relationships that exist in the observed dataset will
get accounted for generating trust propagation feature values. As listed in Table 5, eight
of the 16 features in this type are for direct trust propagation and the other eight are for
transposed trust propagation.

Feature vector construction. Trust propagation features of each type will be generated
as node features and get attached to trustRelation nodes. Using features listed in Table 5:

• For each trustRelation node Tt, we check if any instance of the 16 state sequences
exists to generate trust propagation features, by applying the above criteria to all
3-trustRelation-nodes motifs in which Tt acts as T1, and then create a feature vector
FT

TP(Tt) to include these features. Each of them is a label-observation feature.
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Table 5. Trust propagation features used in the proposed model.

Feature
Type

Feature
Name

Sequenced “Labels” of Nodes in Motif

TA→B / T1 TA→C / T2 TC→B / T3

Direct
Trust

d000 N N N
d001 N N Y
d010 N Y N
d011 N Y Y
d100 Y N N
d101 Y N Y
d110 Y Y N
d111 Y Y Y

TA→B / T1 TA→D / T2 TB→D / T3

Transposed
Trust

t000 N N N
t001 N N Y
t010 N Y N
t011 N Y Y
t100 Y N N
t101 Y N Y
t110 Y Y N
t111 Y Y Y

Refer to Figure 4 for TA→B, TA→C , TC→B, and TB→D . For a trustRelation node: “Y” indicates an existing trust and
“N” a nonexistent one.

Auxiliary features

For better modeling real-world correlations among users and trust relationships and
for the proposed method to work properly in the model’s probabilistic inference, certain
auxiliary edge features are built and attached to the model. They are called auxiliary in this
paper because the proposed model and the trust inference approach will still work without
adding them, though inefficiently.

We build the auxiliary edge features through the inspiration of the Ising model [46]
(or more generally the Potts model) in statistical mechanics. These models imply that two
directly connected nodes of the same type tend to be in the same state. This inspires us that
the state–state pair of two directly connected nodes of different types might also follow
certain statistical rules. In this paper, two categories of auxiliary edge features are proposed
as follows.

1. One category of auxiliary edge features will be attached to each edge between a user
node and a trustRelation node. Their labelnames are, respectively, prefixed with
“u2TrT” and “Tr2uT” for features on a trustor–trustRelation edge and features on a
trustRelation–trustee edge. This setting matches the construction of our probabilistic
graphical model where edges between user nodes and trustRelation nodes have
different types. Such an setting allows the model to distinguish how differently a
trustor or a trustee affects a trust relationship’s formation.
Feature vector construction. For each trustor↔ trustRelation edge or trustRelation
↔ trustee edge, we create a feature vector Fu2TrT

TAUX(Eu↔t) or FTr2uT
TAUX(Et↔u), respectively.

Each feature in this category is a label-label feature.
2. The other category of auxiliary edge features will be attached to edges between

trustRelation nodes that are involved in the motif structure explained previously.
Similarly to trust propagation features, features in this category follow the concept
of propagative trust, i.e., direct trust propagation and transposed trust propagation,
and grant values of each of them with either 0 for direct trust or 1 for transposed trust.
However, different from the trust propagation features which are node features, they
are edge features trying to “filter out similarly behaving trustRelation nodes”.
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Feature vector construction. For each trustRelation↔ trustRelation edge, we create a
feature vector FT

TPAUX(Et↔t′). Each feature in this category is a label-label-observation feature.

The current implementation of the proposed model does not support inference on
cliques yet, which will be discussed below. And thus, it hinders the employment of the sec-
ond category of auxiliary features (label-label-observation features) on edges between trustRe-
lation nodes, which require the prerequisite of the existence of trustRelation–trustRelation
edges. However, we use the same inference method for pairwise graph structure ap-
proximately for cliques, and we’d like to leave the inference on cliques as future work
to complete.

3.2.3. Model Formulation

The random variables in our model are the states or labels of corresponding nodes.
For a user node, its state is a predefined measurement for the user from the original online
social network. It can be direct statistics of this user or carefully handcrafted measurement
calculated from information obtained from their OSN data. For demonstration purpose
and brevity, we use user categories defined by the online social service as user node states
in this paper. For a trustRelation node, which represents the trust relationship between
the trustor user and the trustee user, the random variable’s state is the trust relationship’s
existence in the OSN dataset. As each node has a state, each edge has a state–state pair (or
a transition state) that is determined by the states of the two nodes connected by it. Table 6
summarizes state configurations used in this paper.

Table 6. Configurations of node state and edge state–state pair.

Type States Description

Node

user (u) 0, 1, 2 User categories defined by the OSN.

trustRelation (t) 0 Such an relationship is observed.

1 Such an relationship is un-observed.

Edge (U: state of user node, T: state of trustRelation node)

Eu↔t
UT: 00, 01,

10, 11, 20, 21 state–state pair consisting of U and T.

Et↔u
TU: 00, 01,

02, 10, 11, 12 state–state pair consisting of T and U.

Et↔t′
TT:

00, 01, 10, 11 state–state pair consisting of T and T.

Due to the way that we model trust relationships as random variable nodes in the
probabilistic graph, the smallest significant structure in the resulting graph is pairwise.
(Although there will be smallest cliques that consist of three trustRelation nodes if the
second category of auxiliary features is leveraged, we still model the conditional random
field and run probabilistic inference on it pairwisely.) Different pairwise structures are
connected via the common user nodes or trustRelation nodes. It is worth noting that each
node, if connected by a dummy node, can also be viewed as a pairwise structure, and thus
we call each node a unitary structure.

Each unitary structure has a set of associated node feature functions and each pairwise
structure has a set of edge feature functions. In our problem setting, we attach features to
each node and edge. The features used in this paper are the user profile features, UGC
features, and trust propagation features.
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We use T and T∗ to denote the set of all known trust relationships and the set of trust
links whose states are unknown, respectively. Let Ψ denote the set of feature weights,
and the proposed model that computes a conditional distribution can be defined as

P(T∗|U, T; Ψ) =
1

Z(U, T) ∏
i

ϕi(U, T; Ψ), (4)

where Z(·) is the normalization constant, and ϕi is the ith potential function for either a
unitary structure or a pairwise structure.

For any node Vi ∈ (U, T, T∗) or any edge Ej:〈Vs ,Vt〉 connecting nodes Vs and Vt,
the potential functions for either unitary structures or pairwise structures used in this paper
are, respectively, defined in the log-linear form as follows.

ϕi(Vi; ΨV) = exp

(
∑
k

ψk fik(Vi)

)
, (5)

ϕj(Ej:〈Vs ,Vt〉; ΨE) = exp

(
∑
k

ψk f jk(Ej:〈Vs ,Vt〉)

)
, (6)

where fik(·) is the kth feature function in the ith structure. In the way that features are
weighted and then linearly aggregated, the interplay among features of a same node or
edge is collectively numericalized.

3.3. Probabilistic Model Inference and Interpretation

From the above-mentioned model construction, we know that there will be loops in
the probabilistic graph if bidirectional trust relations exist. That means if Alice and Bob
trust each other, which is common in the real world, then the graph containing only the two
users and their trust relationships is no longer a linear-chain or a tree, as shown in Figure 3.

For the probabilistic model inference, collectively predicting all needed trust relation-
ships from the online social network involves iterating through an exponential number
of possible label combinations, and thus requires exponential time. Furthermore, as the
probabilistic graph contains loops, and exact inference on such a general graphical model is
thus intractable, approximations are employed. We propose to solve the inference problem
using the loopy belief propagation (LBP) technique. As a belief propagation (BP) method variant,
the LBP is a message passing algorithm but requires a slightly different schedule of message
updating rules from the vanilla BP method.

It is worth noting that each pairwise structure in the probabilistic graph only connects
two random variable nodes, and a unitary structure can be viewed as if there is a dummy
node linked to it so that a pseudo-pairwise structure exists. Therefore, we can safely
skip the factor graph framework and send messages directly between each pair of nodes
connected by an edge. This way of handling message passing is equivalent to the original
BP algorithm.

We chose to update messages synchronously, i.e., in each time epoch, each pair of
nodes exchange messages, if they are connected by an edge. In the iterative message
updates, each node’s belief is normalized so that the normalized belief approximates the
node’s marginal probability and is further considered as the new local evidence (also called
compatibility or potential) at this node. Similarly, for an edge and the two nodes connected
by it, we use the normalized belief of the pairwise structure as its local evidence. In the
model inference, passing messages, calculating node/edge beliefs, and updating messages
are repeated until message convergence or an allowed maximum number of iterations
is reached.

When the LBP is done, we normalize each node’s belief so that it approximates the
node’s marginal distribution. Through the marginal probabilities of all possible labels for a
selected trustRelation node, the trust relationship indicated by this node can be determined
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by Equation (1). Such probabilities for the trustRelation node can be further interpreted
from the message passing perspective.

Let mji denote a message sent from node i’s neighboring node j to it, xi be the random
variable at node i, and ϕi(xi) and ϕij(xi, xj) be the local evidence at node i (unitary structure)
and edge 〈i, j〉 (and its connected nodes i and i, pairwise structure). According to BP,
the belief bi(xi) at a node i before normalization, which will then approximate the variable’s
marginal probability, is proportional to the product of the local evidence at this node and
all the messages coming to it:

bi(xi) ∝ ϕi(xi) ∏
j∈N(i)

mji(xi), (7)

where N(i) denotes the set of nodes directly neighboring node i. The messages are deter-
mined by message update rules as follows,

mji(xi)←∑
xj

ϕj(xj)ϕji(xj, xi) ∏
k∈N(j)\i

mkj(xj). (8)

Analogously to Equation (7), the pairwise belief bij(xij) at a pairwise structure will be

bij(xij) ∝ ϕij(xi, xj)ϕi(xi)ϕj(xj) ∏
k∈N(i)\j

mki(xi) ∏
k∈N(j)\i

mkj(yj), (9)

Without loss of generality, we take Figure 5 as an example for the following discussion.
UA, UB, TAB are the random variables of the trustor node A, the trustee node B and the
trustRelation node linked to them, respectively. Since the trustRelation node is linked to
a trustor node and a trustee node by only two edges, with Equation (7), the belief at it is
proportional to

bTAB(TAB) ∝ ϕTAB(TAB) ∏
i∈N(TAB)

mi→TAB(TAB), (10)

and the two messages (MA and MB in the figure) sent to the trustRelation node are, respectively

mUA→TAB(TAB)←∑
UA

ϕUA(UA)ϕUA,TAB(UA, TAB) ∏
k∈N(UA)\TAB

mk→UA(UA), (11)

mUB→TAB(TAB)←∑
UB

ϕUB(UB)ϕUB,TAB(UB, TAB) ∏
k∈N(UB)\TAB

mk→UB(UB). (12)

userA userB
trustRelationAB

M1

M2

M3

MA MB

Figure 5. An illustration of passing messages through a trustor node UA and a trustee node UB to a
trustRelation node TAB.

Let Λx(y) be the multiplication of the local evident at node x and edge 〈x, y〉, and sub-
stitute Equations (11) and (12) and the messages demonstrated in the figure into Equation (10).
The belief at the trustRelation node amounts to
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bTAB(TAB) = κϕTAB(TAB)(MA MB) (13)

= κϕTAB(TAB)

[
∑
UA

ΛUA(TAB)(M1M2)

][
∑
UB

ΛUB(TAB)M3

]
, (14)

where κ is a normalization constant.
It follows that the trustRelation node’s belief is proportional to all local evidence at

this node and two messages sent by the trustor node and the trustee node. The local
evidence is the calculated potential through the compatibility function (energy function,
refer to Equations (5) and (6). Based on the trustor’s attitude, experience, awareness of
other users’ expertise and trustworthiness, etc., collected by Equation (11), the message MA
sent by the trustor node tells the trustRelation node how much the trustor believes they
will issue or not issue a trust relationship to the trustee. Likewise, through the trustee’s
expertise, experience and evidential suggestions from other users’ trust, etc., constituted by
Equation (12), the message MB sent from the trustee node tells the trustRelation node how
much the trustee thinks their behaviors should be recognized by the potential trustor so
that the trustor will trust them or not.

One can conclude that both the trustor and the trustee are involved in forming a trust
relationship, obviously, in a real-world social network, and they have different contribu-
tions to the relationship formation, which is in accordance with Assumption 2, which we
made previously.

3.4. Parameter Estimation

For the model to be able to infer trust, we need to know each parameter in the model,
i.e., the weights for all features. In this section, we embrace the simple but effective gradient
descent method to minimize the model’s negative likelihood so that the training data will
achieve locally highest probability under the model.

From Equations (4)–(6), the conditional log-likelihood with respect to the set of feature
weights Ψ to be maximized can be obtained as follows.

l(Ψ) = − log Z(·) + ∑
i

log [ϕi(U, T; Ψ)] (15)

= − log Z(·) + ∑
i

(
∑
k

ψk fik(Vi)

)
+ ∑

j

(
∑
k

ψk f jk(Ej:〈Vs ,Vt〉)

)
, (16)

and with the LBP algorithm, the approximated gradients of the likelihood (the partial
derivatives with respect to feature ψk) are

∂l
∂ψk

= ∑
i

∑
k

fik(Xi)−∑
i

∑
k

fik(Xi)q(Xi) +
ψk
σ2 , (17)

where Xi can be either a unitary or a pairwise structure; q(·) is the approximated marginal,
i.e., the belief of the unitary or pairwise structure, which can be determined by running
a pass of the LBP algorithm on the graph; and the last term is the regularization term to
prevent over-fitting.

As was discussed in the previous section, calculating the logarithm of the normalizing
constant log Z(·) is intractable, and thus we use Bethe Energy [47] to further approximate it:

log Z(·) ≈ lBETHE(ψ, q)
= −∑s,t ∑Vs ,Vt q(Vs, Vt)[log q(Vs, Vt)− log P(Vs, Vt)]

+∑s ∑Vs [d(Vs)− 1]q(Vs)[log q(Vs)− log P(Vs)]
(18)
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where d(Vs) is the degree of node Vs; P(Vs) and P(Vs, Vt) are, respectively, the initial
potentials of their unitary and pairwise structures; and q(·) and q(·, ·) are corresponding
optimal marginal distributions of approximated beliefs through LBP.

Between gradient descent epochs, the new feature weight vector ψ(m) is computed
from the old vector ψ(m−1) by

ψ(m) = ψ(m−1) + αm∇l(ψ(m−1)), (19)

where∇l(·) is the partial derivatives calculated through Equation (17), and αm > 0 is a step
size controlling the distance the parameter moves in the direction of the gradient, which is
also called the learning rate.

3.5. Implementation

Our implementation of the proposed model, including the model construction, infer-
ence, and relevant training and predicting procedures, was based on the framework intro-
duced in our previous work [48]. For the sake of brevity, we only discuss some concerns on
the model implementation in this section which may greatly affect the model’s performance.

Numerical overflows and underflows. These are very common in BP and other message
passing algorithms. For example, some terms in the potential functions of unitary or
pairwise structures (e.g., Equations (5) or (6)) may be overflowed due to the exponential
calculations; in message passing (e.g., Equation (8)), if the messages passed via each edge
are not constrained, then some messages will exhibit underflow after certain iterations of
message updates; and calculating beliefs (e.g., Equation (7) and (9)) may cause overflow
or underflow or both. The trick to tackling the overflow problem here is to shift every
exponent in the calculated potential by subtracting the largest exponent. For the underflow
issue during message passing, it is necessary to normalize messages frequently.

Parameter learning rate in model training. According to Equation (19), if the learn-
ing rate αm for step m is too large, the new parameters will move too far in the direction
of the gradient; if it is too small, the training procedure will be very slow to accomplish.
Thus, it is essential to properly schedule learning rates in the whole model training process.
A simple common approach is to let αm decrease slowly to 0 as step m grows, which is

αm =
1

σ2(α0 + m− 1)
, (20)

where α0 is the initial learning rate and σ2 is the L2 regularization. The initial learning
rate α0 can be manually set or obtained by running a few passes of gradient descent over
the graph [49].

Implementation of bi-directional message passing. For bi-directionally passing
messages via each edge, the implementation of a non-directional edge in the model is built
as two mutually opposite directional edges. Consequently, the number of real function-
ing edges in the implementation will be doubled and the number of calculations in the
probabilistic inference procedure will greatly increase. In order for the model to perform
LBP efficiently, parallelism could be deployed in synchronous message passing. It is also
beneficial to offload the LBP algorithm to graphics processing unit (GPU) devices to further
accelerate the model inference and training.

4. Experiments

We performed experiments with data (the dataset is publicly accessible via https:
//www.cse.msu.edu/~tangjili/trust.html (accessed on 10 June 2017)) from a typical online
social network, Ciao, where users are allowed to build trust network, cast ratings, post
reviews on a variety types of items, and rate other’s reviews. We chose Ciao because of
the availability of a relatively full web of trust and abundant user-generated content for
explicit and inexplicit trust for trust inference.

https://www.cse.msu.edu/~tangjili/trust.html
https://www.cse.msu.edu/~tangjili/trust.html
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4.1. Data

For fast model evaluation and comparison with other binary classifiers, we extracted
a portion from the full data as our dataset used for experiments. As user links in social
networks are often sparse, it is obvious that the observed trust relationships takes up only
a very small fraction, whereas unobserved ones are common, which means the data are
unbalanced. To deal with the imbalance in the dataset and for the sake of simplicity, we
undersampled unobserved relationships. The statistics for the dataset used in experiments
are listed in Table 7.

Table 7. Dataset specification.

Number of users 14,317

Number of reviews 24,406

Number of reviews per user 1.7

Number of trust relationships Y: 87,804 N: 78,863

Web of trust density Y: 0.00043 N: 0.00038
For a trust relationship: “Y” indicates an existing trust and “N” a nonexistent one.

Features introduced in Section 3.2.2, including contextual features and relational
features, were constructed with information extracted from the dataset. For reviews, we de-
ployed an annotator by CoreNLP (https://stanfordnlp.github.io/CoreNLP/ (accessed on
20 June 2017)) to extract words and phrases from texts and build stylistic and linguistic
features. Detailed feature statistics are listed in Supplementary Materials.

Although we carried out the experiments on only one dataset, the proposed method is
universally applicable to various online social networks. With only a set of users and the
set of trust relationships from other data sources, the model can still be built successfully
and then infer trust, though without adequate relevant features the inference may perform
unsatisfactorily. If additional features are available, the proposed method will prove its
efficiency in trust relationship prediction.

4.2. Experimental Settings
4.2.1. Comparison Methods

We chose several easy-to-implement state-of-the-art binary classifiers as baseline
comparison methods, including support vector machine (SVM) with a radial basis function
(RBF) kernel, decision tree (DT), and random forest (RF). Generally speaking, linear SVMs
are interpretable but less efficient than SVMs with an RBF kernel that are partially inter-
pretable; DTs provides interpretable results, and RFs deliver better results than DTs do but
decrease interpretability.

We did not compare our model with the methods proposed in [33–35], as ours is
supervised learning. We also did not conduct comparison experiments between ours and
models based on neural networks. Although these models probably could, and most likely
would, achieve better performances than ours, to interpret these models is still a problem.

4.2.2. Evaluation Metrics

As we construct our mission of trust relationship inference as a binary classification
task in this paper, we used the common metrics for classification evaluation. In detail, we
used Accuracy, Precision, Recall, and F1 score for evaluations.

For the set of user trust relationships that are to be inferred by a model or a method, we
denote the number of all elements in the set by C; the number of observed trust relationships
that were also predicted to be existent (true positive data points) by tp; and the numbers of
false negative, false positive, and true negative ones by fn, fp, and tn, respectively. Then,
the Accuracy is defined as

Accuracy =
tp + tn

C
, (21)

https://stanfordnlp.github.io/CoreNLP/
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and Precision, Recall, and F1 score are, respectively, defined as

Precision =
tp

tp + fp
, (22)

Recall =
tp

tp + fn
, (23)

F1 =
2tp

2tp + fp + fn
. (24)

From the metric definitions, the higher one metric is, the better performance a model
or a method has.

4.2.3. Experiment Setup

In this paper, two sets of experiments were conducted.

1. For model validation and comparisons, we conducted experiments using the proposed
model and comparison methods with different feature set combinations on the split
training and test datasets, and then compared the resulting performances with the
evaluation metrics.

2. For privacy-restrict online social network analysis, experiments were carried out
with partially reduced data to further explore the proposed model’s trust inference
capability in a real-world scenario. Hereinafter, the reduced data means that features
from a certain set for a portion of users were missing for a specific experiment.
As stated earlier in Section 1, in real-world online social networks, some users may
choose to opt out of part of or all of their data being used by online social services.

As was discussed in Section 3.2.2, the proposed model will still work without auxiliary
features. Nevertheless, the types of auxiliary features are a particular coexistent by-product
of how the proposed model was built, and also reflect the real-world mechanism of trust
relationship formation. Therefore, these features were used in all experiments for the
proposed model, acting as part of the foundation of the model. Note that these features
only work with the proposed model.

In all experiments for model validation and comparison, we used different combi-
nations of feature sets to show each method’s ability in trust inference. Table 8 lists the
different feature sets for experiments. (Refer to Table 2 for the types of features used in this
paper.) For the comparison methods, the feature set combinations available for them are
similar but without any auxiliary features from FTAUX or FTPAUX.

For model learning and predicting, the set of user trust relationships was randomly
split into a training set and test set, and the ratios of sizes of the two sets were 50–50%,
0–40%, 70–30%, 80–20%, and 90–10%. (A better way to split the data is to split data accord-
ing to trust relationship creation time. However, in the chosen dataset, such information
of trust relationship creation time was missing, and thus we resorted to splitting the data
randomly.) All the second set of experiments used the 90–10% split for training and
test datasets.

For the second set of experiments, the reduced feature data were generated by ran-
domly removing one type of features from a certain percentage of users. The percentages
for feature removal are 20%, 40%, 60% and 80%, respectively. If two types of features are
used at the same time for an experiment, the random removal for each type of features
is independent.

Other experiment setup included: in all experiments for the proposed model, we set
the maximum number of gradient descent epochs to 20 and the maximum number of LBP
iterations to 10.
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Table 8. Sets of features used for experiments.

# of Experiment Set # of
Experiment

Feature Set Contents

1st 2nd FPRF FUGC FTAUX FTP +FTPAUX

X 1 X
X X 2 X X
X X 3 X X
X X 4 X X
X X 5 X X X
X X 6 X X X
X X 7 X X X
X 8 X X X X

4.3. Results and Discussion
4.3.1. The First Set of Experiments with All Possibly Usable Feature Data
Performance of the proposed method with different feature sets

Firstly, we report the trust inference performance of the proposed method. The experi-
ments were conducted with eight different feature set combinations on the five split training
and test datasets, and accuracy and F1 score are reported for each of them. As shown in
Figure 6, the results are organized into three groups by how the feature sets were composed:
the first group contains results from experiments 1, 2, 5, 6, and 8, which illustrates how
integrating the user profile feature set FPRF into the model affects the model’s performance;
similarly, the second group contains experimental results from experiments 1, 3, 5, 7, and
8 to show the power of using UGC feature set FUGC; the third group of 1, 4, 6, 7, and 8
depicts the effect of trust propagation feature set FTP +FTPAUX.

With either a single feature set or a combination of feature sets, the proposed method
outperformed three naive classifiers, uniformly random guess, random selected class, and ma-
jority class, which, respectively, achieved accuracies of 0.5000, 0.5014, and 0.5269 according
to the dataset specification (refer to Table 7). From the reported results evaluated by the
accuracy metric, one can conclude that the proposed method is efficient and capable of
inferring trust relationships.

As was previously discussed, with only the first category of auxiliary features, the pro-
posed method will still worked, and it also achieved above-average performance. They are
special features that only work with our model but not for other comparison methods. This
makes our model with this set of features promising as a supervised learning model, when
abundant data, such as user-generated content, are available as data input.

A quick glance over the performance results regarding both accuracy and F1 score
shows that substituting additional features into the model does improve the model’s
performance. However, the results differ a bit when the added combination of additional
feature sets varies. The observations are as follows.

1. On top of the first category of auxiliary features (FTAUX), adding a single feature set
(FPRF, FUGC, or FTP +FTPAUX) into the model will improve the model’s performance.
The use of the UGC feature set FUGC improves the model’s accuracy (and F1 score)
greatly by 42.45% to 50.22% (27.80% to 30.76%), followed by the user profile feature
set FPRF by 14.92% to 20.87% (1.16% to 6.60%), and then the trust propagation feature
set FTP +FTPAUX by 0.35% to 1.01% (0.34% to 1.32%).

2. Although adding a single feature set FTP + FTPAUX did not greatly improve the
performance, it could help another single feature set FPRF to achieve better results.
This can be seen from experiment 6 and experiment 2, where the model performance
was improved by 11.26% to 14.27% in accuracy (Figure 6a) and 13.60% to 18.09% in F1
score (Figure 6d).

3. Using all types of features (in experiment 8) does not always promise the best result.
The performance for the proposed model with such feature sets was close to the
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performance of the model with the UGC feature set FUGC with or without other
feature sets.
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Figure 6. Performance results of the proposed model evaluated by Accuracy (Acc) and F1 score for
the first set of experiments. (a) Experiments 1, 2, 5, 6, 8 (Acc). (b) Experiments 1, 3, 5, 7, 8 (Acc).
(c) Experiments 1, 4, 6, 7, 8 (Acc). (d) Experiments 1, 2, 5, 6, 8 (F1). (e) Experiments 1, 3, 5, 7, 8 (F1).
(f) Experiments 1, 4, 6, 7, 8 (F1).

It is expected to see the model get better results when additional features are added
into it. It is also foreseeable that using UGC features (FUGC) should work better than
using other types of features, as UGC data are usually more abundant than other types
of features, both from a dataset and in the real world. The expected result will in turn
validate Assumption 1, that a user’s generated contents hold the representation of the
user’s trust information. All the good performance results came from a rich amount of
UGC data, and so, a legitimate question arises, “What if some of the UGC data are missing
possibly due to any privacy-related constraints?” Or more precisely, “What would the
model performance become if some of the UGC data are not available?” The second set of
experiments conducted with reduced feature data will shed light on the answers to them.

As for the trust propagation features, apart from the data imbalance, there is another
possible reason that they do not always improve the model’s performance: the proba-
bilistic inference is performed on pairwise structures rather than cliques. Nevertheless,
the trust propagation features do improve the model’s performance when working with
the statistical user profile features.

Performance Comparisons

Secondly, we report the comparative performance results achieved by using our model
and other methods discussed in the previous section. For these experiments, all available
feature datasets and their combinations are free to use for experimenting. The performances
for each method evaluated by the accuracy and F1 score metrics, and experiments in which
the best performances were achieved are reported in Tables 9 and 10. Full results, including
precision and recall for each experiment, are reported in the Supplementary Materials. As
has been already stated, the auxiliary features only fit in the proposed model, and all the
other types of features can be used for all methods.
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Table 9. First experiment set: best performance comparison for different methods by Accuracy.

Training–Test Our Model SVM DT RF

50–50% 0.9678 (#3) 0.9106 (#6) 0.8778 (#6) 0.9212 (#8)
60–40% 0.9673 (#3) 0.9139 (#6) 0.8847 (#6) 0.9239 (#8)
70–30% 0.9675 (#7) 0.9120 (#6) 0.8853 (#6) 0.9215 (#8)
80–20% 0.9684 (#3) 0.9093 (#6) 0.8729 (#6) 0.9152 (#8)
90–10% 0.9804 (#3) 0.9143 (#6) 0.8741 (#6) 0.9198 (#8)

Table 10. First experiment set: best performance comparison for different methods by F1 score.

Training–Test Our Model SVM DT RF

50–50% 0.9688 (#7) 0.9160 (#6) 0.8850 (#6) 0.9247 (#8)
60–40% 0.9684 (#7) 0.9190 (#6) 0.8923 (#6) 0.9275 (#8)
70–30% 0.9698 (#7) 0.9170 (#6) 0.8925 (#6) 0.9250 (#8)
80–20% 0.9691 (#3) 0.9141 (#6) 0.8793 (#6) 0.9188 (#8)
90–10% 0.9810 (#3) 0.9193 (#6) 0.8812 (#6) 0.9238 (#8)

From the experimental results listed in the tables and the Supplementary Materials,
the first observation is that our proposed method outperforms other comparison methods
in terms of accuracy and F1 score, if all types of features are free to use.

The second observation is that UGC features (FUGC) were always involved in the
used features when all methods achieved their respective best or second best performances.
The fact that there is trust construct embedded in UGC data is proved again, but through
the results by comparison methods this time. Consequently, one can harvest a user’s trust
information from UGC data from the user and his “friends” including trustors and trustees,
which thus bears witness to Assumption 1 we made in Section 3.1.

Last but not least, in contrast to the results achieved by our proposed model, SVM and
decision tree generated worse results by adding UGC features than user profile features,
and all three comparison methods had improved results by using trust propagation features.
One possible reason for the performance divergence’s cause is the very large number and
dimensions of UGC features employed in the three comparison methods; meanwhile, a few
yet powerful trust propagation features greatly improved their performance when working
with either UGC features or user profile features. Another reason that our model behaved
differently in these experiments is that ours can balance a massive number of features which
may counter each other, and can also “capture and numericalize” interplayed features.

A peek at Recall: higher Precision or higher Recall for trust relationship prediction
in OSNs?

For a classification task, the outcome for it determines the expectations for the precision
and recall in the task’s result. For the task of trust relationship prediction, or more generally
friend recommendation, in an online social network that exists in an online social service,
there are some considerations that might help with making the decision.

In OSNs, friend relationship or trust relationship recommendation is an efficient way
for users to get started and engaged more in the online social service’s activities so that the
online social service’s revenue could gain.

From the user’s perspective, the recommendation should provide users with accurate
sets of users based on their homophily and existing friend/trust networks, and the expected
precision of the recommendation or the prediction is to be high ideally.

On the other hand, it is probable that the number of candidates being recommended to
a user will be few due to the user’s strict criteria, or nearly none, which would eventually
make the recommendations less effective; and thus, from the online service’s operating and
managing perspective, in addition to suggested users who satisfy the user’s criteria, it is
essential to recommend extra possible candidates to the user, although these candidates



Appl. Sci. 2022, 12, 5186 24 of 29

may not strictly match the user’s criteria fed to the inference algorithm. Therefore, a higher
recall for such a recommender or a predictor of a model will benefit an online social network.
Additionally, of course, the model should maintain acceptable precision.

Another reason for a higher recall comes from the fact that the dataset used for friend
recommendation or trust relationship prediction tasks is usually incomplete. As previously
discussed, part of an “ideally complete” dataset would be missing due to various actual
reasons. Consequently, even though a model generates good prediction results with
high precision, the results may still be far away from a “real ideal.” Thus, as a trade-off,
a prediction result with a higher recall is acceptable.

Taking the above considerations into account, one of the best models that fit in the
trust relationship prediction tasks in this paper would achieve a higher recall while still
maintaining an acceptable precision. From the results for the first experiment set, our
proposed model had an average recall of 0.9327 in all 40 experiments; and for SVM,
decision tree, and random forest in their respective 35 experiments, the average recalls
were 0.8239, 0.7950, and 0.8382.

4.3.2. The Second Set of Experiments with Reduced Feature Data

From a quick look at the experiment setup, the second set of privacy-aware experi-
ments conducted with reduced feature data revealed some similarities with the first set
of experiments in the training set and test set split configuration. It is true that if we are
to conduct another group of experiments in which users choose to opt out of usages of
all their profile data and UGC data and even some of users deny the usage of their trust
relationships in trust inference tasks, the experiments will be exactly the same as the ones
in the first set of experiments using only the first category of auxiliary features (FTAUX)
with specific training and test datasets.

However, the fact is that they are not the same from the management perspective.
The split training set and test set configuration is for model verification. On one hand,
the aforementioned experiments are only particular ones in trust relationship inference in
this paper. On the other hand, real-world privacy settings vary a lot from service to service,
OSN to OSN, and it is worth exploring how a model performs in close to real conditions.

Overall performance results

Figures 7 and 8 show the results of the second experiment set with reduced feature data
evaluated by the Accuracy and the F1 score metrics, respectively. In general, for different
feature set combinations, the performance of the proposed model and the comparison
methods decreases when the ratio of removed features increases.

Similarly to the results of experiments with full feature data, the proposed model works
well with UGC features and outperformed other methods greatly in these experiments.
This is the answer to the early question about the model’s performance with partially
available UGC data.

A second peek at Recall with reduced feature data

This set of experiments were a simulation of the real-world scenario where obtainable
online social network datasets are incomplete due to various reasons. In particular, one
whole category or certain types of data from a certain number of users are unavailable,
when the users choose to limit the usage of their data by online social services through
privacy settings. Although such an experimental setup in this paper does not cover all
possible scenarios, it may shed some light on the study about how a model might work
when some of the privacy-restricted data are unavailable.

As previously discussed, a higher recall with acceptable precision achieved by a
method to infer trust in OSNs is one of the ideal objects for online social services. In all
30 experiments from the second set, our proposed model achieved an average recall of
0.9409; 27 in 30 recalls were ≥0.90. The results for SVM, Decision Tree and random forest
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were, respectively: 0.7682 (2 recalls were ≥0.90), 0.7444 (none was ≥0.90), and 0.7844 (two
recalls were ≥0.90). Refer to Supplementary Materials for the full results.
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Figure 7. Performance results of the proposed model and comparison methods evaluated by accuracy
for the second set of experiments. (a) Experiment 2s (Acc). (b) Experiment 3s (Acc). (c) Experiment 4s
(Acc). (d) Experiment 5s (Acc). (e) Experiment 6s (Acc). (f) Experiment 7s (Acc).
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Figure 8. Performance results of the proposed model and comparison methods evaluated by F1 score
for the second set of experiments. (a) Experiment 2s (F1). (b) Experiment 3s (F1). (c) Experiment 4s
(F1). (d) Experiment 5s (F1). (e) Experiment 6s (F1). (f) Experiment 7s (F1).

5. Conclusions

In this paper, we explored the problem of collecting trust information and exploiting
trust’s various properties to infer trust in online social networks. Both explicitly presented
trust relationships and information inexplicitly embedded in user-generated contents that
bear users’ attitude, experience, expertise, credibility, trustworthiness, etc., are harvested as
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trust information. A probabilistic graphical model based on a conditional random field for
trust inference was proposed, which can effectively take advantage of trust’s asymmetric,
propagative, non-transitive, and subjective properties. With loopy belief propagation,
a message passing algorithm, the model inference was presented and well interpreted.
Experiments were conducted to evaluate the proposed model on a real-world online social
trust dataset, and the experimental results demonstrated the effectiveness of the proposed
model for trust inference.

Further improvements to the proposed model can be achieved. Implementing the
model inference on cliques rather than pairwise structures may help the model to capture in-
terplay among trust relationships that have same trustors or same trustees more accurately,
making it possible to integrate more types of features that convey users’ beliefs through
complex interactions between users. Our handling of class imbalance for classifications,
the underlying fact of which is the sparsity in user relationships in online social networks,
is quite simple, and it may be further addressed by introducing penalties.

The study presented in this paper is primitive, but the proposed model is promising.
Distrust is also a trust relationship type that can be supported by adding an extra label to
the trustRelation node in the proposed model. Then, with a proper dataset, a model that
can infer relationships of both trust and distrust can be trained. The proposed model also
supports quantitative and context-specific trust evaluation, which could be an interesting
future study with a proper dataset. By using each user’s probability of trusting another
user, an individual-oriented personalized trust management system can be built, and many
social recommendation tasks will benefit from it.

With respect to trust’s subjectivity and asymmetric properties, the concept of distin-
guishing the trustor’s attitude, experience and belief from the trustee’s expertise, trust-
worthiness, and credibility when forming a trust relationship—which was shown to be
helpful for supervised trust inference in this paper—may help to improve unsupervised
methods for trust inference. Finally, it will also be crucial to study the model’s sensitivity
against attacks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12105186/s1. Detailed feature statistics used in this paper
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Abbreviations
The following abbreviations are used in this paper:

OSN Online Social Network
UGC User-Generated Contents
CRF Conditional Random Field
r.v. random variable
TP Trust Propagation
POS Parts-of-Speech
BP Belief Propagation
LBP Loopy Belief Propagation
GPU Graphics Processing Unit
SVM Support Vector Machine
RBF Radial Basis Function
DT Decision Tree
RF Random Forest
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