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Abstract: Recommender systems (RS) have been widely deployed in many real-world applications,
but usually suffer from the long-standing user/item cold-start problem. As a promising approach,
cross-domain recommendation (CDR), which has attracted a surge of interest, aims to transfer the
user preferences observed in the source domain to make recommendations in the target domain.
Traditional machine learning and deep learning methods are not designed to learn from complex
data representations such as graphs, manifolds and 3D objects. However, current trends in data
generation include these complex data representations. In addition, existing research works do not
consider the complex dimensions and the locality structure of items, which however, contain more
discriminative information essential for improving the performance accuracy of the recommender
system. Furthermore, similar outcomes between test samples and their neighboring training data
restrained in the kernel space are not fully realized from the recommended objects belonging to
the same object category to capture the embedded discriminative information effectively. These
challenges leave the problem of sparsity and the cold-start of items/users unsolved and hence impede
the performance of the cross-domain recommender system, causing it to suggest less relevant and
undistinguished items to the user. To handle these challenges, we propose a novel deep learning
(DL) method, Discriminative Geometric Deep Learning (D-GDL) for cross-domain recommender
systems. In the proposed D-GDL, a discriminative function based on sparse local sensitivity is
introduced into the structure of the DL network. In the D-GDL, a local representation learning (i.e.,
a local sensitivity-based deep convolutional belief network) is introduced into the structure of the DL
network to effectively capture the local geometric and visual information from the structure of the
recommended 3D objects. A kernel-based method (i.e., a local sensitivity deep belief network) is also
incorporated into the structure of the DL framework to map the complex structure of recommended
objects into high dimensional feature space and achieve an effective recognition result. An improved
kernel density estimator is created to serve as a weighing function in building a high dimensional
feature space, which makes it more resistant to geometric noise and computation performance.
The experiment results show that the proposed D-GDL significantly outperforms the state-of-the-art
methods in both sparse and dense settings for cross-domain recommendation tasks.

Keywords: recommender systems; deep learning; cross domain; geometric deep learning; non-
Euclidean domain

1. Introduction

Due to the proliferation of social networks coupled with the advancement of sophisti-
cated electronic devices, there are very large amounts of multimedia content (including
audio, videos and articles) on the Internet [1,2]. As a result, Internet users are able to access
vast resources with just the click of a button. However, it is very challenging to retrieve
information or multimedia content that is relevant to the user’s interest. This problem has
attracted much interest in research and application in recent times. Hence, recommender
systems (RS) provide a machinery to effectively rank and suggest items for users based on
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their past clicks on items they may be interested in. The suggested items usually improve
and facilitates user’s loyalty to a particular multimedia or social website through recom-
mendations. Recommender systems can be categorized into specific (those that pertain to
specific areas such as jobs, news and taxi or ride sharing) and general recommendations.

The Problem: Traditional machine learning and deep learning methods are not de-
signed to learn from complex data representations such as graphs, manifolds and 3D objects.
However, current trends in data generation include these complex data representations. In
addition, existing research works do not consider the complex dimensions and the locality
structure of items which, however, contain more discriminative information essential for
improving the performance accuracy of the RS. Furthermore, similar outcomes between
test samples and their neighboring training data restrained in the kernel space are not fully
realized from the recommended objects belonging to the same object category to capture
the embedded discriminative information effectively. These challenges leave the problem
of sparsity and cold-start of items/users unsolved and hence impede the performance of
the cross-domain RS, causing it suggest less relevant and undistinguished items to the user.

Gap analysis: Recent works such as Wang et al. (2021), Wang et al. (2020), Cao et al. (2022),
Veeramachaneni et al. (2022), Zhu et al. (2022), Vikas et al. (2022), and Liao et al. (2022) have
attempted to solve the cold-start and sparsity problems using machine learning and deep
learning methods. Wang et al. (2021) proposed a framework for building cross-domain RSs
that extracts personality trait information from an auxiliary domain using a probabilistic
matrix factorization. Additionally, Wang et al. (2020) proposed a cross-domain RS based on
a shared user’s information from an e-commerce site and an advertising site with the aim
of alleviating the cold-start and sparsity problems. In their work, a deep learning method,
a generalized Matrix Factorization and a word2vec is applied to turn textual information
on users and items into latent vectors as their representations. The word2vec technique
faces the challenge of handling unknown or out-of-vocabulary words that it is unable to
interpret or build vectors for.

Cao et al. (2022) proposed an information bottleneck (IB) principle to enforce user/item
representations in a source domain to a target domain in capturing domain-shared infor-
mation aimed at solving the cold-start problem. Veeramachaneni et al. (2022) proposed a
transfer learning approach for cross-domain recommendation, wherein the cluster-level
rating pattern (codebook) of the source domain is obtained via a co-clustering technique.
The authors thereafter apply the Maximum Margin Matrix factorization (MMMF) tech-
nique on the codebook in order to learn the user and item latent features of codebook.
Zhu et al. (2022) also attempted to solve the cold-start problem by proposing a personal-
ized transfer of user preferences for a cross-domain recommender system. Specifically, a
meta network fed with users’ characteristic embeddings is learned to generate personalized
bridge functions to achieve personalized transfer of preferences for each user.

Vikas et al. (2022) utilizes Latent Dirichlet Allocation (LDA) and ontology methods
to extract additional information from user reviews to create an ontological profile for
each user by mapping genres to user profiles using a dictionary. In the work of Liao et al.
(2022), domain-shared and domain-specific features are extracted to enable knowledge
transfer between multiple heterogeneous source and target domains. To ensure positive
transfer, the domain-shared subspaces from multiple domains are maximally matched by a
multiclass domain discriminator in an adversarial learning process. The recommendation
in the target domain is completed by a matrix factorization module with aligned latent
features from both the user and the item side.

Moreover, the matrix factorization-based techniques suffer lower accuracy perfor-
mances when the data is extremely sparse. Additionally, without significant modification
to their models, they cannot be applied directly to non-Euclidean data feature extraction.

The traditional deep neural network was not originally designed to capture new data
trends (non-Euclidean), such as graphs, manifolds, and 3D (Peng et al., 2021). Hence, they
cannot correctly represent the local information of these complex data. Furthermore, most
traditional deep networks are based on convolutions that do not include a generalization
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operator, making them linearly incompatible with the representation of non-Euclidean
data (Hu et al., 2022). On the other hand, geometric deep learning (GDL) is an emerging
field of research that employs deep learning on non-Euclidean data. GDL has seen several
successes in classification [3], drug discovery [4], biochemistry [5]; however, it has not
been exploited in the area of recommender systems (either single-domain or cross-domain).
However, these techniques could not fully exploit the local information existing in the
complex and nonlinear structure of items/users concerning the magnitude of items and
users as indicated in the following works [6–10].

Therefore, in this paper, considering the intrinsic and extrinsic feature capabilities
of recommender systems from the manifolds domain, we propose a novel geometric
deep-learning approach for cross-domain RSs based on different modalities to address
the item/user cold-start and sparsity problems. The proposed method combines the ad-
vantages of geometric DL techniques, considering geometric information and complex
visual information of cross recommender models using varied viewing angles. In summary,
the geometrically based modalities and the visual features are learned using geometric deep
local convolutional neural networks with a local fusing technique based on the restricted
Boltzmann machine (LRBM) and a kernel-based density estimator for the selection of rele-
vant recommender systems. The proposed approach uses an adopted local sensitivity based
deep convolutional belief network (LDCBN) and a local-sensitivity convolutional neural
network (LCNN) to learn or extract geometric information and visual-based information
for cross domain recommender systems. A more discriminative result is obtained by fusing
the geometric and the visual information using LRBM. Figure 1 depicts the framework of
the proposed model.
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Figure 1. The Framework of the proposed model.

Contributions: The prime contributions made by this work are as follows:

1. We modelled and implemented a novel cross-domain recommendation network
capable of learning from complex data representations effectively by incorporating a
sparce local sensitivity mechanism into a geometric deep learning algorithm to resolve
the problem of sparsity.

2. We introduce a local sensitive adaptor to enforce discriminability by capturing fully
the essential local geometric information, which maybe hidden in the structure of
recommender systems, for efficient and effective recognition results.
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We performed a comprehensive experiment on the proposed model to ascertain
its performance on multiple datasets in the sparse and dense settings. We modelled
and implemented a novel cross-domain recommendation network capable of learning
from complex data representations effectively by incorporating a sparce local sensitivity
mechanism into a geometric deep learning algorithm to resolve the problem of sparsity.

2. Review of Related Works
2.1. The Conception of Geometric Deep Learning

Many current studies in various scientific fields concern data belonging to the non-
Euclidean domain rather than the Euclidean domain [11]. Examples of these include, but are
not limited to, multimedia technology, social networks in computational sciences, functional
networks, regulatory networks, sensor networks and meshed surfaces in computer graphics.
The structure of geometric data is known to be very complex and non-linear in nature; hence,
many scientific researchers are focusing on this area. For instance, deep learning is one the
techniques being exploited and is an important tool in realizing solutions for RSs [11,12].
However, most of the existing approaches have been implemented in the Euclidean domain,
with a few of them paying attention to data belonging to the non-Euclidean domain. As a
result, there is a need for a representation solution to effectively explore data repositories of
non-Euclidean data. This led to a generalized learning algorithm referred to as geometric
deep learning (GDL) for the non-Euclidean domains, such as manifolds and graphs.

The aim of the following sections concerning GDL (an umbrella term used to describe
emerging technology aiming to structure or generalize techniques in the non-Euclidean
domain) is to discuss some of the conceptions of the technique and also to present some
available solutions, challenges. Additionally, research directions and how the proposed
approach will be utilized in addressing challenges will be discussed. DL is the process
of hierarchically learning complex concepts from simple ones in a multi-layer fashion.
Examples of such learning approaches include, but are not limited to, neural networks
(NN), artificial NN, feedforward NN and Convolution Neural Network (CNN), which
have the ability to train large sets of data and have resulted in significant breakthroughs in
multimedia applications, computer vision, and speech recognition.

In a broader sense, GDL issues can be categorized into two groups. In the first group,
we intend to associate characteristics with the structure of the data, and in the second group,
we analyze the functions based on which a given non-Euclidean domain is defined [11].
The two groups are interrelated in the sense that because particular information is trans-
mitted and understanding the properties of functions defined on a domain is essential.
The same can also be said about the properties forced on the function by the structure of
the domain. As an example of the first group of problems, an assumption could be made
that a group of data points are given, where low-dimensional constructions are entrenched
into a high-dimensional Euclidean space. If that is the case, then recuperating that low-
dimensional construction from the high dimensional space is mostly termed as nonlinear
dimensionality reduction or manifold learning [12]. This is an instance of un-supervised
learning, and most such methods consist of two phases. The first phase begins with the
structuring of a representation solution based on the local affinity of the data point, and in
the second phase, the data points are entrenched into a low-dimensional feature space with
the aim of preserving originality.

Some examples of studies examining manifold learning include, but are not limited to,
the ones discussed in [13–15] that attempt to preserve global geometric information such
as the geodesic coverage of the graph. Other studies examine decomposing the graphs
into minute sub-graphs referred to as graph-lets or motifs, rather than embedding the
vertices [16–19]. Graphs or manifolds are well-known and utilized for constructing repre-
sentation solutions for social network analysis [20,21], natural language processing [22–24]
and many other applications by capturing local geometric information.
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2.2. Deep Learning Technology in the Euclidean Domain

To date, most machine-learning-based techniques are used to address issues bordering
on the Euclidean domain. Assume multi-dimensional data in the Euclidean domain where
0 = [0, 1]d ⊂ Rd, based on which functions such as image analysis applications are
explicated f ∈ L2 (0). In a general supervised learning domain, an unknown function
derived on a training set may be considered as L2 (0)→ y. Such a function is defined in
Formula (1): {

f ∈ L2 (0), yi = y( fi)
}

i∈I
, (1)

where y represents the target space, 0 denotes an arbitrary domain, and the square in-
tegrable function on 0 is represented by f . In many shape recognition systems, the y
could be replaced by multi-dimensional simplex, representing class probabilities, p(y|x) .
Regression analysis could also be defined as y = Rm. There are several other assumptions
that could be considered for unknown functions in many speech analysis and computer
vision related tasks. These assumptions may be subjugated by structures of the CNN as
can be seen in Formula (2):

I v f (x) = f (x− v), x, v ∈ 0, (2)

where I v represents a translation operator. The function y is assumed to be either equiva-
lent with regards to translation or invariant, depending on the task at hand.

2.3. Data Representation in the Non-Euclidean Domain

Functions or problems defined based on the non-Euclidean domain can be further
subdivided into sub-classes [11,25,26]. Firstly, we can consider situations consisting of
multiple domains, such as identifying similarities and correspondences among items/user
recommendations with computer vision and graphics applications. Functions defined in
these settings are similar to CNNs based on the spatial domain and are more appropriate.
Secondly, situations with fixed domains could also considered. An example could be the
identification and prediction of global positioning of persons belonging to a social network
based on their previous behaviors. In this example, the domain, which is the social network,
is considered to be fixed. Functions defined in the domain are similar to CNNs based on
spectral domains.

The focus of this study is to examine functions based on the non-Euclidean domain,
especially those that attempt to generalize or extend their solutions by exploiting their
implementations with CNN techniques. Graphs and manifolds are examples of data in
the non-Euclidean domain, and several studies [27–29] have attempted to generalize the
application of NNs to graphs by a combination of deep learning models. The foremost
application of a CNN to graphs in the spectral domain was proposed by Bruna [30].
However, the approach faced computational difficulties, which were resolved in [29,31,32],
resulting in some state-of-the-art outcomes. The first application of a CNN on a mesh
surface in the spatial domain centered on local intrinsic patches was proposed in [33].
These applications were found to have resulted in an up-to-the-minute performance on
deformable recommender systems, whereas other approaches were based on intrinsic
patches on point clouds and general graphs [11].

There has been an explosive increase in the application of DL to manifolds and graphs
in recent times. This can be seen in the numerous such techniques that have attempted to
address issues pertaining to recommender systems and biochemistry.

By way summary, the main objective of the current DL techniques, is to extend the
application of the technique in the non-Euclidean domain. The non-Euclidean domain
is represented by two (2) structures considered prototypically as graphs and manifolds.
Graphs such as social networks consist of structured network data made up of edges and
nodes. Manifolds on the other hand describe geometric-like applications of recommender
systems like spatial coordinates based on the surface of an entity brought forth by a scan
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(LiDAR). These structures mathematically represent graph theory and differential geometry,
respectively, and share numerous known characteristics.

2.4. Convolutional Neural Network (CNN)

A CNN is a DL technique used in object recognition and is developed to train neural
networks in the same manner as human beings learn. CNNs are particularly suitable for
training large datasets and have achieved a lot of recognition in image classification and a
number of computer vision tasks, such as object detection, classification and scene detection.
Hence it would not be out of place to extend the technique to recommendations [34]. CNNs
are more stable and possess stationarity to local translation and consist of many convolu-
tional layers, which are of the form f = Cτ(g) being applied to g(x) =

(
gi(x), . . . , gp(x)

)
,

which is a p-dimensional input with bank filters τ = (γi, l), i = 1, . . . , q, l = 1, . . . , p and
element-wise non-linearity ξ:

fi(x) = ξ

(
p

∑
l=1

(gl ∗ γi, l)(x)

)
, (3)

where fi(x) results in a q-dimensional outcome
(

f (x) = fi(x), . . . , fq(x)
)

denoting feature
maps, and the standard convolution is represented by Equation (4).

(g ∗ γ)(x) =
∫

Ω
g
(
x− x′

)
γ
(
x′
)
dx′ (4)

The filters τ have a compact spatial support. In addition, a pooling layer or down-
sampling f = P(g) may be utilized as stated in Equation (5):

fi(x) = P
((

gi
(

x′
)

: x′ ε N(x)
))

, i = 1, . . . , q, (5)

where the nearness neighbor around x is represented by N(x) ⊂ Ω, and the permutation
invariant function, such as Lp-norm, is denoted by P. A CNN may be engineered by
combining several convolutional and pooling layers selectively, resulting in a generic
resultant hierarchical representation as indicated in Equation (6):

U� (g) =
(

CτK . . . P . . . ◦ Cτ(2) ◦ Cτ(1)
)
(g), (6)

where the filters coefficients referred to as the hyper-vector of the network regularizations
are denoted by � =

(
τ1, . . . , τK). The models of this nature consisting of multiple layers

are said to be deep. Although this notion is ambiguous, one can still find CNN-based
techniques utilizing this approach with as many as one hundred layers. For supervised
learning tasks, one could find parameters of a CNN by minimizing the cost function on the
training set.

Appreciating the nature of the optimization function and obtaining a solution through
the adaptation of effective strategies has led to an area of research known as deep learn-
ing [35–38]. Another factor in the successful implementation of CNN is that their learning
results in the avoidance of the curse of dimensionality due to their learning complexity.
Due to NP hard solutions or shift invariance, the convolution operation in the Euclidean
domain is seen as passing a template to each other and keeping track of the points for
each template. This makes it possible for us to learn specialized features from samples to
achieve a ground-breaking results recognition performance in various applications such
as image segmentation, detection, classification and annotation [39]. Now taking into
consideration the construction of CNNs in the non-Euclidean domain, we will investigate
the two typical geometric data: graphs and manifolds. Graphs consist of edges and nodes,
whereas manifolds are mostly used to designate geometric 3D shapes, particularly in the
spatial domain.
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3. Proposed Method

Many large companies offer diversified products or services to customers. For instance,
Google provides customers with mobile applications, web searches, and news services, and
books, electronics, and clothes can be bought from Amazon. Single-domain recommender
systems only focus on one domain while ignoring user interests in other domains, which
also exacerbates sparsity and cold-start problems [40,41]. A cross-domain recommender
system, which assists target domain recommendation with the knowledge learned from
source domains, provides a desirable solution for these problems. One of the most widely
studied topics in cross-domain recommendation is transfer learning, which aims to improve
learning tasks in one domain by using knowledge transferred from other domains [41].
Deep learning is well suited to transfer learning as it learns high-level abstractions that
disentangle the variations of different domains. Several existing works, as reviewed
in [41], demonstrate the efficacy of deep learning in catching the generalizations and
differences across different domains and generating better recommendations on cross-
domain platforms. Therefore, this is a promising but largely underexplored area where
more studies are expected, hence the need for this study.

The proposed discriminative-based geometric deep learning (D-GDL) for cross-domain
recommender systems, particularly in the non-Euclidean domain, is presented in this sec-
tion. Most of the objects that are recommended in recent times are 3D. A 3D object means
a three-dimensional shape that can be defined as a solid figure with properties of depth
(length), width and height. For example, virtual shopping malls, which integrate the advan-
tages of 3D virtual environments and traditional online websites, accommodate users in a
life-like shopping environment [42]. In these environments, users can effectively interact
with virtual products by viewing them from different angles, zooming in and out, touching
the surface and even trying them on. The virtual product experiences enable users to form
a direct, intuitive and concrete understanding of the quality and performance of products
and make better informed purchase decisions [43]. Examples of 3D datasets are the Flixter,
Netflix and CiteUlike datasets. Hence, the recommender system must be modeled in a way
to efficiently support such objects. The main objective of the approach is to introduce a gen-
eral framework for geometric DL on non-Euclidean domain for cross-domain recommender
systems. In this approach, a local representation learning is introduced into the structure of
deep learning techniques to effectively capture the local geometric and visual information
from the structure of the recommended 3D objects, which serves as the basis for 3D and
recommended searches. A kernel-based technique is also adopted and introduced into the
structure of the DL technique to map the complex structure of recommended objects into
high dimensional feature space to achieve an effective recognition result. The kernels serve
as a weighing function in building a high dimensional feature space, which makes it more
robust to geometric noise and results in a good computation outcome.

The proposed method could achieve an optimal dictionary to further enhance the
power of discriminability of recommended objects and enables the realization of geometric
DL representation of the 3D non-linear features. The D-GDL extracts visual and geometric
features from recommended objects using LCNN and LDCBN models for optimal and
efficient recognition performance. These models are pre-trained by depth image generation
and voxelization instead of using down-sampling techniques. This is achieved by passing
the extracted features through an improved kernel density estimator. With the extraction of
geometric features, recommended objects are transformed into voxel-like forms from mesh
and are almost like the original recommended object, which reduces the need for down-
sampling. The depth images are used as input features in the visual feature extraction
process, which also does not require down-sampling due to the multi-image representation
of recommended objects by way of projection. Most of the conversional approaches are
based on the Euclidean domain rather than the non-Euclidean domain. Even those that
are based on the non-Euclidean domain do not fully capture the local discriminative
and geometric information, which is very important for an optimal recognition result of
recommended objects. Kernel-based models achieve the desired result when the training
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samples are sufficient. Therefore, due to the complex nature of recommended objects,
it is necessary to work with some very large datasets since deep learning algorithms
perform well with such datasets. These give optimal outcomes in the capture of nonlinear
information for recognition of recommended objects.

D-GDL for cross-domain recommender systems, particularly in the non-Euclidean
domain, is proposed to address the challenges of recognition accuracy, efficiency and
scalability, geometric information recognition and discriminability of recommended objects
in the Euclidean domain. This technique is expected to demonstrate an outstanding
efficient recognition performance, taking into account the linear structure existing amongst
recommended objects with similar relationship category. To date, simulated results across
a number of datasets indicate a significant recognition accuracy result for recommended
objects content recognition. The objective function for our proposed approach, which is
based on a generalized CNNs for non-Euclidean domain, is as stated in Equation (7):

( f ∗ g)
(

xj
i

)
=

J

∑
j=1

Nj

∑
i=1

(
gj

i

)
Dj

(
xj

i

)
f +

J

∑
j=1

Nj

∑
i=1
||Bj

i

⊙
xj

i ||
2
2, (7)

s.t. 1Txj
i = 1 ∀i = 1, . . . , Nj, j = 1, . . . , J

where xj
i is any point i on the manifold belonging to the group j, and the patch operator

is denoted by Dj

(
xj

i

)
f , which is mapped into high-dimensional feature space. The local

sensitivity adaptor is represented by Bj
i , the dimensionality of the extracted patch and the

element-wise multiplicative operator is represented by
⊙

. The local sensitive adaptor is
used to enforce discriminability by helping in the capturing of essential local geometric
information, which may be hidden in the structure of recommended objects, for efficient
and effective recognition results.

LDCBN is an essential deep learning tool utilized to learn prevailing discriminative
features automatically as it belongs to a DL network and is unsupervised. Recommended
objects are very complex in nature topologically and have geometric variations. It is very
challenging to analyze them directly so they are firstly discretized into a regular grid using
its voxelized form as the input recommended objects to extract the geometric descriptor
using the LDCBN. Voxelization is the process of transforming recommended 3D objects
into voxel representations from the mesh form, which could be likened to the original
form of the recommended 3D object. This does not only detail the information about
the model’s surface but also the internal representations of the recommended objects.
This discretizes and lessens the complexity of the recommended model because of the
spatial relationship properties of recommended objects, leading to a substantial amount of
geometric information. This makes it simple for intrinsic geometric features to be extracted
with LDCBN. A recommended 3D matrix representation is used to realize the geometric
representations of the 3D shape with possibility dissemination. If a single voxel is placed
into the 3D mesh, its analogous matrix is then set to 1 otherwise zero. The 3D matrix then
serves as input in extracting the geometric descriptors. In our approach, the local-sensitivity
adaptor is introduced into the structure of the original convolutional deep belief Network
(CDBN) as an extension to support recommended objects.

Deep belief network is a suitable probabilistic principle for modelling joint probabilistic
distribution over pixels and labels. Nonetheless, it is a challenging task to extend the model
from 2D pixel data to 3D voxel data. This is because the volume size of a 3D voxel will be
much greater in size than an original image. In addition, a fully connected DBN involves a
lot of parameters, which makes the training of the model very challenging. As a result, we
propose the LDCBN by weight sharing to lessen the number of parameters used. Again,
unlike the conventional DL techniques, the pooling layers are ignored in our approach due
to uncertainties that may arise when features are being generated. The local-sensitivity
convolutional layer’s energy in the proposed model is as in Equation (8):
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where xj
i is any point (hidden unit) i on the manifold belonging to the group or feature

space j, the patch operator is denoted by Dj

(
xj

i

)
f , which is mapped into high dimensional

feature space, and the index of the visible units is denoted by l. The local sensitivity
adaptor is represented by Bj

i , the dimensionality of the extracted patch and the element-
wise multiplicative operator is represented by

⊙
. Each hidden unit in feature space j is

denoted by gj
i , the visible unit in the 3D voxel input is denoted by fl , the convolutional

filter is represented by Dj, cj and bl represents bias terms in hidden and visible units,
respectively. The local sensitive adaptor is used to enforce discriminability by helping in
the capturing of essential local geometric information, which may be hiding in the structure
of recommended objects, for efficient and effective recognition results. The proposed
approach is modeled around the theories of [44].

We could set a voxel grid of 45 × 45 × 45 to a 3D shape with three extra padding cells
in all dimensions to lessen the boundaries of the convolution objects. The labels are then
put forward to ascertain the standards of the variables. There are two (2) steps followed in
the training process of the proposed 3D LDCBN. These are layer by layer before-training
and generative refined-tuning processes. The initial four (4) layers are separately trained
during the before-training phase with a divergence algorithm described in [45], and a fast
persistence divergence is used to train the topmost layer [46]. The underlining hidden
activations serve as inputs into the next layer once the bottom layer is learned with their
weights settled. In the refined-tuning step, methods from past studies such as the wake-
sleep algorithm were adopted, where the wake phase utilizes the activations for learning of
positive signals and by propagating the data bottom-up. For the sleep phase, a tenacious
chain on the uppermost layer is maintained, and the data top-down section is propagated
to assemble the deleterious learning signal. This refined-tuning technique copycats the
generation and recognition performance of the model and functions well in principle. As
long as the weights of the entire networks have been learned, forward computation is
utilized to engender the geometric descriptor applying the input data of voxelization.

In analyzing recommended objects from the angle of view-based descriptors, the rec-
ommended model is transformed into varied images through various perspectives. In
principle, the images encompass as much information as possible from the recommended
model. During the course of generating our visual descriptor, 30 directions were used for
the translation of the recommended objects and further extract the visual features with
the proposed LCNN technique. The two (2) steps involved in the proposed LCNN are the
before-treatment of the recommended model and the assemblage of image depths. In the
first step, the highest polar distance is measured from the origin point to the surface of the
point after setting the origin point of the recommended object model. In the second stage,
depth images are assembled. From 30 vertices of a regular 3D shape, a type of 2D image is
rendered with its center as the origin.

The regular object is then revolved 15 times in order to make the features vigorous
against gyration. The gyration view is carefully set to ensure even distribution of the
cameras so that different view angles could be captured for the recommended 3D model.
The 30 vertices of the object generate considerable data able to provide significant informa-
tion but at a large computational cost. Each image is resized by rendering into 124 × 124
to remove with the out-layers and make the data more compact, which further augments
the feature learning with LCNN since it has an input range of 0 to 1, each dimension is
normalized using (0,1).

The images obtained from the descriptions thus far include suitable visual information
of the recommended 3D model and are used to extract visual features from recommended
objects for each image. After the features are extracted, we adopt the local-sensitivity
density estimator (LKDE) technique to reduce feature redundancy by selecting salient
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features and make our approach more discriminative. Our LCNN approach is as depicted
in Figure 1 and the layer-by-layer approach is as stated in Equation (9):

Fl = pool(sigmoid(Dl ∗ Fl−1 + bl)) + gl, (9)

where l denotes the layers, the bias parameter of the l − th is represented by bl , LKDE is
represented by gl and Dl represents the kernel of the convolution with the initial feature
map being F0 in the 2D images. The threshold function used here is the sigmoid function
and the pooling operator results in an activation of every nearest neighbor being considered.
The optimal pooling operator is seen as the pooling expression that derives the optimal
activation in the nearest neighbor with an invariance. The weight of the approach is
determined from back-propagation with input depth images of recommended objects and
their corresponding label information. LCNN features are derived for every depth image
after fully training the model.

In this section, we propose a novel feature fusion approach that combines extracted
multimodal data. The visual and geometric descriptors denote visual and spatial character-
istics, respectively, of recommended objects. Hence, for recommended objects, the two de-
scriptors complement each other and both geometric and visual feature information are
complex and extremely non-linear in nature. In our approach, to analogously associate
the two, high-level descriptor information is captured from feature descriptors. This is
done to visualize or bring to prominence, the high-level features with the properties of
the recommended model. This means the model becomes more discriminative to recom-
mended 3D models rather than with some specific modalities. Consequently, both the
high-level visual and geometric descriptors are extracted using DBNs just as described
in [44]. This is done through a greedy learning, layer-by-layer bottom-up approach, which
is acknowledged to be very effective. LRBM is then employed to analogously associate
both descriptor modalities in learning multi-modal feature fusion for recommended objects.
The function of LRBM is as stated in Equation (10):

E( f , g; θ) = −
F

∑
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G

∑
j=1

((gi)Dij

(
xj

i

)
f j −

F

∑
i=1
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∑
j=1

aj f j +
J

∑
j=1

Nj

∑
i=1
||Bj

i

⊙
xj

i ||
2
2, (10)

where aj and bi both denote biases, F and G represent numbers of visible and hidden layers,
respectively, and the interactions between the hidden gi and the visible fi layers are denoted
by Dij, with the 3D model parameter being denoted by θ = (w, a, b).

The LRBM is used to inherently combine the visual relationships of the 3D shape and
the spatial characteristics of the recommended 3D model, which makes it more robust
and discriminative due to the introduction of the local-sensitivity adaptor across the
models. In addition, the model effectively captures relevant local geometric features that
may be hidden with the structure of the complex non-linear recommended objects. This
demonstrates its more robust features, efficiency and accurate recognition performance.
The experimental results are discussed in detail in the next section of the paper.

4. Experimental Setup and Results Analysis

In this section, extensive experiments were conducted on three different real-world
datasets to demonstrate the recommendation effectiveness of our proposed D-GDL ap-
proach in comparison with some state-of-the-art baseline approaches.

4.1. Database Selection and Experiment Evaluation

To verify the effectiveness of the proposed D-GDL method, the performance of the
discriminative geometric deep learning approach for cross-domain recommender systems
is evaluated by comparison with the following six baseline approaches: A hinge-loss
based codebook transfer for cross-domain recommendation with non-overlapping data
(TCH) [2], A cross-domain recommendation approach based on topic modeling and on-
tology (TMO) [47], personalized transfer of user preferences for cross-domain recommen-
dation (PTUPCDR) [48], cross-domain recommendation to cold-start users via variational
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information bottleneck (CDRIB) [49], deep learning-based matrix factorization (DLMF) [50]
and heterogeneous multidomain recommender system through adversarial learning (HM-
Rec) [51]. All the experimental results were obtained by twenty-fold cross-validation.
The training samples were randomly selected from various video datasets, and the rest set
as test samples. In our experiments, four datasets were utilized from different real-world
settings as follows: Flixter, Netflix, CiteULike. These datasets were chosen taking into
consideration their different degrees of sparsity and scale to mimic the different practical
traits. Flixter is a social network platform, where users can rate movies and users can also
add friends or other users to create a social network. Two datasets, namely CiteULike-t and
CiteULike-a, were chosen from CiteULike [52]. CiteULike-t was selected independently
of CiteULike-a, which is mostly from [53]. The Netflix dataset also consists of movie titles
and ratings from Netflix challenge datasets. The detailed statistics of the datasets are as
presented in Table 1.

Table 1. Statistics of the selected datasets.

Netflix Flixster CiteULike-a CiteULike-t

Users 407,261 1,049,445 5551 7947

Items 9228 492,359 16,980 25,975

Ratings 15,348,808 8,238,597 0.22% 0.07%

As in the case of [34], users with fewer than three articles were excluded. It can be seen
in Table 1 that CiteULike-t has many more users and items than CiteULike-a. Additionally,
CiteULike-t is comparatively sparser as only 0.07% of its user-item matrix entries contain
rating compared with 0.22% for CiteULike-a. To maintain consistency with the implicit
feedback mechanisms based on the CiteULike datasets, only positive ratings of 5 were
extracted for testing and training with the Netflix dataset, and users with fewer than three
positive ratings were not considered either.

The preprocessing text information, which was the content of the items including the
plots of the movies, was extracted from the abstracts and the titles of the articles. The top S
discriminative words were selected according to their tf-idf values after eliminating the
stop words. The tf-idf values selected to represent the vocabularies S are respectively 8000,
20,000, 20,000 and 15,000 for the four datasets. Again, it can be seen in Table 1 that the
user-item-rating matrices of the CiteULike datasets are much sparser than those of Netflix,
and that the Netflix matrices are much sparser than those of Flixster. Hence, CiteULike
datasets can better evaluate the performance with high sparsity of the proposed model.
The datasets used have evolved over the years; however, there is no substantial difference
between the content and structure of these datasets.

Furthermore, to ascertain the effectiveness of the proposed approach, we also consid-
ered cross-domain datasets such as the Amazon and the Imhonet datasets. The Imhonet
dataset was sourced from an online Russian recommender site at Imhonet.ru. These give
users the opportunity to review and rate a large number of items, some of which are
3D and range across several domains including movies, architectural monuments, mo-
bile phones and books. The dataset also contains some elements of social networks with
blogs, friendship networks and comments. It is a unique dataset and is available across
many cross-domain recommendations because it gives explicit user feedback (ratings) with
varied domains. The Imhonet dataset considered against this research contains movies,
books, games and perfumes and it consists of the complete set of user ratings across the
four domains. The statistics of the Imhonet dataset are shown in Table 2 below. The last
dataset considered is the Amazon dataset. It contains two movie and book data items. It
consists of users and their ratings for items on a scale from 0 to 5 with varying degrees of
sparsity and scales. All the experimental results were realized by tenfold cross validation
in which training samples were selected randomly and the remaining data used as testing
samples for the various datasets. The first dataset has Amazon books as its source domain
and Amazon movies as its target domain. The second dataset uses Amazon movies as its
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source and Amazon books as its target domain. To better evaluate the proposed model,
sparse users with ratings for fewer than 20 items were removed from different domains.
The statistics of the two datasets are shown in Table 3.

Table 2. Statistics of the Imhonet datasets used.

Statistics Movies Books Games Perfumes

Users 426,897 3,622,448 72,307 19,717

Items 90,793 167,384 12,768 3640

Density 0.00073 0.00022 0.00140 0.00350

Number of records 28,281,946 13,438,520 1,324,945 253,948

Average no. of ratings per user 66.30 37.0771 18.2339 12.8796

Average no. of ratings per item 311.4992 80.2856 103.7708 69.7659

Table 3. Statistics of the Amazon Datasets Used.

Statistics Movie Book

Users 9043 38,032

Items 30,279 105,651

Ratings 1,264,244 3,637,313
All the rating information of entities in the target domain are randomly removed and are regarded as cross-domain
cold start users for making recommendations. The predictive ratings of the candidate articles are then ranked and
the first M items are recommended to the target user according to the formulation of Equation (11).

4.2. Evaluation Scheme and Settings

Similar to [35,36], P items related to each user were randomly chosen to form a
training set with the rest used as the test sample for each dataset. To conduct a comparative
analysis of the models under both dense and sparse settings, P was set to 1 and 10 in
our experiments, and for each value of P, the process was repeated randomly ten times
with different training sets with their average values reported. As has been discussed
extensively in [25,34,54–57], recall was utilized as the measure for performance since the
rating information implicitly is obtained as feedback [9,19]. In situations where zero entries
are obtained, it suggests that either the users are not aware of the item’s existence or are
not interested. Moreover, such precision is not appropriate for measuring performance. As
in many recommender systems, the predicted ratings of the candidate items are sorted and
the top M items are recommended to the target user. As a result, the recall M for each user
is then measured as:

Recall =
Number of items that the user likes among the Top M

total no of items that the user likes
(11)

Finally, the average recall value over all users is reported. The cutoff point of the mean
average precision (mAP) is also set at 500 for each user.

In the experiments, the optimal parameters were determined for all the baseline ap-
proaches (TCH, TMO, PTUPCDR, CDRIB, DLMF and GDL) using a validation set. The pa-
rameter was set to 10 for all the base models. With reference to TCH, TMO, PTUCPCDR and
CDRIB, the optimal performance of these models is achieved using a two-layer architecture.
For DLMF and GDL, the values of a, b and K were set to 1, 0.01 and 50, respectively. A grid
search was performed on the parameters with the training dataset split using ten-fold cross
validation. For the proposed D-GDL approach, the values of w, a, and b were set to 1, 0.01,
and 0.01, respectively, for all experiments. With regards to the Amazon and the Imhonet
datasets, 80% of the users were chosen to represent the training set while the remaining
20% used as the test user set with ten-fold user stratified cross-validation settings. The best
set of parameters was chosen using 20% of users for validation and 80% as their ratings
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from the training set. This procedure was repeated 10 times with the average performance
of the algorithm reported.

4.3. Experimental Results and Discussions

Figures A1–A8 in the Appendix A show the comparative results of the proposed
D-GDL approach and the baseline approaches against CiteULike-a, CiteULike-t, Netflix
and Flixster datasets, respectively, in both sparse and dense settings. The experiments were
conducted under sparse (p = 1) and dense (p = 10) settings. Figures A1–A4 indicate the
results in the sparse settings and those of the dense settings are shown in Figures A5–A8. It
can be seen from the results that, the proposed D-GDL approach gave the best results in
all experiments.

It can also be seen from Figures A1–A4 that, PTUPCDR is the best comparative ap-
proach, which came close to the results of the proposed method and was superior to DLMF,
TCH, TMO, CDRIB and GDL in all experiments despite the fact that all the comparative
approaches have deep architecture. GDL, DLMF and DMF outperforms DeepMusic in
the sparse settings for all datasets as shown in Figures A1–A4. The poor performance of
DeepMusic is due to overfitting and a lack of ratings. DeepMusic performs better than
DMF and GDL in the dense settings for all datasets as can be seen in Figures A5–A8. How-
ever, DeepMusic is outperformed by DLMF, CDL, CVAE and the proposed D-GDL for all
the four datasets. The proposed approach gave the best performance results compared
with all the comparative approaches for all datasets. Furthermore, the performance of the
models increases with an increase in K values both in the sparse and dense settings for all
algorithms. However, as can be observed in the figures, a larger K has a greater influence in
the dense settings than the sparse settings. This is because much guidance inference neural
networks for variational inference are offered for dense ratings than for sparse counterparts.
Thus, it requires much larger representation abilities to learn, which is the hallmark of any
deep learning-based approach.

Table 4 indicates the mAP results for the four datasets. It can be seen that the pro-
posed D-GDL approach gave the highest result against the other baseline approaches for
all datasets.

Table 4. mAP Results for the Four Datasets.

CiteULike-a CiteULike-t Netflix Flixster

D-GDL 0.0714 0.0651 0.0531 0.0492

CVAE 0.0662 0.0545 0.0454 0.0334

CDL 0.0526 0.0465 0.0326 0.0375

DLMF 0.0312 0.0267 0.0189 0.0249

DMF 0.0159 0.0176 0.0167 0.0183

GDL 0.0274 0.0104 0.0158 0.0273

DeepMusic 0.0160 0.0103 0.0187 0.0157

Figure A9 indicates variations in the recall rate with varying values for both Amazon
books and movies datasets. The black lines represent the Amazon movie domain as the
source domain and the books domain as the target domain, whilst the red line indicates the
Amazon books domain being used as the source with Amazon movies used as the target
domain. When the value 0 is chosen, it means the user preference of the target domain is
solely dependent on the user preference without the use of the source domain. When 1 is
chosen, it means that, the user preference depends entirely on the knowledge of the source
domain without taking into consideration the user preference information of the target
domain. Therefore, a compromise is chosen between the target and the source domain
because the user behavior characteristics of the target domain may not be well utilized. As
seen in Figure A9, the highest recall value when the movies domain is used as the source is
0.7 and is 0.6 when the books domain is used as the source.
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The evaluation results of the proposed D-GDL approach against the baseline ap-
proaches for the Amazon dataset are shown in Figure A10. The Amazon book dataset was
used in this case as the source domain with the Amazon Movie dataset used as the target
domain. As can be seen from the figure, the CVAE approach achieves the best performance
results amongst the baseline approaches, followed closely by the CDL technique. This
means that the structure of CVAE learns a better representation solution compared with the
other approaches. The proposed D-GDL had optimal performance against all the baseline
approaches. This could be due to the geometric deep learning structure of the proposed
approach considering the 3D items that the datasets may have contained. The proposed
D-GDL approach is able to outperform all the comparative approaches by a margin of
approximately 9.8% to 11.5% when a generative network of target users in a probabilistic
propagative latent variable is modelled.

The evaluation results of the proposed D-GDL approach against the baseline ap-
proaches for the Amazon dataset are shown in Figure A11. The Amazon Movie dataset
was used in this case as the source domain, with the Amazon Book dataset used as the
target domain. As can be seen from the figure, the CVAE approach achieves the best
performance amongst the baseline approaches, followed closely by the CDL technique.
This means that the structure of CVAE learns a better representation solution compared
with the other approaches. The proposed D-GDL had optimal performance against all
the baseline approaches. This could be due to the geometric deep learning structure of
the proposed approach considering the 3D items that the datasets may have contained.
The proposed D-GDL approach is able to outperform all the comparative approaches by
a margin of approximately 7.6% to 9.5% when a generative network of target users in a
probabilistic propagative latent variable is modelled. It could also be observed that, when
M is less, the performance of CVAE is very close to the proposed approach and widens
until it reaches M = 25 and widens again from there under sparse data target settings.

The average RMSE of the comparative approaches and the proposed D-GDL ap-
proach with two different percentages of training data on the four datasets of Imhonet
are presented in Table 5. It can be seen from Table 5 that, the proposed D-GDL approach
returned the lowest RMSE values in comparison with the baseline approaches with all the
four datasets. This demonstrates the effectiveness of the proposed D-GDL approach due to
the incorporation of discriminative information coupled with geometric deep learning into
the structure of the proposed D-GDL model. In addition, the results affirm the strength
of the proposed approach with RMSE metric. The CVAE, CDL and DLMF also achieved
relatively good performance results.

Table 5. Average RMSE of the comparative approaches using different percentages of training data
on the four datasets of Imhonet.

Models
Movies Books Games Perfumes

70% 95% 70% 95% 70% 95% 70% 95%

DMF 0.5883 0.5354 0.9735 0.9612 0.5895 0.5456 0.5515 0.5425

DLMF 0.5698 0.5215 0.9674 0.9554 0.5745 0.5318 0.5342

DeepMusic 0.5989 0.5673 0.9845 0.9786 0.5992 0.5693 0.5772 0.5682

GDL 0.5982 0.5513 0.9834 0.9765 0.6024 0.5623 0.5579 0.5496

CDL 0.5668 0.5198 0.9664 0.9478 0.5782 0.5298 0.5467 0.5335

CVAE 0.5435 0.5136 0.9579 0.9448 0.5535 0.5212 0.5367 0.5232

D-GDL 0.5212 0.5057 0.9244 0.8979 0.5323 0.5176 0.5136 0.5011

5. Conclusions and Recommendations for Future Work

In this paper, a discriminative geometric deep learning (D-GDL) algorithm for cross-
domain recommender systems is proposed. This research was conducted to handle effi-
ciently user recommendations in both single and cross-domain settings, particularly for
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objects in the non-Euclidean domain. The proposed D-GDL method achieves optimal dic-
tionary and further enhances the power of discriminability of recommended systems. This
thus enables the realization of geometric DL representation of the 3D non-linear features
in both sparse and dense settings to effectively deal with cold-start and sparsity issues.
The D-GDL extracts visual and geometric features from recommended objects using LCNN
and LDCBN models for an optimal and efficient recognition performance in both single
and cross-domain recommender systems. The models are pre-trained by depth image
generation and voxelization instead of using down-sampling techniques. This is achieved
by passing the extracted features through an improved kernel density estimator. With the
extraction of geometric features, the recommended objects are transformed into voxel-like
forms from mesh similar to the original recommended object, which eliminates the need for
down-sampling. The depth images are used as input features in the visual feature extrac-
tion process, which also undergoes down-sampling due to the multi-image representation
of recommended objects by way of projection. It can be seen from the experimental results
that incorporating kernel and geometric deep learning into the structure of representation
solutions for recommender systems inherently improves the performance accuracy com-
pared with other baseline deep learning approaches. Furthermore, the proposed method is
more computationally effective as a result, which increases its stability. Thus, close-form
solutions are derived from the learning network for both sparse and dense settings. We,
however, propose to incorporate weighted K-nearness neighbor into the structure of the
kernel discriminative sparse representation to enhance the power of classification and
recognition accuracy of recommender systems.
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Figure A1. Performance of D-GDL against the comparative approaches based on Recall vs. M for
CiteULike-a Dataset in the Sparse Setting.
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Figure A2. Performance of D-GDL against the comparative approaches based on Recall vs. M for
CiteULike-t dataset in the sparse setting.
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Figure A4. Performance of D-GDL against the comparative approaches based on Recall vs. M for
Flixster dataset in the sparse setting.
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Figure A5. Performance of D-GDL against the comparative approaches based on recall vs. M for
CiteULike-a dataset in the dense setting.
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Figure A6. Performance of D-GDL against the comparative approaches based on Recall vs. M for
CiteULike-t dataset in the dense setting.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 24 
 

 

Figure A7. Performance of D-GDL against the comparative approaches based on Recall vs. M for 

Netflix dataset in the dense setting. 

 

Figure A8. Performance of D-GDL against the comparative approaches based on Recall vs. M for 

Flixster dataset in the dense setting. 

50 100 150 200 250 300
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

NetFlix-Dense

R
e

c
a

ll

M

 DLMF

 GDL

 TCH

 TMO

 PTUPCDR

 CDRIB

 D-GDL

50 100 150 200 250 300
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Flixster-Dense

R
e

c
a

ll

M

 DLMF

 GDL

 TCH

 TMO

 PTUPCDR

 CDRIB

 D-GDL

Figure A7. Performance of D-GDL against the comparative approaches based on Recall vs. M for
Netflix dataset in the dense setting.
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Figure A8. Performance of D-GDL against the comparative approaches based on Recall vs. M for
Flixster dataset in the dense setting.
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Figure A9. Performance comparison of D-GDL for different values of a based on recall for the
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Figure A10. Performance results of the proposed method against the comparative approaches based
on Recall for the Amazon movie dataset.
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Figure A11. Performance Results of the proposed method against the comparative approaches based
on Recall for the Amazon book dataset.
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Figure A12. Performance of D-GDL against the comparative approaches based on Recall vs. M for
Imhonet dataset in the sparse setting.
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