
Citation: Mostafa, K.; Zisis, I.;

Moustafa, M.A. Machine Learning

Techniques in Structural Wind

Engineering: A State-of-the-Art

Review. Appl. Sci. 2022, 12, 5232.

https://doi.org/10.3390/

app12105232

Academic Editors: Tianyou Tao,

Yong Chen and Haiwei Xu

Received: 2 April 2022

Accepted: 19 May 2022

Published: 22 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Machine Learning Techniques in Structural Wind Engineering:
A State-of-the-Art Review
Karim Mostafa 1,*, Ioannis Zisis 1 and Mohamed A. Moustafa 2

1 CEE, College of Engineering and Computing, Florida International University, Miami, FL 33199, USA;
izisis@fiu.edu

2 CEE, College of Engineering, University of Nevada, Reno, NV 89557, USA; mmoustafa@unr.edu
* Correspondence: kmost002@fiu.edu

Abstract: Machine learning (ML) techniques, which are a subset of artificial intelligence (AI), have
played a crucial role across a wide spectrum of disciplines, including engineering, over the last
decades. The promise of using ML is due to its ability to learn from given data, identify patterns, and
accordingly make decisions or predictions without being specifically programmed to do so. This
paper provides a comprehensive state-of-the-art review of the implementation of ML techniques in
the structural wind engineering domain and presents the most promising methods and applications
in this field, such as regression trees, random forest, neural networks, etc. The existing literature was
reviewed and categorized into three main traits: (1) prediction of wind-induced pressure/velocities
on different structures using data from experimental studies, (2) integration of computational fluid
dynamics (CFD) models with ML models for wind load prediction, and (3) assessment of the
aeroelastic response of structures, such as buildings and bridges, using ML. Overall, the review
identified that some of the examined studies show satisfactory and promising results in predicting
wind load and aeroelastic responses while others showed less conservative results compared to the
experimental data. The review demonstrates that the artificial neural network (ANN) is the most
powerful tool that is widely used in wind engineering applications, but the paper still identifies other
powerful ML models as well for prospective operations and future research.

Keywords: machine learning; neural networks; wind engineering; wind-induced pressure; aeroelastic
response; computational fluid dynamics

1. Introduction

Artificial intelligence (AI) has evolved rapidly since its realization in the 1956 Dart-
mouth Summer workshop and has attracted significant attention from academicians in
different fields of research [1]. Machine learning (ML), which is a form and subset of AI, is
used widely in many applications in the area of engineering, business, and science [2]. ML
algorithms are capable of learning and detecting patterns and then self-improve their perfor-
mance to better complete the assigned tasks. In addition, they offer a vantage for handling
more complex approach problems, ensuring computational efficiency, dealing with uncer-
tainties, and facilitating predictions with minimal human interference [3]. Meanwhile, the
ML capabilities in performing complex applications with large-scale and high-dimensional
nonlinear data have been enhanced over the years due to the expansion of computational
capabilities and power [4].

There are four main types of learning for ML algorithms: supervised learning, unsuper-
vised learning, semi-supervised learning, and reinforcement learning [5,6]. In supervised
learning, the computer is trained with a labeled set of data to develop predictive models
through a relationship between the input and the labeled data (i.e., regression and classifi-
cation). In unsupervised learning, which is more complex, the computer is trained with an
unlabeled set of data to derive the structure present in the data by extracting general rules
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(i.e., clustering and dimensionality reduction). In semi-supervised learning, the computer
is trained with a mixture of labeled and unlabeled sets. In reinforcement learning, which is
so far the least common learning type, the computer acquires knowledge by observing the
data through some iterations that require reinforcement signals to identify the predictive
behavior or action (i.e., make decisions) [3,7].

ML is becoming more prevalent in civil engineering with numerous studies publishing
reviews and applications of ML in this field. While this paper focuses only on structural
wind applications as explained later, a few key general summary studies or reviews are
listed first for the convenience of the readers interested in broader applications. Adeli in [8]
reviewed the applications of artificial neural networks (ANN) in the fields of structural
engineering and construction management. The study presented the integration of neural
networks with different computing paradigms (i.e., fuzzy logic, genetic algorithm, etc.).
Çevik et al. [9] reviewed different studies on the support vector machine (SVM) method in
structural engineering and studied the feasibility of this approach by providing three case
studies. Similarly, Dibike et al. [10] investigated the usability of SVM for classification and
regression problems using data for horizontal force initiated by dynamic waves on a vertical
structure. Recently, Sun et al. [4] presented a review of historical and recent developments of
ML applications in the area of structural design and performance assessment for buildings.

More recently, ML applications have been involved in predicting catastrophic nat-
ural hazards. Recent studies investigated the integration of real-time hybrid simulation
(RTHS) with deep learning (DL) algorithms to represent the dynamic behavior of nonlin-
ear analytical substructures [11,12]. A comprehensive review was also provided by Xie
et al. [13] on the progress and challenges of ML applications in the field of earthquake
engineering including seismic hazard analysis and seismic fragility. Mosavi et al. [14]
demonstrated state-of-the-art ML methods for flood prediction and the most promising
methods to predict long- and short-term floods. Likewise, Munawar et al. [15] presented a
novel approach for detecting the areas that are affected by flooding through the integration
of ML and image processing. Moreover, ML applications were implemented in many other
fields related to civil engineering generally and structural engineering particularly [16–25],
structural damage detection [26–29], structural health monitoring [30–33], and geotechnical
engineering [34–39]. In addition, ML techniques, such as Gaussian regression, can be used
for numerical weather predictions [40]. Taking into consideration the above efforts to sum-
marize ML techniques and their applications for different civil engineering sub-disciplines,
no previous studies focused on structural wind engineering. Thus, the objective of this
paper is to fill this important knowledge gap by providing a thorough and comprehensive
review of ML techniques and implementations in structural wind engineering.

To better relate ML implementations, a brief overview of typical structural wind
engineering problems is provided first. Bluff body aerodynamics is associated with a high
level of complexity due to the several ways that wind flow interacts with civil engineering
structures. Wind flow at the bottom of the atmosphere is influenced by the roughness
of the natural terrain as well as by the built environment itself. As a result, eddies are
formed that vary in size and shape and travel with the wind creating the well-known
atmospheric boundary layer (ABL) flow characteristics [41]. Studying and understanding
the behavior of wind and its interaction with buildings and other structures is critical in the
analysis and design process. Generally, ABL wind tunnel testing is still the most reliable
tool to assess the aerodynamics of any structure and provide an accurate surface pressure
and/or aeroelastic response. Computational fluid dynamics (CFD) tools became more
popular and can perform well in predicting mostly mean, and in some cases peak, wind
flow characteristics and corresponding loads on structures. To address larger problems,
ML techniques were recently introduced in different applications in wind engineering but
mostly to support and expand experimental and numerical wind engineering studies.

Based on the above introduction and the witnessed increased interest to incorporate
ML techniques in structural wind engineering, a state-of-the-art review of the existing
literature is beneficial and timely, which motivates this study. The goal of this paper again
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is to present an overview of the state of knowledge for commonly used ML methods in
structural wind engineering as well as try to identify prospective research domains. We
focus on the different ML methods that were used mainly for predicting wind-induced
loads or aeroelastic responses. Therefore, eight major ML methods that were commonly
used in the previous studies are the core of this review. These are: (1) artificial neural
networks (ANN), (2) decision tree regression (DT), (3) ensemble methods (EM) that include:
random forest (RF), gradient boosting regression tree (GBRT) or alternatively referred to as
gradient boosting decision tree (GBDT), and XGboost, (4) fuzzy neural networks (FNN),
(5) the gaussian regression process (GRP), (6) generative adversarial networks (GAN),
(7) k-nearest neighbor regression (KNN), and (8) support vector regression (SVR).

The review and discussion following this introduction are divided into four sections.
The first section goes over the different ML methods that were previously used through an
overview of the formulation and the theoretical background for each method. This is to
provide a fair context before discussing their applications for prediction and classification
purposes. The second section is the core of this paper, which focuses on reviewing the
previous studies that are categorized and presented through three main applications:
(1) the prediction of wind-induced pressure/speed on different structures using data
from experimental models, (2) integration of CFD models with ML models for wind
loads prediction, and (3) assessment of the aeroelastic responses for two major types of
structures, i.e., buildings and bridges. The third section provides a summary of the ML
assessment tools and error estimation metrics based on the reviewed studies. The provided
summary includes a list of assessment equations that are provided for the convenience of
future researchers. The last section provides an overall comparison of the methods and
recommendations to pave the path for using ML techniques in addressing future challenges
and prospective research opportunities in wind engineering. It is important to note that
this study did not review the ML implementation in non-structural wind applications such
as wind turbines wake modeling, condition monitoring, blade fault detection, etc.

2. ML Methods Used in Structural Wind Engineering

This section discusses a brief theoretical background and an overview formulation for
the commonly used ML methods in structural wind engineering. The discussion includes
the eight classes that are mentioned before: ANN, FNN, DT, EM, GPR, GAN, KNN and
SVM. It is noted that ANN methods are found to be the most commonly used methods in
the area of focus, therefore, ANN is discussed in this section in more detail compared to
the other methods.

2.1. Artificial Neural Network (ANN)

The concept of ANN is derived from biological sciences, where it mimics the complex-
ity of the human brain in recognizing patterns through biological neurons, and thus imitates
the process of thinking, recognizing, making decisions, and solving problems [42,43]. ANN
was the most popular method found in the reviewed literature to predict wind-induced
pressures compared to other neural network methods (e.g., CNN or RNN). ANN is robust
enough to solve multivariate and nonlinear modeling problems, such as classification and
predictions. ANN is a group of layers that comprise multiple neurons at each layer and
is also known as a feed-forward neural network (FFNN). It is composed of input layers,
where all the variables are defined and fed into the hidden layers which are weighted
and fed into the output layers that represent the response of the operation. The ANN
architecture could be written as x-h-h-y which defines x number of inputs (variables), h
number of hidden layers, and y number of outputs (responses) as shown in Figure 1. Each
hidden layer comprises a certain number of neurons that gives a robust model, and this
could be achieved by training and trials.
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Figure 1. Feed-forward neural network architecture.

The hidden layers are composed of activation functions that apply different weights
to the input layer and transfer them to the output layers. The most common activation
functions are the nonlinear continuous sigmoid, the tangent sigmoid, and the logarithmic
sigmoid [44]. The weights are multiplied with the inputs and calibrated through a training
process between the input and output layers to reduce the loss. The training process is
applied using the Levenberg–Marquardt backpropagation algorithm, which belongs to
the family of the Multi-Layer Perceptron (MLP) network [45] and was originally proposed
by Rumelhart et al. [46]. It consists of two steps: feed-forward the values to calculate the
error, and then propagate back the error to previous layers [47,48]. The repeated iteration
process (epochs) of backpropagation network error continues and it keeps adjusting the
interconnecting weights until the network error is reduced to an acceptable level. Once the
most accurate solution is formed during the training process, the weights and biases are
fixed, and the training process stops. The Levenberg–Marquardt is a standard numerical
method which achieves the second-order training speed with no need to compute the
Hessian matrix and was demonstrated to be efficient with training networks up to a few
hundred weights [47,49]. Figure 2 shows the output signal for a generic neuron j in the
hidden layer h defined in Equation (1), where wh

ij is the weight that connects the ith neuron
of the current layer to the jth neuron of the following layer, xi is the input variable, b is
the bias associated with the jth neuron to adjust the output along with the weighted sum,
and f is the activation function that is usually adapted as either a tangent sigmoid or a
logarithmic sigmoid, Equations (2) and (3), respectively. The (RBF-NN) that was used first
by [50] is a function whose response either decreases or increases with the distance from a
center point [51,52].

yh
j = f (

n

∑
i = 1

wh
ijx

h
i + bk

j ) (1)

f (u) = −1 +
2

(1 + e−2u)
(2)

f (u) =
1

(1 + e−u)
(3)
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During the training process of BPNN, usually, the training is terminated when one of
the following criteria is first met: (i) fixing the number of epochs to a certain number, (ii) the
training error is less than a specific training goal, or (iii) the magnitude of the training
gradient is less than a specified small value (i.e., 1.0 × 10−10). The training error is the error
obtained from running the trained model back on the data used in the training process,
while the training gradient is the error calculated as a direction and magnitude during the
training of the network that is used to update the network weight in the right direction and
amount.

2.2. Fuzzy Neural Network (FNN)

The FNN approach combines the capability of neural networks with fuzzy logic
reasoning attributes [53,54]. The architecture of FNN is composed of an input layer, a
membership layer, an inference layer, and an output layer (defuzzification layer), as shown
in Figure 3. The membership and inference layers replace the hidden layers in the ANN.
The input layer consists of n number of variables and the inference layer is composed of m
number of rules, and accordingly n × m numbers of neurons exist in the membership layer.
The activation function adopted in the membership layer is a Gaussian function as shown
in Equation (4) and illustrated in Figure 3.

uij = exp(−
(
xi −mij

)2

σ2
ij

), 1 ≤ i ≤ n, 1 ≤ j ≤ m (4)

where uij is the value of the membership function of the ith input corresponding to the jth
rule, mij and σij are the mean and the standard deviation of the Gaussian function.

2.3. Decision Tree (DT)

The DT method is one of the supervised ML models where the algorithm assigns the
output through testing in a tree of nodes and by filtering the nodes (decision nodes) down
within the split sub-nodes (leaf nodes) to reach the final output. The decision trees may
differ in several dimensions such as the test might be multivariate or univariate, or the test
may have two or more outcomes, and the attributes might be numeric or categorical [55–57].
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2.4. Ensemble Methods (EM)

The EM methods include: (1) bagging regression tree that is also referred to as the
random forest (RF) algorithm, (2) gradient boosting regression tree (GBRT) or decision tree
(GBDT), and (3) extreme gradient boosting (XGB). All EM methods could be defined as a
combination of different decision trees to overcome the weakness that may occur in a single
tree such as sensitivity to training data and unstableness [58]. The forest generated by
the RF algorithm is either trained through bagging, which was proposed by Breiman [59],
or through bootstrap aggregating [60]. RF splits in each node n features among the total
m features, where n is recommended to be 1

3m or
√

2m [61]. It reduces the overfitting of
datasets and increases precision. Overfitting is overtraining the model which causes it to
be particular to certain datasets and lose the generalized aspect desired in ML models. The
DR and RF methods are commonly used in classification and regression problems.

GBRT, also known as GBDT as mentioned above, was first developed by Friedman [62]
and is one of the most powerful ML techniques deemed successful in a broad range
of applications [63,64]. GBDT combines a set of weak learners called classification and
regression tree (CART). To eliminate overfitting, each regression tree is scaled by a factor,
called learning rate (Lr) which represents the contribution of each tree to the predicted
values for the final model. The predicted values are computed as the sum of all trees
multiplied by the learning rate [65]. Lr with maximum tree depth (Td) determines the
number of regression trees for building the model [66]. Previous studies proved that smaller
Lr decreases the test error but increases computational time [63,64,67]. A subsampling
procedure was introduced by Friedman [60] to improve the generation capability of the
model using subsampling fraction (Fs) that is chosen randomly from the full date set to fit
the base learner.

Another popular method from the EM family is the XGBoost, or XGB as defined above,
which is similar to the random forest and was developed by Chen and Guestrin [68]. XGB
has more enhancement compared to other ensemble methods. It can penalize more complex
models by using both LASSO (L1) and Ridge (L2) regularization to avoid overfitting. It
handles different types of sparsity patterns in the data, and it uses the distributed weighted
quantile sketch algorithm to find split points among weighted datasets. There is no need
to specify in every single run the exact number of iterations as the algorithm has built-in
cross-validation that takes care of this task.

2.5. Gaussian Process Regression (GPR)

The GPR is a supervised learning model that combines two processes: (1) prior process,
where the random variables are collected, and (2) posteriori process, where the results are
interpolated. This method was introduced by Rasmussen [69] and developed on the basis
of statistical and Bayesian theory. GPR has a stronger generalization ability, self-calculates
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the hyper-parameters in GPR, and the outputs have clear probabilistic meaning [70]. These
advantages make the GPR preferable compared to BPNN, as it could handle complex
regression problems with high dimensions and a small sample size [69,71]. Background
theory and informative equations can be found in detail in the literature [69,70].

2.6. Generative Adversarial Networks (GAN)

The GAN technique was proposed by Goodfellow et al. [72], which is based on a
game theory of a minimax two players game. The GAN has attracted worldwide interest
in terms of generative modeling tasks. The purpose of this approach is to estimate the
generative models via an adversarial process. The approach is achieved by training two
models; first, a generative model G that capture all the distribution in the data, and second,
a discriminative model D that estimates the probability of a sample to come from the
training data rather than G. The G model defines the p model (x) and draws samples from
the distribution of p model. The input is placed as vector z and the model is defined by a
prior distribution p(z) over the vector z as a generator function G(z:θ(G)), where θ(G) is
a set of learnable parameters that define the generator’s strategy in the game [73]. More
details about the GAN models can be found in [72,73].

2.7. K-Nearest Neighbors (KNN)

The KNN algorithm is a supervised non-parametric classification machine learning
algorithm that was developed by Fix and Hodges [74]. The KNN does not perform any
training or assumption for storing the data, but it assigns the unseen data to the nearest set
of data used in the training process. According to the value of K, the algorithm started to
determine the class for the point to be assigned to according to the value K. For instance,
if K is 1, the unseen point will be assigned to a certain class according to the class of the
nearest point, or to the nearest five points in the case of K is 5, etc. The KNN is one of the
simplest ML classification algorithms and more details can be found in [75].

2.8. Support Vector Machine (SVM)

The SVM is a supervised learning method used for the purpose of classification
and regression that use kernel functions. The SVM algorithm is based on determining a
hyperplane in an N-dimensional space depending on the number of features that classify
the dataset. The optimum hyperplane for classification purposes is associated with the
maximum margin between the support vectors which are composed of the dataset nearest
to that hyperplane [76]. SVM was developed by Vapnik [77] and is considered to be one
of the most simple and robust classification algorithms. More details about SVM can be
found in [78].

3. Prior Studies on Applying ML Techniques in Structural Wind Engineering

A broad range of studies is summarized in this section based on the three categories
mentioned before, i.e., (1) prediction of wind-induced pressure/speed on different struc-
tures using data from experimental models, (2) integration of CFD models with ML models
for wind loads prediction, and (3) assessment of the aeroelastic responses for buildings
and bridges. Like several ML trends, the number of studies applying or implementing
ML for wind engineering has been increasing significantly, specifically in the last cou-
ple of years. This reveals the future potential within the wind engineering community
where ML techniques continue to gain more attention and interest from academicians and
researchers. More than 50% of the total number of studies that were considered in this
survey and started in the past 30 years were published only in the last two years (Figure 4),
which elucidates the importance of implementing ML techniques in this important and
critical domain.
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3.1. Prediction of Wind-Induced Pressure

Wind-induced pressure prediction forms an essential area in structural wind engi-
neering. In addition to field studies, different tools can be used for estimating wind loads
and pressure coefficients on surfaces, such as atmospheric boundary layer wind tunnels
(ABLWT) or CFD simulations. Both ABLWT and CFD are commonly used but in some cases
may require significant time, cost and expertise [79]. As in other fields of civil engineering,
studies using ML techniques have gained some momentum and wind engineers have
shown interest in identifying a reliable approach to predict wind speeds and or wind-
induced pressures for common wind-related structural applications. A summary of the key
attributes and ML implementation in the studies that were included in the review related
to the first category, i.e., the prediction of wind-induced pressures and time series from
experimental testing or databases, is first provided in Table 1, then each study is discussed
in more details in this section. The input variables used in each study are significant to the
desired output needed from training the ML model. It depends mainly on the architecture
of the model and the different inclusive parameters for each dataset. For predicting surface
pressure it may depend mainly on either the coordinates of the pressure taps, or slope of
the roof, wind direction, or building height. While for the aeroelastic responses of bridges,
the input variables mainly depend on parameters such as displacement, velocity and ac-
celeration response for the bridges. One of the studies used the dimension between the
buildings as input variables (Sx, Sy) to predict the interference effect on surface pressure.

Table 1. Summary of studies reviewed for wind-induced predictions.

Study
No. Ref. Surface Type Source of Data Input Variables Output Variables ML

Algorithm

1 [80] Flat roof Experimental data from BLWT Sampling time series Pressure time series ANN

2 [81] Gable roof Experimental data from BLWT x, y, z, and (θ) Cp and C̃p ANN

3 [82] Tall buildings Previous experimental studies Sx, Sy and h Interference effect RBFNN

4 [53] Flat roof Experimental data from BLWT x, y, z, and (θ)
Cp, C̃p and power
spectra of fluctuating
wind pressures

ANN

5 [83] Gable roof Experimental data from BLWT x, y, z, (θ), and (β) Cp and C̃p ANN

6 [84] High-rise building Experimental data from BLWT x, y, z and sampling
time series

Cp, C̃p and pressure
time series

POD-ANN

7 [85] Flat, gable and hip
roofs and walls

NIST database, and TPU
database D/B, (θ) and (β) CP ANN
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Table 1. Cont.

Study
No. Ref. Surface Type Source of Data Input Variables Output Variables ML

Algorithm

8 [86] Flat roof Experimental data from BLWT Terrain turbulence Cp, C̃p and C̃p ANN

9 [87] Flat roof Experimental data from BLWT x, y, z, (θ) and sampling
time series

Cp, C̃p and pressure
time series

GPR

10 [66] Circular cylinders Previous experimental studies Re, Ti and cylinder
circumferential angle Cp and C̃p

DT, RF, and
GBRT

11 [88] High-rise building TPU database (Sx and Sy) and (θ) Cp and C̃p

DT, RF,
GANN, and
XGBoost

12 [89] C-shaped building Experimental data from BLWT R/D, D/B, d/b and D/H Cp GMDH-NN

13 [90] Gable roof and walls NIST database and
DesignSafe-CI database x, y, z, and (θ) Cp and C̃p ANN

14 [91] Tall buildings Experimental data from BLWT (θ) Time series, power
spectra and Cp

ANN-
GANN-
WNN

15 [92] Gable roof TPU database CA, (θ) Cp, C̃p and C̃p and
time series

GBDT

Many methods can be used for predicting and interpolating multivariate modeling
problems, such as linear interpolation and regression polynomials. However, linear in-
terpolation cannot solve nonlinear problems and regression polynomials are common to
obtain empirical equations, but these empirical equations lack the generality to be used
with other data and a large number of variables [81]. Therefore, ML models generally and
ANN particularly have the advantages over the latter methods in complex problems.

Most of the studies have adopted the three-stage evaluation process of training, testing
and validation (TTV), which was proposed by [93] to build a robust ML model. The
cross-validation process comprises two steps: first, the dataset is randomly shuffled and is
divided into k subsets of similar sizes, then k − 1 sets are used for training and one set is
used as the testing set to assess the performance of the model. The stability and the accuracy
of the validation method depend mainly on the k value. Hence, the cross-validation method
is usually referred to as k-fold cross-validation [19,94] and is illustrated in Figure 5. Many
of the reviewed studies used the 10-fold CV method following Refaeilzadeh et al.’s [95]
recommendation of using k = 10 as a good estimate.

ANN is the most commonly used technique employed in the reviewed studies (see
Table 1). A study by Chen et al. [81] predicted the pressure coefficients on a gable roof using
ANN. This was one of the most important and early studies for implementing ML models
to predict wind-induced pressure on building surfaces. Later, Chen et al. [96] interpolated
pressure time series from existing buildings to different roof height buildings, and then
successfully extrapolated to other buildings with different dimensions and roof slopes
using ANN.

Zhang and Zhang [82] evaluated the interference wind-induced effects, that were
expressed by interference factor (IF) among tall buildings using radial basis function
neural networks (RBF-NN). The RBF-NN is a feed-forward type neural network, but the
activation function is different from those that are commonly used (i.e., tangent sigmoid
or a logarithmic sigmoid). The RBF-NN was used first by [50] and it is a function whose
response either decreases or increases with the distance from a center point [51,52]. It was
found that the predicted IF values were in very good agreement with the experimental
counterparts. The interference index due to shielding between buildings was predicted from
experimental data from wind tunnels using neural network models by English [97]. The
study found that the neural network model was able to accurately predict the interference
index for building configurations that have not been tested experimentally. The interference
index can be calculated by subtracting 1 from the shielding (buffeting) factor.
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Bre et al. [85] predicted the surface-averaged pressure coefficients of low-rise buildings
with different types of roofs using ANN. The predicted mean pressure coefficients, using
the Tokyo Polytechnic University (TPU) database [98] as input data, were reasonable when
compared to the “M&P” parametric equation [99] and the “S&C” equation [100]. Those
two equations are provided here (Equations (5) and (6), respectively) for convenience.
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(6)

where ai and bi are adjustable coefficients, θ is the wind angle, D/b is the side ratio,
G = ln(D/B), and Cp(0◦) is assumed by Swami and Chnadra [100] equal to 0.6 independent
from D/B.

Hu and Kwok [66] successfully predicted the wind pressures around cylinders using
different ML techniques for Reynolds numbers ranging from 104 to 106, and turbulence
intensities levels ranging from 0% to 15% using several data from previous literature. In
this particular study, the RF and GBRT performed better than the single regression tree
model. Fernández-Cabán et al. [86] used ANN to predict the mean, RMS and peak pressure
coefficients on low-rise building flat roofs for three different scaled models. The predicted
mean and RMS pressure coefficient show a very good agreement with the experimental
data, especially for the smaller-scale model. Hu and Kwok [88] investigated the wind
pressure on tall buildings under interference effects using different ML models. The models
were trained by different portions of the dataset ranging from 10% to 90% of the available
data. The results showed that the GANs model could predict wind pressures based on 30%
training data only, which may eliminate 70% of the wind tunnel test cases and accordingly
decrease the cost of testing. In addition, RF exhibited a good performance when the number
of grown trees, the n number of features and the maximum depth of the tree were set to
100, 3 and 25, respectively. Likewise, Vrachimi [101] predicted wind pressure coefficients
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for box-shaped obstructed building facades using ANN with a ±0.05 confidence interval
for a confidence level of 95%.

Tian et al. [90] focused on predicting the mean and the peak pressure coefficient on
a low-rise gable building using a deep neural network (DNN). This study presented a
strategy to predict peak pressure coefficients which is considered a more challenging task
when ML models are used. The strategy is used to predict first the mean pressure coefficient
and then use the predicted mean pressure as an input with other input variables to predict
peak pressure coefficients. This strategy is a reflection of the ensemble methods idea [58],
which is an effective method for solving complex problems with limited inputs. FNN
models were also successfully used in several studies [53,54,102] to predict mean pressure
distribution and power spectra of fluctuating pressures. The most significant feature of
FNN models is the capability of approximating any nonlinear continuous function to a
desired degree of accuracy. Thus, this family of methods can capture the non-linearity
relationship between the different input variables such as wind pressures, wind directions,
and coordinates of pressure taps.

Another technique that is based on the methodology of applying ANN was used by
Mallick et al. [92] in predicting surface mean pressure coefficients using equations for the
group method of data handling neural networks (GMDH-NN)—a derivative method from
ANN. The GMDH-NN is a self-organized system that provides a parametric equation to
predict the output and can solve extremely complex problems [103]. This ML algorithm
was established using the GMDH shell software [104] and it is based on the principle
of termination [104–106] to find the nonlinear relation between pressure coefficients and
the input variables. Termination is the process where the parameters are seeded, reared,
hybridized, selected, and rejected to determine the input variables. The study investigated
in detail the effect of curvature and corners on pressure distribution and obtained an
equation with different variables to predict the mean pressure coefficients. One major
difference between ANN and GMDH-NN is that the neurons are filtered simultaneously
based on their ability to predict the desired values, and then only those beneficial neurons
are fed forward to be trained in the following layer, while the rest are discarded.

One other method to predict wind-induced pressures and full dynamic response, i.e.,
time history on high-rise building surfaces, was proposed by Dongmei et al. [84] using a
backpropagation neural network (BPNN) combined with proper orthogonal decomposition
(POD-BPNN). POD was utilized by Armitt [107] and later by Lumley [108] to deal with
wind turbulence-related issues. The advantage of the POD-BPNN method over the ANN is
its capability to predict pressure time series for trained data with time parameter t. POD
is an approach that is based on a linear combination of a series of orthogonal load modes,
where the spatial distributed multivariable random loads can be reconstructed through
it and loading principle coordinates [109]. The orthogonal load modes are space-related
and time-independent, while the loading principal coordinates are time-varying and space-
independent. Before applying the BPNN, the wind loads were decomposed using POD
where the interdependent variables are transformed into a weighted superposition of
several independent variables. More details about the POD background theory can be
found in the literature [110–112]. The training algorithm applied in that study was the
improved global Levenberg–Marquardt algorithm, which can achieve a faster convergence
speed [113,114]. A similar study by Ma et al. [87] investigated the wind pressure-time
history using both gaussian process regression (GPR) and BPNN on a low-rise building with
a flat roof. The study concluded that GPR has high accuracy for time history interpolation
and extrapolation.

The wind pressure time series and power spectra were again recently simulated and
interpolated on tall buildings by Chen et al. [91] using three ML methods: BPNN, genetic
algorithm (GANN), and wavelet neural network (WNN). The WNN produced the most
accurate results within the three methods. The WNN combines the advantages of ANN
with wavelet transformation, which has time-frequency localization property and focal
features which are different from neural networks that have self-adaptive, fault tolerance,
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robustness and strong inference ability [115]. The reviewed literature showed that the
developed BPNN models could generalize the complex, multivariate nonlinear functional
relationships among different variables such as wind-induced pressures and locations of
pressure taps. Predicting pressure time series at different roof locations was achieved using
ANN and the robustness of the models was able to overcome the problems associated with
linear interpolation for low-resolution data.

A recent study [92] developed an ML model to predict the wind-induced mean and
peak pressure for non-isolated buildings, considering the interference effect of neighboring
structures using GBDT combined with the grid search algorithm (GSA). The study used
wind tunnel data from TPU for non-isolated buildings. The data were split by a ratio of 9:1,
where 90% of the dataset was used for training and 10% of the dataset was used for testing.
Four hyperparameters were considered in developing the ML model, two hyperparameters
for CART (i.e., maximum depth, d, for each decision tree, and a minimum number of
samples to split an internal node), and two hyperparameters for a gradient boosting
approach, i.e., learning rate (Lr) and number of CART models. The developed method
was shown to be a robust and accurate method to predict the wind-induced pressure
on structures under the interference effects of neighboring structures. Zhang et al. [116]
predicted the typhoon-induced response (TIR) on long-span bridges using quantile random
forest (QRF) with bayesian optimization instead of the traditional FE analysis. The QRF
with bayesian optimization was able to provide adequate probabilistic estimations to
quantify the uncertainty in predictions.

3.2. Integration of CFD with Machine Learning

Several studies integrated CFD simulations with ML techniques to predict either
the wind force exerted on bluff bodies or the aeroelastic response of bridges and other
flexible structures [117–122]. Chang et al. [123] predicted the peak pressure coefficients on
a low-rise building using 12 output data types from a CFD model such as mean pressure
coefficient, dynamic pressure, wind speed, etc. as input variables in the ANN model. The
predicted peak pressures were in good agreement with the wind tunnel data. Similarly,
Vesmawala et al. [124] used ANN to predict the pressure coefficient on domes of different
span to height ratios. The data were generated from the CFD model by developing a dome
and a wind flow through the model. The predicted mean pressure coefficients were used
for training the ML model with a maximum number of epochs of 50,000 to achieve the
specified error tolerance. There were three main inputs: the span/height ratio, the angle
measured vertically with respect to the vertical axis of the dome to the ring beam, and the
angle measured horizontally with respect to wind direction. The study used neuroscience
software in the model training and testing, and it was found that the BPNN predicted the
mean pressure coefficients accurately through different locations along the dome.

Bairagi and Dalui [125] investigated the effect of a setback in tall buildings by predict-
ing pressure coefficients along the building’s face. The study used ANN and Fast Fourier
Transform (FFT) to validate the wind-induced pressure on different setback buildings
predicted by CFD simulation models. The predicted wind pressures were validated before
using similar experimental data. The study showed that CFD was capable to predict similar
pressure coefficients to experimental data and showed that ANN was capable to predict
and validate these pressure coefficients. The Levenberg–Marquardt algorithm was used
as the training function, starting with 500 training epochs which were increased until the
correlation coefficient exceeded the 99th percentile. The model was trained using MATLAB
neural network toolbox [126].

A recent study [127] proposed a multi-fidelity ML approach to predict wind loads
on tall buildings by integrating CFD models with ML models. The study combined data
from a large number of wind directions using the computationally efficient Reynolds-
averaged Navier–Stokes (RANS) model with a smaller number of wind directions using
the more computationally intense Large Eddy Simulation (LES) method to predict the RMS
pressure coefficients on a tall building. The study utilized four types of ML models: linear
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regression, quadratic regression, RF, and DNN, with the latter being the most accurate.
In addition, a bootstrap algorithm was used to generate an ensemble of ML models with
accurate confidence intervals. This study used the Adam optimization algorithm [128] and
Rectified Linear Unit (ReLU) activation function [129,130] with a learning rate of 0.001 and
regularization strength of 0.01 to avoid overfitting. That was contrary to other studies that
used the Levenberg–Marquardt algorithm and tangent sigmoid or logarithmic sigmoid
activation functions and this is because the other studies used the ANN method of two or
less hidden layers, while the latter study used a DNN with three hidden layers.

To conclude this section, a summary of the attributes of the reviewed previous studies
that integrate ML applications with CFD is provided in Table 2.

Table 2. Summary of studies reviewed for integrating ML models with CFD simulation.

Study No. Ref. Surface Type Source of Data Input Variables Output Variables ML Algorithm

1 [123] Flat roof

CFD simulation

12 parameters C̃p ANN

2 [124] Spherical domes span/height ratio,
Π and ϕ

Cp ANN

3 [131] Box-girder bridge Disp., velocities,
and accelerations

Flutter and buffeting
responses ANN

4 [132] Bridges Response time
histories Motion-induced forces ANN

5 [125] Setback building (θ) Cp along the face, drag
and lift coefficients

ANN

6 [133] Bridges Displacements Deck vibrations LSTM

7 [120] Circular
Cylinders M (θ), U and L Vortex induced

vibrations DT, RF and GBRT

8 [127] Tall buildings (θ) C̃p LR-QR-RF-DNN

9 [134] Tall building Different nodes
on the surface Cp RF-GP-LR-KNN-DT-SVR

3.3. Aeroelastic Response Prediction Using ML

The prediction of aeroelastic responses for buildings and structures by using ML
models is also of interest to this review. The input that was used for the prediction of these
responses is either CFD simulations (Table 2) or physical testing databases (Table 3). Similar
to the previous two sections, Table 3 is meant to provide a summary of the attributes of
the key studies reviewed in this section that is concerned with using ML for aeroelastic
response prediction.

Chen et al. [135] used a BPNN that was built from a limited dataset of already existing
dynamic responses of rectangular bridge sections. The results indicated that the ANN
prediction scheme performed well in the prediction of dynamic responses. The authors
claimed that such an approach may reduce cost and save time by not using extensive wind
tunnel testing, especially in the preliminary design. Wu and Kareem [131] developed a
new approach utilizing ANN with cellular automata (CA) scheme to model the hysteretic
behavior of bridge aerodynamic nonlinearities in the time domain. This approach was
developed because the ANN is time-consuming until the ideal number of hidden layers
and neurons between the input and output are determined. By embedding the CA scheme,
which was originally proposed by [136] and later developed by [137] with ANN, the authors
of that study aimed to improve the efficiency of the ANN models. The CA scheme is an
approach that dynamically evolves in discrete space and time using a local rule belonging to
a class of Boolean functions. This scheme is appealing as it could simulate very complicated
problems with the simple local rule which is applied to the system consistently in space
and time. The activation function used in the ANN training was bipolar sigmoid as shown
in Equation (7). The CA scheme is an indirect encoding scheme that is based on the CA
representative and could be designed using two cellular systems, i.e., the growing cellular
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system and the pruning cellular system [138]. The ANN configuration based on the CA
scheme was examined using a fitness index that is defined in Equation (8), which is a
function of learning cycles and connections of ANN [139].

f (u) =
2

1 + exp(−u)
− 1 (7)

fi =
1(

connij + connjk

)
cyc

(8)

Table 3. Summary of studies reviewed for aeroelastic response.

Study
No. Ref. Surface Type Source of Data Input Variables Output Variables ML Algorithm

1 [135] Bridges Experimental data from BLWT D/B Flutter derivatives
(H1 and A2) ANN

2 [140] Tall buildings Experimental data from BLWT Vb and top floor
displacements Column strains CNN

3 [141] Tall buildings IndianWind Code H, B, L, Vb and TC Across wind shear
and moment ANN

4 [142] Long span bridge Full scale data Cross spectral density Buffeting response ANN and SVR

5 [143] Box girders Experimental data from BLWT Vertex coordinates
(mi, ni)

Flutter wind speed SVR, ANN, RF
and GBRT

6 [144] Rectangular
cylinders Previous experimental studies Ti, B/D and Sc Crosswind vibrations DT-RF-KNN-

GBRT

7 [145] Cable roofs Experimental data from BLWT
and (FEM) 11 parameters Vertical

displacements ANN

8 [146] Tall buildings WERC database-TU Terrain roughness,
aspect ratio and D/B.

Crosswind force
spectra LGBM

The dynamic response of tall buildings was studied by Nikose and Sonparote [141,147]
using ANN and the proposed graphs were able to predict the along- and across-wind
responses in terms of base shear and base bending moments according to the Indian Wind
Code (IWC). Both studies found that the back propagation neural network algorithm was
able to satisfactory estimate the dynamic along- and across-wind responses of tall buildings.
Similarly, different ML models were applied by Hu and Kwok [144] based on DT, KNN
regression, RF, and GBRT to predict four types of crosswind vibrations (i.e., over-coupled,
coupled, semi-coupled and decoupled) for rectangular cylinders. The data used in training
and testing processes were extracted from wind tunnel data. It was found that GBRT
can accurately predict crosswind responses which can supplement wind tunnel tests and
numerical simulation techniques. One of the input variables used in that study was the
Scruton number (Sc).

Oh et al. (2019) [140] studied the wind-induced response of tall buildings using CNN
and focused on the structural safety evaluation. The trained model predicted the column
strains using wind tunnel data such as wind speed and top floor displacements. The
architecture of the trained model is composed of the input layer, two convolutional layers,
two pooling layers, one fully connected layer, and the output layer. The input map forms
the convolutional layer through convolution using the kernel operator. The ML-based
model was utilized to overcome the uncertainties in the material, geometric properties
and stiffness contribution of nonstructural elements which make it difficult to construct a
refined finite element model.

Li et al. [133] used LSTM—originally proposed by Hochreiter and Schmidhuber [148]—
to predict the nonlinear unsteady bridge aerodynamic responses to overcome the increasing
difficulties that exist in the gradient-based learning algorithm in the recurrent neural
network (RNN) face. The RNN was developed to introduce the time dimension into the
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network structure, and it was found to be capable of predicting a full-time series where
nonlinear relation exists between input and output. The study used displacement time
series as input variables, and by weighting these time series, both the acceleration and
velocity were obtained. The LSTM model was able to calculate the deck vibrations (i.e.,
lift displacement and torsional angle) under the unsteady nonlinear wind loads. Hu and
Kwok [136] investigated the vortex-induced vibrations (VIV) of two circular cylinders with
the same dimensions but staggered configurations, using three ML algorithms: DT, RF, and
GBRT. The two cylinders were modeled first into a CFD simulation, and the mass ratio, wind
direction, the distance between cylinders, and wind velocity were used as input variables.
The GBRT algorithm was the most accurate in predicting the amplitude of the upstream
and downstream vibration. Abbas et al. [132] employed ANN to predict the aeroelastic
response of bridge decks using response time histories as the input variables. The predicted
forces were compared with CFD findings to evaluate the ANN model. The ANN model
was also coupled with the structural model to determine the aeroelastic instability limit of
the bridge section, which demonstrated the potential use of this framework to predict the
aeroelastic response for other bridge cross-sections.

More recently, surrogate models have been used widely in different areas related to
structural wind engineering [149–152]. One type of surrogate model is using the aid of
finite element models (FEM) to obtain an output that can be used as an input in the trained
model of the ML. Chen et al. [153] used a surrogate model in which the ANN was applied
to the FE model to update the model parameter for computing the dynamic response
of a cable-suspended roof while using the wind loads from full-scale measurements for
three typhoon events in three consecutive years from 2011 to 2014. Luo and Kareem [154]
proposed a surrogate model using a convolutional neural network (CNN) for systems
with high dimensional inputs/outputs. Rizzo and Caracoglia [145] predicted the wind-
induced vertical displacement of a cable net roof using ANN. The trained model used
wind tunnel pressure coefficient datasets and FEM wind-induced vertical displacement
datasets. The surrogate model showed that it can successfully replicate more complex
geometrically nonlinear structural behavior. Rizzo and Caracoglia [155] used surrogate
flutter derivate models to predict the flutter velocity of a suspension bridge. The ANN
model was trained using the critical flutter velocities dataset by calculating the flutter
derivatives experimentally. The model successfully generated a large dataset of critical
flutter velocities. In addition, surrogate modeling could analyze the structural performance
of vertical structures under tornado loads by training fragilities using ANN [156,157].

Lin et al. [146] used a light gradient boosting machine (LGBM) method, which is an
optimized version of the GBDT algorithm proposed by Ke et al. [158], with a clustering
algorithm to predict the crosswind force spectra of tall buildings. This optimized algorithm
combined two techniques in training the models: the gradient base one side sampling
(GOSS) and the exclusive feature bundling (EFB). The results showed that the proposed
method is effective and efficient to predict the crosswind force spectrum for a rectangular
tall building.

Liao et al. [143] used four different ML techniques (i.e., SVR, ANN, RF, and GBRT)
to predict the flutter wind speed for a box girder bridge. The ANN and GBRT models
accurately predicted the flutter wind speed for the streamlined box girders. The buffeting
response of bridges can be predicted analytically using buffeting theory. However, some
previous studies [159–163] have shown inconsistency between full-scale measured response
and buffeting theory estimates. Thus, Castellon et al. [142] trained two ML models (ANN
and SVR) to estimate the buffeting response speed using full-scale data from the Hardanger
bridge in Norway. The two ML models predicted the bridge response more accurately
than the buffeting theory when compared to the full-scale measurement. Furthermore,
the drag force of a circular cylinder can be reduced by optimizing the control parameter
such as feedback gain and the phase lag using neural networks by minimizing the velocity
fluctuations in the cylinder wake [164].
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4. Summary of Tools of Performance Assessment of ML Models

The performance of the ML models in wind engineering applications throughout the
reviewed literature was assessed through at least one or more forms of different standard
statistical error and standard indices. It is important for any ML model to evaluate the
performance of the model using some error metrics or factors. Thus, this section aims
to provide future researchers with a summary of all the tools and equations that have
been used up to this date in structural wind engineering ML applications along with an
assessment of which tools are more appropriate for the applications at hand. The compiled
list of metrics, or factors, calculates the error to evaluate the accuracy between the ML
predicted data and a form of ground truth such as experimental data or independent sets
of data that were not used in training among others. There is always a lack of consensus on
the most accurate metric that can be used. Nonetheless, this section attempts to provide
more guidance on which methods are preferred based on the surveyed studies.

Several error metrics were used throughout the reviewed literature which include:
Akaike information criterion (AIC), coefficient of efficiency (Ef), coefficient of determination
(R2), Pearson’s correlation coefficient (R), mean absolute error (MAE), mean absolute
percentage error (MAPE), mean square error (MSE), root mean square error (RMSE), scatter
index (SI), and sensitivity error (Si). For the convenience of the readers and for completeness,
the equations used to express each of these error metrics for assessing predicted data (pi)
against measured data (mi) are summarized below (Equations (9)–(18)). For N number of
data points (e.g., N could be the number of pressure tabs used to provide experimental
data), some of the error calculation equations also use average or mean values for predicted
data (p) as well as measured data (m).

AIC = N log(
1
N

N

∑
i
(pi −mi)

2) + 2k (9)

E f = 1− ∑N
i |mi − pi|

∑N
i pi

(10)

R2 =
∑N

i (mi −m)(pi − p)√
∑N

i (mi −m)2 ∑N
i (pi − p)2

(11)

R =

√√√√ ∑N
i (mi −m)(pi − p)√

∑N
i (mi −m)2 ∑N

i (pi − p)2
(12)

MAE =
1
N

N

∑
i
|mi − pi| (13)

MAPE =
1
N ∑N

i

(
pi −mi

pi

)
× 100% (14)

MSE =

√
1
N ∑N

i (
pi −mi

mi
)

2
(15)

RMSE =

√
1
N ∑N

i (pi −mi)
2 (16)

SI =

√√√√∑N
i [(pi − p )− (mi −m)]2

∑N
i (mi)

2 (17)

Si =
Xi

∑n
i = 1 Xi

× 100; where Xi = fmax (xi)− fmin (xi), (18)
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where fmax (xi ) and fmin (xi), are the corresponding maximum and minimum values for
the predicted output over the ith input factor while using the mean values for the other
factors.

In general, MSE was employed in most of the studies and is considered one of the
most common error metrics for pressure distribution prediction, but it is not always an
accurate error metric. The MSE accuracy decreases when the pressure among the walls is
included in the prediction because walls might introduce a pressure coefficient near zero
which may cause a great rise as the normalizing denominator [90]. Nevertheless, MSE is
generally stable when used in RF models when the number of trees reaches 100 [88]. The
RMSE is not affected by the near-zero pressure coefficient as with MSE because it does not
include a normalization factor in the calculation. Nevertheless, the lack of normalization is
considered a limitation for this metric in the cases where the scale of pressure coefficients
changes [90]. The accuracy of some metric errors increases when their values approach one
(i.e., coefficient of determination-R2), which means that the predicted data are close to the
experimental data, and the accuracy of some others increases when their values are close to
zero (i.e., root mean square error-RMSE).

The correlation coefficient, R, is considered a reliable approach for estimating the
prediction accuracy by measuring how similar two sets of data are, but its limitation is
that it does not reflect the range nor the bias between the two datasets. The coefficient of
efficiency, E, corresponds to the match between the model and observed data and can range
from−∞ to 1, and a perfect match corresponds to E = 1 [89]. AIC is a mathematical method
used to evaluate how the model fits the trained data and this is an information criterion
used to select the best-fit model. One other error metric that has not been commonly used in
the literature is the SI normalized measure of error, where a lower SI value indicates better
performance for the model. Besides the error metrics that assess the performance level of
the model, other factors are used to indicate the effect of input variables on the output. The
most common example is the sensitivity analysis error percentage (Si) (Equation (18)) which
computes the contribution of each input variable to the output variable [165–167]. The Si
is an important factor to determine the contribution of each input value, especially when
different inputs are used in the ML model training, which could be of great significance for
informing and changing the assigned weight of neurons in neural networks.

Overall, it is important to note that each error metric or factor usually conveys specific
information regarding the performance of the ML model, especially in the case of wind
engineering applications (due to variation of wall versus roof pressures for instance), and
most of these metrics and factors are interdependent. Thus, our recommendation is to
consider the following factors together: (1) use R2 to assess the similarity between the actual
and predicted set; (2) use MSE when the model includes the prediction of roof surface
pressure coefficients only without walls, but use either MAPE or RMSE when pressure
coefficients for walls’ surfaces are included in the model; (3) use AIC to select the best fit
model in case of linear regression. This recommendation is to stress the fact that using
several metric errors together is essential to assess the performance of ML models for
structural wind engineering as opposed to only relying on a single metric.

5. Discussion and Conclusions

As in any other application, the quantity and the quality of data is the main challenge
in successfully implementing ML models in the broader area of structural wind engineering.
It is important to mention that the quality of the dataset used for training is as important
as the quantity of data. The measurements usually may involve some anomalies such
as missing data or outliers, thus removing the outliers is essential for the accuracy and
robustness of the model [168,169]. ML algorithms are data-hungry processes that require
thousands if not millions of observations to reach acceptable performance levels. Bias in
data collection is another major drawback that could dramatically affect the performance of
ML models [170]. To this end, some literature recommends that the number of datasets shall
not be taken less than 10 times the number of independent variables, according to 10 events
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per variable (EPV) [171]. Meanwhile, K-means clustering was used in many different
studies due to its ability to analyze the dataset and recognize its underlying pattern. Most
of the ML techniques need several trials and experiments through the validation process to
develop a robust model with high accuracy prediction levels. For instance, whenever ANN
is used, several trials are conducted for training purposes in terms of choosing the number
of hidden layers and the number of neurons in each layer.

The ANN method is not recommended for datasets with a small sample size because
this would achieve double the mean absolute error (MAE) compared to other ML tech-
niques [134]. ANN is capable of learning and generalizing nonlinear complex functional
relationships via the training process, but there is currently no theoretical basis for deter-
mining the ideal neural network configuration [81]. The architecture of ANN and training
parameters cannot be generalized even within data of similar nature [141]. Generally,
one hidden layer is enough for most problems, but for very complex, fuzzy and highly
non-linear problems, more than one hidden layer (node) might be required to capture the
significant features in the data [172]. The number of hidden nodes is determined through
trials and in most cases, this number is set to no more than 2n + 1, where n is the number of
input variables [173]. In addition, a study by Sheela and Deepa [174] reviewed different
models for calculating the number of hidden neurons and developed a proposed method
that gave the least MSE compared to the other models. The proposed approach was im-
plemented on wind speed prediction and was very effective compared to other models.
Furthermore, a general principle of a ratio of 3:1 or 3:2 between the first and second hidden
nodes provides a better prediction performance compared to other combinations [175].
Generally, a robust neural network model can be built of two hidden layers and ten neurons
and will give a very reasonable response.

ANN also appears to have a significant computational advantage over a CFD-based
scheme. In ANN, the computational work is mainly focused on identifying the proper
weights in the network. Once the training phase is completed, the output of the simulated
system could be obtained through a simple arithmetic operation with any desired input
information. On the other hand, in the case of a CFD scheme, each new input scenario
requires a complete reevaluation of the fluid–structure interaction over the discretized
domain.

From the review of the literature, it was also apparent that ANN has weighted ad-
vantages over other ML methods. However, there are some challenges accompanying
implementing ANN in certain types of wind engineering applications. ANN is problematic
in predicting the pressure coefficients within the leading corner and edges due to the sepa-
ration which is accompanied by high rms pressure coefficient values and corner vortices.
This may be eliminated by training datasets of full- or large-scale models that contain
high-resolution pressure tapped areas. It is important to note that whenever the data are
fed into a regression model or ANN model (training, validation or testing process), all the
predictors are normalized between [−1, 1] to condition the input matrix. In the case of
implementing ANN models, the Levenberg–Marquardt algorithm and tangent sigmoid
or logarithmic sigmoid activation functions shall be used. On the contrary, the Adam
optimization algorithm and Rectified linear unit activation function shall be used whenever
a DNN model (i.e., three or more hidden layers) is used as the ML technique.

The literature review revealed that there are selected ML techniques that might not be
as popular as ANN yet but with potential for future wind engineering applications and
specific structural wind engineering problems. Less common ML methods, such as the
wavelet neural network (WNN), are gaining increasing attention due to their advantage
over ANN and other models in terms of prediction accuracy and good fit [176]. In addition,
wavelet analysis is becoming popular due to its capacity to reveal simultaneous spectral and
temporal information within a single signal [177]. Other ML techniques such as DL can be
used as a probabilistic model for predictions based on limited and noisy data [178]. GANs
models can be used in structural health monitoring for damage detections in buildings
using different images for damage that occurred during an extreme wind event. BPNN
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and GRNN were used to acquire the missing data due to the failed pressure sensors while
testing [179]. The GPR has high accuracy for time history interpolation and extrapolation
and in the same context, the WNN predicts the time series accurately compared to other
methods. Surrogate models were proved to be a powerful tool to integrate both FEM
with ML models which could solve complex problems, such as the dynamic response of
roofs and bridges while using the wind loads from physical testing measurements and can
replicate more complex geometrically nonlinear structure behavior.

Ensemble methods have shown good results in predicting wind-induced forces and
vibrations of structures. Due to the time-consuming and cost-prohibitive nature of con-
ducting a lot of wind tunnel testing, ML models such as DT, KNN, RF and GBRT are
found to be efficient [144], and in turn, recommended for accurately predicting crosswind
vibrations. The GBRT specifically can accurately predict crosswind responses when it is
needed to supplement wind tunnel tests and numerical simulation techniques. ANN and
GBRT are found to be the ideal ML models for wind speed prediction. Moreover, RF and
GBRT are found to predict wind-induced loads more accurately when compared to DT.
GBDT is preferable to be used over ANN in the case of a small amount of input data, as
ANN requires a large amount of input data for an accurate prediction as explained above.
Predicting wind gusts, which has not been a common application in the reviewed work in
this study, can be achieved accurately using ensemble methods or neural networks and
logistic regression [180–185].

If only wind tunnel testing is considered, the wind flow around buildings, which
provides deep insight into the aerodynamic behavior of buildings, is usually captured using
particle image velocimetry (PIV). However, measuring wind velocities at some locations is
a challenge due to the laser-light shielding. In such cases, DL might be used to predict these
unmeasured velocities at certain locations as proposed in previous work [186]. Tropical
cyclones and typhoons’ wind fields can be predicted using ML models using the storm
parameters such as spatial coordinates, storm size and intensity [187,188].

Overall, it was demonstrated through this review that ML techniques offer a powerful
tool and were successfully implemented in several areas of research related to structural
wind engineering. Such areas that can extend previous work and continue to benefit from
ML techniques are mostly: the prediction of wind-induced pressure time series and overall
loads as well as the prediction of aeroelastic responses, wind gust estimates, and damage
detection following extreme wind events. Nonetheless, other areas that can also benefit
from ML but are yet to be explored more and recommended for future wind engineering
research include the development and future codification of ML-based wind vulnerability
models, advanced testing methods such as cyber-physical testing or hybrid wind simulation
by incorporating surrogate and ML models for geometry optimization, wind-structure
interaction evaluation, among other future applications. Finally, the physics-informed ML
methods could provide a promising way to further improve the performance of traditional
ML techniques and finite element analysis.
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Abbreviations

Nomenclature
x Machine learning input variable
y Machine learning output
h Neural network hidden layer
xh

j Input for a generic neuron
wh

ij Weight of a generic connection between two nodes
bk

j Bias of a generic neuron
yh

j Output for a generic neuron
f (u) Transfer function
uij Value of membership function
mij Mean of the Gaussian function
σij Standard deviation of the Gaussian function
L1 LASSO regularization
L2 Ridge regularization
pi Predicted output
mi Measured output
Si Normalized measure for error
θ Wind direction
β Roof slope
D/B Side ratio
x, y, z Pressure taps coordinates
Re Reynolds number
Ti Turbulence intensity
Sx, Sy Interfering building location
R/D Curvature ratio
d/b Side ratio without curvature
D/H Height ratio
h Building height
Sc Scruton number
M Mass ratio
L Distance between the centerline of the cylinders
U Reduced velocity
H1 Flutter Derivatives (vertical motion)
A2 Flutter Derivatives (torisonal motion)
mi, ni Vertex coordinates
L Length of the building
Vb Wind velocity
TC Terrain category
CP Mean pressure coefficient
C̃p Peak pressure coefficient
C̃p Root mean square pressure coefficient
ϕ The angle measured horizontally with respect to wind direction

Π
The angle measured vertically with respect to the vertical axis of
the dome to the ring beam.

CA Neighboring area density
Abbreviations
ABLWT Atmospheric boundary layer wind tunnel
AIC Akaike information criterion
ANN Artificial neural network
CFD Computational fluid dynamics
CNN Convolutional neural networks
DL Deep learning
DNN Deep neural network
DT Decision tree regression
Ef Coefficient of efficiency
FFNN Feed-forward neural network
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FNN Fuzzy neural networks
GAN Generative adversarial networks
GANN Genetic neural networks
GBRT Gradient boosting regression tree
GMDH-NN Group method of data handling neural networks
GPR Gaussian process regression
KNN K-nearest neighbor regression
LES Large eddy simulation
Lr Learning Rate
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
ML Machine learning
MSE Mean square error
POD-BPNN Proper orthogonal decomposition-backpropagation neural network
R Pearson’s correlation coefficient
R2 Coefficient of determination
RANS Reynolds-averaged Navier–Stokes
RBF-NN Radial basis function neural networks
ReLU Rectified liner unit
RF Random forest
RMS Root mean square
RMSE Root mean square error
RNN recurrent neural networks
RTHS Real-time hybrid simulation
SI Scatter index
SVM Support vector machine
VIV Vortex induced vibration
WNN Wavelet neural network
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