
����������
�������

Citation: Alsolai, H.; Roper, M.

The Impact of Ensemble Techniques

on Software Maintenance Change

Prediction: An Empirical Study. Appl.

Sci. 2022, 12, 5234. https://doi.org/

10.3390/app12105234

Academic Editor: Eui-Nam Huh

Received: 27 March 2022

Accepted: 17 May 2022

Published: 22 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

The Impact of Ensemble Techniques on Software Maintenance
Change Prediction: An Empirical Study
Hadeel Alsolai 1,* and Marc Roper 2

1 Department of Information Systems, College of Computer and Information Sciences,
Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2 Computer and Information Sciences, University of Strathclyde, Glasgow G1 1XQ, UK;
marc.roper@strath.ac.uk

* Correspondence: haalsolai@pnu.edu.sa

Abstract: Various prediction models have been proposed by researchers to predict the change-
proneness of classes based on source code metrics. However, some of these models suffer from
low prediction accuracy because datasets exhibit high dimensionality or imbalanced classes. Recent
studies suggest that using ensembles to integrate several models, select features, or perform sampling
has the potential to resolve issues in the datasets and improve the prediction accuracy. This study
aims to empirically evaluate the effectiveness of the ensemble models, feature selection, and sampling
techniques on predicting change-proneness using different metrics. We conduct an empirical study
to compare the performance of four machine learning models (naive Bayes, support vector machines,
k-nearest neighbors, and random forests) on seven datasets for predicting change-proneness. We
use two types of feature selection (relief and Pearson’s correlation coefficient) and three types of
ensemble sampling techniques, which integrate different types of sampling techniques (SMOTE,
spread sub-sample, and randomize). The results of this study reveal that the ensemble feature
selection and sampling techniques yield improved prediction accuracy over most of the investigated
models, and using sampling techniques increased the prediction accuracy of all models. Random
forests provide a significant improvement over other prediction models and obtained the highest
value of the average of the area under curve in all scenarios. The proposed ensemble feature selection
and sampling techniques, along with the ensemble model (random forests), were found beneficial in
improving the prediction accuracy of change-proneness.

Keywords: change-proneness; ensemble feature selection; ensemble sampling; prediction models;
software maintenance; source code metrics

1. Introduction

Numerous changes are applied to software systems during their development and
maintenance, and predicting those classes that have a higher chance of being subjected to
change in the future is a fundamental step in controlling and managing software develop-
ment and in the creation of successful software products. Additionally, an early prediction
of those changes assists software project managers and practitioners to manage resources
and support decision-making [1]. Consequently, numerous prediction models have been
created to predict change-proneness based on various source code metrics.

Change-proneness is an essential external quality attribute that can impact on the costs
of maintenance and the quality of source code [2]. This paper considers change-proneness
as a dependent variable to reflect that a change that has been performed in a given class
(e.g., a line of code has been inserted, removed, or edited). Change-proneness is a Boolean
variable that has the value TRUE if a change was made on the class (regardless of the type
or number of changes) or FALSE if no change was made [3]. A number of studies have been
conducted for predicting change-proneness using machine learning models which make

Appl. Sci. 2022, 12, 5234. https://doi.org/10.3390/app12105234 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12105234
https://doi.org/10.3390/app12105234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4897-8038
https://orcid.org/0000-0001-6794-4637
https://doi.org/10.3390/app12105234
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12105234?type=check_update&version=1

Appl. Sci. 2022, 12, 5234 2 of 28

use of source code metrics as dependent variables [4,5], but investigations are relatively
rare compared with other software maintainability measurements [3].

Ensemble models, which combine several models instead of using just an individual
model, have been applied in machine learning to improve performance. These models
have an ability to decrease variance and have been proven to be of great practical value in
various areas of software engineering [4–6]. However, there are few studies of prediction
change-proneness using ensemble models [3].

Feature selection (FS) techniques have been introduced to address the problem of
high-dimensional datasets, where the number of features is more than the number of
observations. These techniques have the potential to increase prediction accuracy, reduce
the time of model building, and identify the most vital features that affect the target
attribute. Many studies have investigated various types of FS in software quality prediction
and conclude that the ensemble FS techniques, which integrate the output of several FS
strategies, are able to improve prediction accuracy [7], but, again, there is limited application
of ensemble FS techniques in studies of software quality prediction [7].

Class imbalance is another dataset problem, where one class of the dataset has a
small number of instances compared to the others, and machine learning models which
fail to account for this end up predicting only from the majority class and ignoring the
minority class. Several sampling techniques may be used to resolve this problem by
adjusting the class distribution. These techniques are generally classified into three types:
oversampling to increase the observations of the minority class (e.g., SMOTE [8] and
UPSAMPLE [9]); undersampling to decrease the observations of the majority class (e.g.,
spread sub-sample [10] and random undersampling [11]), and ensemble sampling to
combine the results of over- and undersampling (e.g., SMOTE and bootstrap sampling [12]).
Although ensemble sampling techniques have been proven to increase the prediction
accuracy, their application in software quality prediction is also relatively rare [9].

This study aims to investigate the performance of ensemble models, FS, and sampling
techniques on the problem of predicting change-proneness using source code metrics.
In order to achieve this aim, we examine four different scenarios on change-proneness
datasets as follows: (a) datasets without FS and sampling techniques, (b) datasets with FS
and without sampling, (c) datasets without FS and with sampling, and (d) datasets with
FS and sampling. For this purpose, two types of filter-based feature-ranking techniques,
namely, relief and Pearson’s correlation coefficient, were combined using the ensemble
concept to determine the best metrics and tackle the problem of high dimensionality. The
sampling techniques (i.e., SMOTE, spread sub-sample, and randomize) were also combined
together in an ensemble to address the imbalance class problem.

Finally, three individual models (naive Bayes (NB), support vector machine (SVM),
k-nearest neighbors (KNN)) and one ensemble model (random forest (RF)) were employed
to predict change-proneness. These models were applied on seven publicly available
datasets (i.e., antlr4, junit, MapDB, mcMMO, mct, oryx, and titan) extracted from open-
source software systems [13]. The performance of the predicted models was compared
and evaluated using the area under curve (AUC). The four research questions (RQs) were
focused to accomplish the objectives of this paper:

• RQ1. What is the impact of ensemble FS techniques on the performance of prediction models?
• RQ2. What is the impact of ensemble sampling techniques on the performance of

prediction models?
• RQ3. What is the impact of applying both ensemble FS and sampling techniques on

the performance of prediction models?
• RQ4. What is the performance of the individual model and does the ensemble model

(RF) outperform individual models?
• RQ5. What is the impact of the MTRY parameter tuning on RF?

The key contributions of this study are the following:

Appl. Sci. 2022, 12, 5234 3 of 28

• The capability of the ensemble models, FS, and sampling techniques on predicting
of change-proneness was evaluated using four different scenarios. To the best of
the authors’ knowledge, this is the first study to investigate aspects such as the
ensemble model, ensemble FS, and ensemble sampling techniques in predicting
change-proneness. The most important finding was that RF provided a significant
improvement over other prediction models and obtained the highest value of AUC in
all scenarios.

• More informative and recommended measure was used for skewed datasets (i.e.,
AUC) to evaluate prediction accuracy (rather than using only measures based on
accuracy such as precision or recall), and statistical test and effect size were performed
on the results to evaluate the performance of the model.

• To make our predictive models refutable, conformable, and repeatable, the study used
recent public datasets published in [13] and available on the PROMISE repository [14].
Two of these datasets are large and contain more than 1000 classes (i.e., mct and titan).
Furthermore, a comprehensive replication package was provided which includes the
new version of the datasets adapted for this study.

• The impact of MTRY parameter tuning in RF was explored using grid search.

The rest of the paper is organized as follows: Section 2 reviews the related work,
Section 3 describes the research methodology, Section 4 presents the experimental design
and setup, Section 5 discusses and analyzes the obtained results, Section 6 reports threats
that could impact on the validity of this study, and Section 7 concludes this study with
some directions for future work.

2. Related Work

The related work falls into four areas: studies that used change-proneness metrics, the
role of ensemble prediction models in various area of software engineering problems, the
use of feature selection to resolve the issue of high dimensionality, and sampling strategies
to address the problem of imbalanced classes.

2.1. Change-Proneness Metrics

Metrics are measures of software engineering attributes, and several research studies
have explored the use of source code metrics as independent variables when predict-
ing change-proneness [3]. Most of the studies [5,15] have only used the Chidamber and
Kemerer (C&K) metrics: weighted methods per class (WMC), depth of inheritance tree
(DIT), number of children (NOC), coupling between object classes (CBO), response for
a class (RFC), and lack of cohesion in methods (LCOM) [16]. These studies reveal that
the C&K metrics are good predictors of change-proneness [5,15]. Catolino and Ferrucci
investigated various metrics (product, process, and developer-related factors) to predict
change-proneness and observed that the models created using developer-related factors
outperformed the other models that were built using product and process metrics [4]. Mal-
hotra and Khanna explored the effectiveness of a set of source code metrics in predicting
change-proneness based on different features of the software, such as size, coupling, cohe-
sion, and inheritance [17]. In addition to this study, they examined the relationship between
object-oriented metrics and change proneness and found that this relationship occurred
and machine learning models performed better than the statistical methods [18]. Kumar et
al. used ten source code metrics and performed FS techniques to determine the best metrics
with an objective to increase the prediction accuracy of predicting change-proneness. They
found that these metrics are able to predict change-proneness accurately [19]. Lu et al.
employed 62 different object-oriented metrics, involving 20 coupling metrics, 7 size metrics,
17 inheritance metrics, and 18 cohesion metrics on 102 Java systems to predict change-
proneness [20]. The results obtained from this study indicate that size metrics achieved high
prediction accuracy, whereas coupling and cohesion metrics produced low prediction accu-
racy, and inheritance metrics attained poor performance to predict change-proneness [20].
From these various studies, a clear association between object-oriented metrics and change-

Appl. Sci. 2022, 12, 5234 4 of 28

proneness emerges and it is safe to conclude that these metrics can be used as predictors
for change-proneness.

2.2. Ensemble Prediction Models

One of the main benefits of the ensemble models is to reduce the prediction variance
that is a common factor in machine learning models [21]. Several studies have explored the
application of ensemble models in fault or defect prediction problems and recorded high
accuracy from using approaches such as random forest [4,22], bagging and boosting [23],
and adaptive selection of classifiers in bug prediction [6]. Previous studies have also
stated the success of using ensemble models to predict effort estimation using techniques
such as bagging [24]; ensembles of linear methods [25]. Ensemble models have also been
used to predict change-proneness, such as hard instance ensemble classifier [5], random
forest [4], and majority voting [19]. Among several ensemble models implemented in
studies of the software engineering field, a number of these studies emphasized that RF
outperforms other prediction models and produces a high improvement in the prediction
accuracy [4,22]. These findings motivate us to use ensemble models (and RF in particular)
in this study. Although several studies have used RF with default parameter settings [4,22],
there is no theoretical justification to apply these default values [26]. As the performance
of RF depends on parameter values, it is necessary to investigate RF tuning based on the
parameters [26]. Therefore, the impact of MTRY parameter tuning in RF using the grid
search was investigated in this study.

2.3. Ensemble Feature Selection Techniques

The major purpose of FS is to identify the best subset of attributes (i.e., independent
variables) to predict the target attribute (i.e., dependent variable). A range of various FS
techniques have been used in the domain of software engineering prediction (e.g., defect,
change metric, maintainability index, and change-proneness) [7]. Previous work by the
authors also used FS techniques to achieve better prediction accuracy [7]. Moreover, using
ensemble FS techniques, which combines the output of several FS techniques, outperformed
individual FS techniques in three studies [7].

2.4. Ensemble Sampling Techniques

Imbalanced classes occur when the quantity of one class in the dataset is far less than
that of another. This problem can cause machine learning models to bias their predictions
towards majority classes and ignore minority classes, resulting in a high prediction accuracy
on the majority class at the expense of the minority class. To resolve this issue, sampling
techniques can be used and have been applied successfully in various fields. Within
the software engineering domain, synthetic minority oversampling technique (SMOTE)
has been used in refactoring prediction [8]. Sampling techniques can divided into three
types: oversampling to increase the observations of the minority class (e.g., SMOTE [8]
and UPSAMPLE [9]); undersampling to decrease the observations of the majority class
(e.g., spread sub-sample [10] and random undersampling [11]), and ensemble sampling to
combine the results of over- and undersampling (e.g., SMOTE and bootstrap sampling [12]).
These ensemble sampling techniques were found to be particularly effective in improving
the performance of prediction models [9]. Table 1 summarizes the related work.

To fill the gaps in these previous studies, the empirical study was designed to predict
change-proneness using three individual models and one ensemble model. Additionally,
ensemble FS techniques were used, including relief and Pearson’s correlation, which are
the most popular FS techniques used in [7]. To make the predictive models refutable,
confirmable, and repeatable, recent public datasets published in [13] and available on the
PROMISE Repository [14] were used.

Appl. Sci. 2022, 12, 5234 5 of 28

Table 1. Summary of the related work.

The Area of
Related Work Ref. Advantages Disadvantages Contributions of This

Study

Change-
proneness
metrics

[5,15]

A limited number of
metrics have been used
by previous studies as
predictors of
change-proneness.

Several metrics
have not been
investigated by
previous studies.

This study explores a total
of 102 metrics.

Ensemble
prediction
models

[4,22]

Ensemble models have
yielded improved
prediction accuracy over
individual models.

Limited previous
studies used
ensemble models to
predict
change-proneness,

This study investigates the
performance of RF and the
impact of the influence of
Mtry parameter tuning
using the grid search.

Ensemble
feature
selection
techniques

[7]
Using ensemble FS
techniques outperformed
individual FS techniques.

No previous studies
used ensemble FS to
predict
change-proneness.

This study performs
ensemble FS (i.e., relief and
Pearson’s correlation
coefficient).

Ensemble
sampling
techniques [8,9]

Using ensemble sampling
techniques performed
better than individual
sampling techniques.

No previous studies
used ensemble
sampling to predict
change-proneness.

This study applies ensemble
sampling (i.e., SMOTE,
spread sub-sample and
randomize).

3. Research Methodology

The main aim of this study is to evaluate the impact of ensemble models (RF), ensemble
FS (relief and Pearson’s correlation coefficient), and ensemble sampling techniques (SMOTE,
spread sub-sample, and randomize) on the performance of change-proneness prediction
models. The interaction between feature selection and sampling is examined via the
following four scenarios:

• First scenario: datasets without FS and sampling techniques.
• Second scenario: datasets with FS and without sampling techniques.
• Third scenario: datasets without FS and with sampling techniques.
• Fourth scenario: datasets with FS and sampling techniques.

Table 2 illustrates the scenarios explored in the empirical study. These scenarios
were studied because the datasets present two problems: (I) high dimensionality and (II)
imbalanced classes. This poses a difficulty regarding which model to apply first: the FS for
the high dimensionality or sampling techniques for the imbalanced classes. Consequently,
these scenarios help to evaluate and compare the impact of ensemble FS and sampling
techniques separately in the second and third scenarios, and together in the fourth scenarios.
The sampling and FS techniques are discussed later in Section 4.1.4: Data Preprocessing.

Table 2. Scenarios in the empirical study.

Feature Selection Techniques Sampling Techniques

First scenario NO NO

Second scenario YES NO

Third scenario NO YES

Fourth scenario YES YES

3.1. Framework of the Research Method

Figure 1 shows the framework of the research method, which contains several steps:

• Step 1. We load the datasets, details of which, along with independent and dependent
variables are described in Section 4.1.

• Step 2. We analyze the datasets to eliminate any metrics which contain empty values,
and redundant metrics that are strongly correlated with each other. This step is
performed using descriptive statistics and Spearman correlation.

Appl. Sci. 2022, 12, 5234 6 of 28

• Step 3. We apply normalization to the bring the values of the dataset into the range 0
to 1.

Figure 1. Framework of the research method.

• Step 4. We perform ensemble FS using the relief and Pearson’s correlation coefficients
to select the best ten metrics (independent variables) from each dataset.

• Step 5. We employ ensemble sampling techniques, namely, SMOTE, to perform over-
sampling by increasing the number of the minority class, and spread sub-sample
to perform undersampling by decreasing the number of the majority class, and ran-
domization to rearrange the instances randomly. The main reason for applying this
randomization is to avoid overfitting in ten-fold cross-validation because SMOTE
inserts the additional instances at the end of the dataset.

• Step 6. We conduct four different scenarios across seven change-proneness datasets
(see Table 1) as follows: First scenario (i.e., Step 1, Step 2, and Step 3), Second scenario
(i.e., Step 1, Step 2, Step 3, and Step 4), Third scenario (i.e., from Step 1, Step 2, Step 3,
and Step 5 without Step 4) and Fourth scenario (i.e., Step 1, Step 2, Step 3, Step 4, and
Step 5) (see Figure 2).

• Step 7. We divide the datasets into training and test sets using ten-fold cross-validation.

Appl. Sci. 2022, 12, 5234 7 of 28

• Step 8. We construct the prediction models, which encompass three individual models
(NB, SVM, and KNN) and one ensemble model (RF).

• Step 9. We predict change-proneness and evaluate and compare the results of the four
prediction models across the four scenarios to determine the most accurate prediction
model using AUC as the measure of comparison.

Figure 2. Framework of the fourth scenario.

3.2. Framework of the Fourth Scenario

The fourth scenario is designed to resolve both problems (high dimensionality and
imbalanced class) and to avoid biased results from the sampling techniques in the fourth
scenario. Therefore, the ensemble FS techniques were applied using different sampled
data purely for the purpose of providing effective FS techniques. Figure 2 illustrates the
framework for the fourth scenario that include five primary steps.

• Step 1. We load seven datasets after the data analysis step (Step 2 in previous section).
• Step 2. We create a fourth set of differently sampled data purely for the purpose of

performing FS techniques:

1. Datasets without sampling.
2. Datasets with SMOTE sampling.
3. Datasets with SMOTE and spread sub-sample with the parameter set to 1, where

these parameters define the distribution spread ratio between the majority and
minority classes as 50:50.

4. Datasets with SMOTE and spread sub-sample with the parameter set to 2.1,
where these parameters define the distribution spread ratio between the majority
and minority classes as 35:65.

• Step 3. We apply ensemble FS using two filter-based feature ranking techniques,
namely relief and Pearson’s correlation coefficient on all sampled data in Step 2.

• Step 4. We compute the average of the feature ranking techniques in Step 3 across all
sampled data in Step 2.

Appl. Sci. 2022, 12, 5234 8 of 28

• Step 5. We select the best ten features that have the highest ranking from the sampled
datasets in the third scenario. Therefore, the main difference between the third and
fourth scenario is performing ensemble FS techniques in the fourth scenario. However,
both the third and fourth scenarios used the same ensemble sampling techniques,
namely, SMOTE, spread sub-sample with 2.1 ratio, and randomize.

4. Experimental Design and Setup

The following subsections present a description of the datasets used in this empirical
study, along with the explanation of the dependent and independent variables. They
also provide details about the dataset analysis using descriptive statistics and Spearman
correlation. Finally, they explain the data preprocessing that includes normalization, FS,
and sampling.

4.1. Datasets

In this empirical study, we used seven publicly available datasets containing details
of source code metrics and refactoring collected from a total of 37 subsequent releases of
systems from seven open-source Java systems located in GitHub [27]. These are combined
into one manually validated dataset for each of the seven systems [13]. We select these
datasets particularly because many research studies have explored the utilization of pre-
diction models in software maintainability. Most of these studies have predicted change
maintenance effort using CHANGE metric and maintainability index, but little progress
has been made in predicting change-proneness in software maintainability [1]. In addition,
these datasets are the only datasets available on the PROMISE repository and suitable for
predicting change-proneness. To the best of the author’s knowledge, these datasets are
considered the newest datasets in software maintainability prediction and have not been
utilized in previous studies to predict change-proneness.

Table 3 provides a summary of the datasets used in this study, which includes the
dataset name, number of classes, number of releases, time interval, and URL [13].

Table 3. Summary of the datasets.

Dataset Name # Classes # Release Time Interval URL

antlr4 436 5 21 January 2013–22 January 2015 https://github.com/antlr/antlr4 (accessed on 4 June 2020)

junit 657 8 13 April 2012–28 December 2014 https://github.com/junit-team/junit (accessed on 4
June 2020)

MapDB 439 6 1 April 2013–20 June 2015 https://github.com/jankotek/MapDB (accessed on 4
June 2020)

mcMMO 301 5 24 June 2012–29 March 2014 https://github.com/mcMMO-Dev/mcMMO (accessed on 4
June 2020)

mct 2162 3 30 June 2012–27 September 2013 https://github.com/nasa/mct (accessed on 4 June 2020)

oryx 536 4 11 November 2013–10 June 2015 https://github.com/cloudera/oryx (accessed on 4 June 2020)

titan 1486 6 7 September 2012–13 February 2015 https://github.com/thinkaurelius/titan (accessed on 4
June 2020)

The datasets were initially collected to investigate the impact of code refactoring
(changes made to the structure of the internal source code which do not affect the func-
tionality or external behavior of the code [8]) on maintainability, and the original datasets
contain source code metrics including refactoring metrics, along with a score for main-
tainability at both method and class levels [13] We removed some metrics to convert the
refactoring datasets into ones that are suitable to predict change-proneness at the class level.
To achieve this, we performed three steps:

• Step 1. We removed the relative maintainability index (RMI), which is the dependent
variable in the original datasets, because it is a derived variable (from some of the
independent variables which will cause any machine learning model to just learn the
function that defines it) and also not an accurate reflection of maintenance effort.

https://github.com/antlr/antlr4
https://github.com/junit-team/junit
https://github.com/jankotek/MapDB
https://github.com/mcMMO-Dev/mcMMO
https://github.com/nasa/mct
https://github.com/cloudera/oryx
https://github.com/thinkaurelius/titan

Appl. Sci. 2022, 12, 5234 9 of 28

• Step 2. We convert the total number of refactoring changes in each class (Refact_Sum)
to a binary variable (Change_Prone) that indicates whether a change has taken place
in each class during the maintenance period. Refact_Sum contains the total number of
source code refactoring operations that have been applied in each class in a certain
observation period. The reason for this is that the number of refactoring is very low,
ranging from 0 to 8 with a median of zero in all datasets (see Table 4). Change_Prone
is set to TRUE if any refactoring changes were made on the class (regardless of the
number) or FALSE if no refactoring changes were made.

Table 4. Descriptive statistics of Refact_Sum.

MIN MAX Standard Deviation Average Median

antlr4 0 8 0.70 0.13 0

junit 0 3 0.21 0.02 0

MapDB 0 2 0.13 0.01 0

mcMMO 0 2 0.18 0.02 0

mct 0 5 0.18 0.01 0

oryx 0 6 0.35 0.05 0

titan 0 3 0.13 0.01 0

• Step 3. We remove 23 refactoring metrics from the independent variables in the
refactoring datasets. These are related to specific refactoring changes that have taken
place and are not relevant for the prediction of change proneness and would also
prejudice the outcome of the study as they identify when a change has been made.

After applying these steps, we are left with (Supplementary C in the reproduction
package) a new version of the refactoring datasets, referred to as the change-proneness
datasets, which contain 102 metrics as independent variables and Change_Prone metric
as dependent variable. The explanation of independent and dependent variables will be
presented in the next two sections.

4.1.1. Dependent Variable: Change-Prone

As already mentioned, Change_Prone is used in this study as dependent variable to
reflect that a change (insertion, removal, or edit) has been performed on a given class for
a version of the system. Table 5 summarizes the number of true and false values for the
variable, which demonstrates the imbalance between the two values. We categorized this
difference between values into small, medium, and large according to the percentage of
true values in our datasets, where values less than 1% correspond to a large difference,
values less than 2% are a medium difference, and values out of these ranges are a small
difference. However, it should be pointed out that all the percentages of true values in
Table 4 are very small, ranging from 0.69% to 5.28%.

Table 5. Number of true and false values in the change-proneness attribute.

Dataset Name # Instances # True Value % True Value # False Value % False Value Category of Difference between True and False

antlr4 436 23 5.28% 413 94.72% Small

junit 657 9 1.37% 648 98.63% Medium

MapDB 439 4 0.91% 435 99.09% Large

mcMMO 301 4 1.33% 297 98.67% Medium

mct 2162 15 0.69% 2147 99.31% Large

oryx 536 15 2.80% 521 97.20% Small

titan 1486 13 0.87% 1473 99.13% Large

Appl. Sci. 2022, 12, 5234 10 of 28

4.1.2. Independent Variables: Source Code Metrics

The independent variables include 125 metrics, which can be grouped into ten cate-
gories as follows: cohesion, complexity, coupling, documentation, inheritance, size, code
duplication, warning, rules, and refactoring. Table 6 lists metrics used as independent
variables and their category (the refactoring metrics are excluded as they were removed in
the data preprocessing step so we are left with 102 metrics), where the description of the
abbreviation of these metrics is provided in Supplementary C in the reproduction package).
All the independent variables are numeric and they were collected using the SourceMeter
static code analysis tool [28]. Hegedűs et al. describe how they extracted these metrics [13],
and they are also defined on the tool’s website [28].

Table 6. Metrics used as independent variables and their category.

Category Metrics

Cohesion LCOM5

Complexity NL, NLE and WMC

Coupling CBO, CBOI, NII, NOI and RFC

Documentation AD, CD, CLOC, DLOC, PDA, PUA, TCD, and TCLOC

Inheritance DIT, NOA, NOC, NOD and NOP

Size
LOC, LLOC, NA, NG, NLA, NLG, NLM, NLPA, NLPM, NLS, NM, NPA, NPM, NS, NOS,
TLOC, TLLOC, TNA, TNG, TNLA, TNLG, TNLM, TNLPA, TNLPM, TNLS, TNM, TNPA,
TNPM, TNS and TNOS

Code
duplication CCL, CCO, CC, CI, CLC, CLLC, LDC and LLDC

Warning WarningBlocker, WarningCritical, WarningInfo, WarningMajor and WarningMinor

Rules

Android Rules, Basic Rules, Brace Rules, Clone Implementation Rules, Clone Metric Rules,
Code Size Rules, Cohesion Metric Rules, Comment Rules, Complexity Metric Rules,
Controversial Rules, Coupling Metric Rules, Coupling Rules, Design Rules,
Documentation Metric Rules, Empty Code Rules, Finalizer Rules, Import Statement Rules,
Inheritance Metric Rules, J2EE Rules, JUnit Rules, Jakarta Commons Logging Rules, Java
Logging Rules, JavaBean Rules, MigratingToJUnit4 Rules, Migration Rules, Migration13
Rules, Migration14 Rules, Migration15 Rules, Naming Rules, Optimization Rules, Security
Code Guideline Rules, Size Metric Rules, Strict Exception Rules, String and StringBuffer
Rules, Type Resolution Rules, Unnecessary and Unused Code Rules and
Vulnerability Rules’

4.1.3. Dataset Analysis

The primary objective of the dataset analysis is to detect any attributes that contain
values that might cause problems when building any prediction models and produce
skewed or misleading results. The descriptive statics of these metrics are presented in
Supplementary A in the reproduction package. The minimum values are zero or one in
all datasets. In contrast, the maximum values are 575 in CLOC metric in antlr4 dataset,
662 in TNM metric in junit dataset, 11,272 in LLOC metric in MapDB dataset, 1160 in
LOC metric in mcMMO dataset, 1390 in WarningInfo metric in mct dataset, 179 in NII
metric in oryx dataset, and 1104 in WarningMinor metric in titan dataset. Thus, there was a
considerable difference between the minimum and maximum values in all datasets. For this
reason, normalization was applied, which will be described in the next section. Another
important finding was that the average values of WarningInfo metrics were high in all
datasets, ranging from 8 to 15. The remaining metrics have different values of descriptive
static, which suggests that the datasets have varying characteristics.

Appl. Sci. 2022, 12, 5234 11 of 28

Firstly, we drop metrics that have zero values (Supplementary B in the reproduction
package), and therefore cannot be used as predictors (see Briand et al. [29]). In total, 21 metrics
were removed from some of the datasets, and 7 metrics were removed from all datasets (see
summary metrics removed in the Supplementary A in the reproduction package).

Secondly, we calculate the Spearman correlation, which is a well-known statistical
measurement to compute the strength (i.e., strong or weak) and the direction (i.e., positive
or negative) of relationship between two ranked variables [30]. Spearman correlation
was selected in this study because it is appropriate for the monotonic relationship, which
indicates that if one variable increases, the other variable either increases or decreases.
From this, we create a correlation matrix to identify the dependence between variables
(Supplementary B in the reproduction package). This correlation was used to remove
redundant variables and prevent multicollinearity that occurs when one independent
variable in a prediction model can be predicted from other independent variables with
a high accuracy [31]. We eliminate one of a pair of variables that have a high strong
correlation. In Supplementary B, a green color in the correlation matrix refers to the high
strong correlation, where the correlation coefficient is over than +0.9. Supplementary B
also provides the results of the strong correlations and shows the attributes that were
removed using Spearman correlation. This analysis results in between 31 and 38 metrics
being removed from the datasets (the correlations were not completely consistent between
the datasets, hence the different values—see Table 7), leaving between 48 and 60 attributes.

Table 7. Number of metrics removed in each data analysis technique.

Analysis
Technique

Description of Metrics
Removed Datasets

antl4 junit MapDB mcMMO mct oryx titan

Number of metrics removed

Descriptive
statistics

Remove metrics with
zero values 13 15 14 17 9 15 12

Spearman
correlation

Remove metrics with a
strong correlation with
others

35 32 31 37 33 32 38

Number of metrics remained

54 55 57 48 60 55 52

4.1.4. Data Preprocessing

Data preprocessing is an important data mining technique performed to resolve issues
related to the datasets, such as incorrect, missing, imbalanced, and inconsistent data [32].
The datasets used in this chapter had several problems that required the application of
some of the data preprocessing techniques. Initially, the values in the independent variables
have a different range, so we apply normalization to bring them all into the range 0 to1.
Additionally, there are the problems of high dimensionality and class imbalance mentioned
earlier which require the application of feature selection and sampling techniques. These
three techniques are described in the next sections.

Normalization

Normalization is a common technique employed when the values of numeric data have
very different scales. It is also essential for the application of some machine learning models
that use scale-sensitive distance metrics, such as KNN, which uses Euclidean distance to
identify the nearest neighbors. In this study, the dataset is linearly rescaled using min-max
normalization to normalize all numeric values in our datasets to the interval [0, 1] [32].
Equation (1) defines min–max normalization, where min and max are the minimum and
maximum values in the datasets, respectively, and value is the value being normalized:

Min−Max Normalization =
value−min
max−min

(1)

Appl. Sci. 2022, 12, 5234 12 of 28

Feature Selection

Having identified and addressed any multicollinearity problems, FS is performed in
the second and fourth scenarios as an additional step to improve the quality of the dataset
as it still contains numerous attributes.

In this study, we use the ensemble method to determine the best features using two
types of filter-based feature ranking techniques, namely, relief and Pearson’s correlation
coefficient. We chose these types because relief is the most frequently used in the selected
primary studies proposed in [7] and the Pearson’s correlation coefficient is the second most
popular. First, we apply these techniques on the datasets that assign a score to each feature;
then we calculate the average of the two techniques and select the ten highest-scoring
features (there is no clear evidence in the literature on a suitable number of features to
select [11], so the number of features chosen was determined by previous studies either by
identifying the number of features [33] or employing a cut-off value [34]). We apply these
techniques using WEKA with the parameters set to the default values.

Sampling

In this study, all the datasets have a very small minority of true values (see Table 5)
which can lead to the creation of biased prediction models. To resolve the class imbalance
problem, sampling techniques are introduced, including oversampling to increase the
observations of the minority class and undersampling to decrease the observations of the
majority class. The main advantage of oversampling is to maintain all the observations
of both the majority and minority classes, but this may lead to overfitting. In contrast,
undersampling eliminates some observations and may remove essential observations.
However, there was no clear indication of which technique performs better [35], and so
ensemble sampling techniques are carried out in this study to resolve the imbalanced
class problem and improve the overall performance. We apply sets of three sampling
techniques that involve SMOTE for oversampling, spread sub-sample for undersampling,
and randomize for mixing the order of the instances. Ensemble sampling integrates the
results of over- and undersampling, where SMOTE inserts more true values, and spread
sub-sample removes some false values.

4.2. Prediction Models

The choice of the individual models was based on their popularity and performance.
Based on the authors’ systematic review [7], we selected the most frequently used individual
and ensemble models that are suitable for the software quality classification problems.
These include three individual models (i.e., NB, SVM, and KNN), and one ensemble model,
RF. These models are considered among the best five models for classification problems [36],
but also have their own strengths and weaknesses. The main advantage of NB is its ability
to estimate the parameters and a model from a smaller proportion of the dataset, and
then it produces means and variances of the variables for each class. Nevertheless, the
disadvantage of NB is to assume all features independent from each other [37]. SVMs
have efficient execution without dependence on the dimensionality of the input space and
superior performance with excellent accuracy prediction [38,39]. KNN is simple to perform
and easy to understand, but it does not work well if the datasets have outliers, noisy, or
missing values neighbors [40]. RF is less sensitive to the parameter used, so it creates
easily. RF are less sensitive to the parameter used, so are easy to create. In addition, RF
can resolve the overfitting problem more efficiently and can perform tree pruning faster
than individual decision trees [26]. The open-source Waikato Environment for Knowledge
Analysis (Weka) tool is used to construct prediction models, and the default values of
the models’ parameters were used [41]. More details of the models are outlined in the
following sections.

Appl. Sci. 2022, 12, 5234 13 of 28

4.2.1. ZeroR

ZeroR is a very simple classifier based on the dependent variable only (i.e., change-
proneness) that disregards other independent variables and bases the prediction on the
majority classes (i.e., the mode values) [42]. It is performed purely to identify a baseline
that is used as a benchmark to evaluate the performance of the machine learning models
(which, ideally, should be of higher accuracy than ZeroR) [43]. Equation (2) defines mode,
where “L” “H1” is the size of the class interval, “Fm” is the frequency of the modal class,
“F1” is the frequency of the class preceding the modal class, and “F2” is the frequency of
the class succeeding the modal class [44]:

Mode = L + H
(Fm − F1)

(Fm − F1) + (Fm − F2)
(2)

4.2.2. Naive Bayes

NB is a probabilistic algorithm that relies on Bayes theorem to predict the class for each
row. NB applies independence assumptions, which consider features to be independent of
each other. NB uses estimator classes, and this estimation is performed using the maximum
likelihood method [45]. Equation (3) represents the Bayes theorem, where P(c|x) is the
posterior probability of class, P(x) is the prior probability of predictor, P(c) is the prior
probability of class, and P(x|c) is the likelihood which is the probability of predictor specific
class [37].

P(c | x) =
P(x | c)P(c)

P(x)
(3)

4.2.3. K-Nearest Neighbors

KNN , which is called instance-based learning (IBK), is classified as a lazy learner. First,
KNN is calculated by selecting the closest neighbors in the training data to generate the
target data with regard to the feature space. This selection is employed using the Euclidean
(or other specified) distance measure. After that, majority voting, or another decision rule,
can be performed to categorize the new instances [40].

4.2.4. Support Vector Machine

SVM is considered a category of generalized linear classifiers that convert the original
dataset training to a higher dimension using a nonlinear mapping [32]. Then, it creates the
linear optimal separating hyperplane to separate the dataset into two classes. Furthermore,
there are two lines that create a maximal margin hyperplane, which makes the boundary
line, where the instances lie on the margins of the maximum margin hyperplane. We
used sequential minimal optimization (SMO) in Weka as the implementation for SVM,
and this has several features, such as the ability to handle very large datasets and faster
model creation for sparse datasets and linear SVM [46]. Additionally, it has the ability to
handle complex nonlinear decision boundaries and is less prone to overfitting than other
models. These features help SVM to reduce prediction error and improve overall prediction
accuracy [32].

4.2.5. Random Forest

Random forest is an ensemble model that build a forest of numerous unpruned
decision trees from the training dataset. Then, it uses the mode of the classes of the
individual trees on the testing dataset to make a prediction. RF integrates tree predictors
that depend on the values of a random vector sampled individually, along with the same
distribution for the whole trees in the forest. Applying this random selection of features
leads to higher error rates than those in AdaBoost [47], but the random forest is better
in terms of dealing with noisy data [48]. Moreover, this algorithm performs bagging on
features based on majority voting and selects the dependent variables which have the

Appl. Sci. 2022, 12, 5234 14 of 28

highest votes [48]. In this study, random forest integrates algorithms of the same types (i.e.,
decision trees), so it can be classified as a homogeneous ensemble model. RF depends on
four parameters: the number of trees to grow, the sub-sample size common to each tree,
the tree depth, and the number of variables randomly sampled for splitting [26]. We used
the default parameters in Weka, where Weka creates a forest of several decision trees as the
base models and initializes this forest to 100 tree instances [49].

4.3. Prediction Accuracy Measures

The following subsections provide the explanation of the performance measures used
in this empirical study, along with the description of the statistical tests and effect size.

4.3.1. Performance Measures

Several measures have been proposed in the literature to evaluate the accuracy of the
prediction models in software engineering problems [50]. In this study, only one prediction
accuracy measure, which is AUC, is used to evaluate and compare the performance of
prediction models. AUC is based on the ROC (receiver operating characteristic) that graphs
the true positive rate (TPR) on the y-axis against the false positive rate (FPR) on the x-axis at
different threshold settings [51]. AUC ranges from 0 to 1, where the greater value indicates
better results and 1 is the optimal result (a perfect classifier). Additionally, 0.5 indicates no
discrimination, a value from 0.7 to 0.8 indicates an acceptable result, a value from 0.8 to
0.9 is recognized as excellent, and any values greater than 0.9 are considered outstanding
results [52].

According to a study published in [7], AUC was the principle and most frequently
evaluation measure used for classification problems in software quality prediction. In
addition, it is considered well-known and commonly employed in software maintainability
prediction along with change-proneness prediction [13].

Equation (4) calculates the value of AUC , where i represents observations, (1− β)
represents the TPR = TP

TP + FN , α represents the FPR = FP
FP + TN , and these values are extracted

from the confusion matrix presented in Table 8.

AUC = ∑
i

{
(1− βi . ∆α) +

1
2
[∆(1− β).∆α]

}
(4)

∆(1− β) indicates (1− βi)− (1− βi−1), and ∆α indicates αi − αi−1

Table 8. Confusion matrix.

Predicted Class (No) Predicted Class (Yes)

Actual class (No) True negatives (TN) False positive (FP)

Actual class (Yes) False negative (FN) True positive (TP)

4.3.2. Statistical Tests and Effect Size

Test of significance is used in this study to validate the results according to a defined
hypothesis. We carried out a one-way analysis of variance (ANOVA) F test [53] on the
performance of AUC. We selected ANOVA because there are more than one pair (i.e.,
four prediction models). Therefore, this test is performed to investigate if there exists
a significant difference between the group population means (i.e., performance of the
prediction models). Statistical significance is defined in this study as (α = 0.05) and we
evaluate and compare the p-value with this defined value. If the p-value is smaller than
α then the H0 (the null hypothesis, that there is not a statistically significant difference
between all the group population means) is rejected.

Appl. Sci. 2022, 12, 5234 15 of 28

In addition, to further understand the strength of a result, the effect size is used in
this study too, which is considered an essential component to complement significance
tests [54]. From the various effect size measures introduced in the literature, eta-squared
(η2) is selected in this study because this is a suitable measure for ANOVA [54]. Cohen
proposed the standard classifications of the effect sizes, which are small (≈0.01), medium
(≈0.06), and large (≈0.14) [55]. Equation ((5)) computes the value of η2.

η2=
SS effect
SS total

(5)

SSeffect is the sum of squares of the effect, and SStotal is the total sum of squares [54].
Additionally, If H0 is rejected, we apply multiple comparisons using a plot chart of Tukey’s
confidence intervals [53] to identify which pairs are significantly different. If a confidence
interval does not include 0 then the pair is significantly different.

4.3.3. Grid Search

Parameter tuning is performed on RF using a grid search with ten-fold cross-validation.
Grid search is the process of exploring the search space of the hyperparameter values with
the specification of parameter pairs and evaluation measurement (e.g., AUC). This process
is iterated via ten-fold cross-validation until the optimal hyperparameters are determined,
which results in the highest prediction accuracy [56]. Grid search is created using the
tunegrid function in R, along with the randomForest, mlbench, and caret packages to
build the RF model. RF depends on four parameters: the number of trees to construct,
the sub-sample size common to each tree, the tree depth, and the number of variables
randomly sampled for splitting [26]. However, only the last parameter was tuned (i.e.,
the number of variables randomly sampled for splitting), using Mtry variable in R. The
rationale for focusing on just the Mtry parameter is because there is no clear indication or
theory of which value of this parameter is more appropriate under most circumstances [26].
Therefore, the grid search used in Section 5.3.7 is considered a linear search, in which the
vector of candidate values ranges from 1 to 15. These values were initialized because there
is no recommendation to select the number Mtry parameter [26].

5. Results and Analyses

This section provides the answers to the RQs and discusses the results obtained.
First, we present the results of applying ensemble feature selection. Then, we provide the
results of applying ensemble sampling. After that, we compare and evaluate the prediction
accuracy of four prediction models in terms of AUC across four different scenarios and
determine the best prediction models.

5.1. Feature Selection

Table 9 provides the results of the best ten metrics across seven datasets using the
ensemble FS method. Relief and Pearson’s correlation coefficient techniques in the ensemble
FS evaluate each feature or metric and assign a rank to them. Thus, the average of these
techniques was calculated and the best ten metrics across seven datasets that impact on
change-proneness were selected, which are provided in Table 9. The overall results from
this table demonstrate two things. First, there were different metrics subsets obtained from
each dataset, and second, no more than three of the seven datasets ever had any metrics
in common.

Appl. Sci. 2022, 12, 5234 16 of 28

Table 9. Best ten metrics using ensemble FS method.

Metrics
Datasets

antl4 junit MapDB mcMMO mct oryx titan

CC X X

LCOM5 X X

PUA X X X

NM X

WarningInfo X X X

WarningMajor X X X

Clone Metric Rules X

JUnit Rules X X X

String and StringBuffer Rules X X X

Type Resolution Rules X

NOI X X

RFC X X X

LLOC X X

TNM X

TNOS X

WarningCritical X

Cohesion Metric Rules X X X

Type Resolution Rules X

WarningMinor X X X

Basic Rules X X

Complexity Metric Rules X X

Controversial Rules X

Migration Rules X

Naming Rules X X

Strict Exception Rules X

NL X X

CBOI X

NII X

NA X

NLA X

Empty Code Rules X X

Strict Exception Rules X

CBO X

Coupling Metric Rules X

Optimization Rules X

AD X

CD X

NLG X

NLM X

NLPM X

NPM X

Documentation Metric Rules X X

TNLPM X

Size Metric Rules X

Appl. Sci. 2022, 12, 5234 17 of 28

5.2. Sampling

We employ sets of three sampling techniques, namely SMOTE, spread sub-sample,
and randomize, then we integrate their results together using an ensemble concept. Table 10
provides the number of true and false values before and after applying SMOTE, along with
their percentage.

Table 10. Results before and after applying SMOTE.

Before Applying SMOTE % of
SMOTE

After Applying SMOTE

Dataset
Name

#
Classes

True
Values

% True
Values

False
Values

% False
Values

#
Classes

True
Values

% True
Values

False
Values

% False
Values

antlr4 436 23 5.28% 413 94.72% %100 459 46 10.02 413 89.98

junit 657 9 1.37% 648 98.63% %200 675 27 4 648 96

MapDB 439 4 0.91% 435 99.09% %300 451 16 3.55 435 96.45

mcMMO 301 4 1.33% 297 98.67% %200 309 12 3.88 297 96.12

mct 2162 15 0.69% 2147 99.31% %300 2207 60 2.72 2147 97.28

oryx 536 15 2.80% 521 97.20% %100 551 30 5.44 521 94.56

titan 1486 13 0.87% 1473 99.13% %300 1525 52 3.41 1473 96.59

The values in Table 10 indicate that even though after applying SMOTE, the classes
in the dependent variable are still imbalanced. Although the classes in Table 10 were
still imbalanced, the differences between the number of true and false values decreased
compared with the differences in Table 5. In sequence, the spread sub-sample technique
was applied to decrease the number of instances in the majority class. The spread value
(default parameter) was changed from zero to 2.1, which indicates that the maximum
ratio between the majority and minority classes is 35:65. The results of this technique are
presented in Table 11.

Table 11. Scenarios in the empirical study.

Before Applying Spread Sub-Sample After Applying Spread Sub-Sample

Dataset
Name

#
Classes

True
Values

%True
Values

False
Values

% False
Values

#
Classes

True
Values

%True
Values

False
Values

% False
Values

antlr4 459 46 10.02 413 89.98 142 46 32.39 96 67.61

junit 675 27 4.00 648 96.00 83 27 32.53 56 67.47

MapDB 451 16 3.55 435 96.45 49 16 32.65 33 67.35

mcMMO 309 12 3.88 297 96.12 37 12 32.43 25 67.57

mct 2207 60 2.72 2147 97.28 186 60 32.26 126 67.74

oryx 551 30 5.44 521 94.56 93 30 32.26 63 67.74

titan 1525 52 3.41 1473 96.59 161 52 32.30 109 67.70

Finally, applying SMOTE inserts additional classes (rows) at the end of each dataset,
which leads to overfitting in ten-fold cross-validation. Thus, randomization was performed
to rearrange the rows and avoid the overfitting problem.

5.3. Prediction Models

In this section, the results of the empirical study are presented and analyzed. Four predic-
tion models involving three individual models (i.e., NB, SVM, and KNN) and one ensemble
model (RF) were employed on seven datasets. Each prediction model was constructed using
four different datasets extracted from the four scenarios analyzed (see Table 1). Therefore, the
total number of prediction models was 112:7 datasets × 4 scenarios × 4 prediction models.

Figure 3 shows the box plots of the AUC of each prediction model across the seven
datasets for the four scenarios (see Table 2). The mean value of the AUC values is indicated
by an “X”, the upper and lower lines of the box represent the first and third quartile, and the
middle horizontal line across the box represents the middle quartile. The prediction model

Appl. Sci. 2022, 12, 5234 18 of 28

which has the highest “X” values and the spread of the box is considered to be preferable. It
is important to mention that because of the way that the scenarios were constructed, the test
sets used for evaluating sampling methods in the third and fourth scenarios were different
from those used for the non-sampling methods in the first and second scenarios. For this
reason, the comparison between these two distinct groups of scenarios (first and second
versus third and fourth) has not been carried out as it would be invalid. It is observed in
Figure 3 that across all four scenarios, RF attained the highest prediction accuracy.

(a) (b)

(c) (d)

Figure 3. (a) Box plot of the AUC for prediction models on the first scenario. (b) Box plot of the AUC
for prediction models on the second scenario. (c) Box plot of the AUC for prediction models on the
third scenario. (d) Box plot of the AUC for prediction models on the third scenario.

Figure 4 illustrates the AUC results obtained from each prediction model across seven
datasets in four scenarios, in which the higher AUC value indicates the better result. The
results of the third scenario provide valuable insights into the positive influence of ensemble
sampling techniques to improve the prediction accuracy of prediction models. The basic
findings are consistent with research showing that the sampling techniques improved the
overall performance [8,9]. Regarding the overall results of the datasets, mcMMO and mct
datasets achieved the highest prediction accuracy in both the third and fourth scenarios.

Tables 12–15 present the results of AUC for prediction models across seven datasets
in the first, second, third, and fourth scenarios, respectively. The prediction accuracy in
terms of AUC measurement was evaluated, and the results of each scenario were presented
separately in these tables considering the following aspects. First , the performance of
the investigated prediction model was compared with the baseline, which is based on
the dependent variable only (i.e., change-proneness) and predicts the mode value of this
variable. Second, the best model in each dataset was identified (the highest AUC) using
boldface. Third, the best model in all datasets was identified using boldface with underlined
values. Finally, we investigate the impact of applying ensemble FS, sampling, and both
ensemble FS and sampling techniques on the performance of prediction models, and the
best model to predict change-proneness was determined.

Appl. Sci. 2022, 12, 5234 19 of 28

Figure 4. Ranking of the AUC for prediction models on all scenarios.

5.3.1. Baseline

A baseline is provided in Tables 12–15 for all scenarios. All the investigated models
except NB in junit dataset in the first scenario (Table 15) achieved better prediction accuracy
than the baseline. Consequently, these models have higher AUC values than those in the
baseline model (i.e., ZeroR).

5.3.2. First Scenario: Datasets without FS or Sampling

Table 12 provides the results of AUC values for prediction models in seven datasets in
the first scenario. These results indicate that RF outperformed all other prediction models,
as RF provided higher AUC values in all datasets except antlr4, in which NB achieved a
slightly better prediction accuracy (only 0.03 higher). KNN achieved the best performance
among individual models and was the second-best prediction model.

Table 12. AUC values for performance evaluation of prediction models across seven datasets in the
first scenario.

Models Change-Proneness Dataset

antlr4 junit MapDB mcMMO mct oryx titan

First Scenario

ZeroR 0.45 0.44 0.19 0.19 0.41 0.41 0.41

NB 0.73 0.43 0.38 0.29 0.88 0.58 0.74

SVM 0.51 0.5 0.5 0.49 0.5 0.5 0.5

KNN 0.57 0.6 0.69 0.65 0.69 0.65 0.7

RF 0.7 0.73 0.79 0.79 0.89 0.81 0.81

5.3.3. Second Scenario: Datasets with FS and without Sampling

Table 13 presents the AUC values for prediction models across seven datasets in
the second scenario. This scenario presents the prediction accuracy using ensemble FS
mentioned in Section 4.1.4. Comparing the performance of the second scenario in Table 13
with that of the first scenario (without FS and sampling techniques) in Table 12, it is clear
that FS improved the prediction accuracy in NB and KNN models except for one case
(KNN in MapDB). In contrast, no impact was observed on SVM and RF compared to other
prediction models. Additionally, FS produced either the same or an inferior performance
to RF compared to the scenario without applying FS, except in antlr4 and junit. Although

Appl. Sci. 2022, 12, 5234 20 of 28

FS had no effect on RF, there was a clear competition between RF and NB to obtain the best
prediction model in each dataset. Therefore, NB performed better than other individual
models in terms of prediction accuracy, and achieved the best AUC value (0.92) in the mct
dataset, which is considered outstanding according to the published criteria [52].

Table 13. AUC values for performance evaluation of prediction models across seven datasets in the
second scenario.

Models Change-Proneness Dataset

antlr4 junit MapDB mcMMO mct oryx titan

Second Scenario

ZeroR 0.45 0.44 0.19 0.19 0.41 0.41 0.41

NB 0.77 0.77 0.65 0.7 0.92 0.7 0.8

SVM 0.5 0.5 0.5 0.5 0.5 0.5 0.5

KNN 0.66 0.73 0.62 0.66 0.72 0.74 0.71

RF 0.81 0.75 0.7 0.7 0.89 0.8 0.8

5.3.4. Third Scenario: Datasets without FS and with Sampling

Table 14 shows the AUC values for prediction models across seven datasets in the
third scenario. This scenario provides the prediction accuracy using ensemble sampling
techniques mentioned in Section 4.1.4. From Table 14, it is evident that the AUC values were
extremely high. This good performance was achieved because the datasets were modified
with sampling techniques proposed in Section 4.1.4 without applying FS. However, some
features were excluded after applying data analysis. The most interesting finding from
this scenario was that applying ensemble sampling techniques on the datasets that exclude
improper features (i.e., features that have zero values and correlated with each other) in
Section 4.1.3 is enough to reach a high prediction accuracy. Another notable result is that
sampling techniques in third scenarios in Table 14 had a great impact on SVM. The result of
SVM in the first and second scenarios was 0.5, which indicates no discrimination according
to the published criteria [52]. Furthermore, RF achieved the best prediction accuracy in all
datasets except NB in mcMMO, and RF in mct attained the close to optimal results of 0.99.
KNN was the second-best prediction model and outperformed other individual models.

Table 14. AUC values for performance evaluation of prediction models across seven datasets in the
third scenario.

Models Change-Proneness Dataset

antlr4 junit MapDB mcMMO mct oryx titan

Third Scenario

ZeroR 0.46 0.44 0.46 0.38 0.49 0.48 0.48

NB 0.73 0.80 0.73 0.99 0.92 0.82 0.81

SVM 0.64 0.74 0.64 0.98 0.93 0.83 0.72

KNN 0.81 0.88 0.81 0.91 0.98 0.9 0.93

RF 0.89 0.92 0.89 0.98 0.99 0.92 0.97

5.3.5. Fourth Scenario: Datasets with Both FS and Sampling

Table 15 provides the results of AUC for prediction models across seven datasets in the
fourth scenario. This scenario lists the prediction accuracy using both the FS and sampling
techniques. The main difference between the fourth scenario compared with the third
scenario is using different metrics, but they used the same sampling method. Overall, the
results of the fourth scenario indicate that the performance of machine learning models
in most cases performed well. However, the results in this scenario are worse than the

Appl. Sci. 2022, 12, 5234 21 of 28

previous scenario. This suggests that applying both ensemble FS and sampling techniques
decreased the prediction accuracy and using only sampling techniques was adequate to
achieve high prediction accuracy. Again, RF outperformed other prediction models in all
datasets except NB in mcMMO dataset, where the values of AUC range from 0.85 to 0.98,
which is recognized as a good result. As in the first and second scenarios, KNN also was
the second-best prediction model and performed better than other individual models.

Table 15. Scenarios in the empirical study.

Models Change-Proneness Dataset

antlr4 junit MapDB mcMMO mct oryx titan

ZeroR 0.46 0.43 0.39 0.38 0.49 0.48 0.48

NB 0.51 0.79 0.84 0.99 0.94 0.73 0.8

SVM 0.51 0.65 0.82 0.91 0.81 0.52 0.59

KNN 0.71 0.78 0.78 0.84 0.91 0.78 0.77

RF 0.85 0.85 0.95 0.96 0.98 0.85 0.9

5.3.6. Statistical Tests

We apply a one-way ANOVA to answer RQ4 by comparing all prediction models
across four scenarios using AUC, where Factor A in the ANOVA test is the prediction
model (NB, SVM, KNN, and RF). The results are shown in Table 16. We rejected H0 because
all p-values in the table are less than α (0.05). According to the standards classifications of
Cohen proposed in Section 4.3.2, the results of eta squared reveal that the effect size was
large [57].

Table 16. Scenarios in the empirical study.

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F p-Value Eta-Squared

Factor A 0.78 3.00 0.26 13.95 0.00 0.28

Error 2.02 108.00 0.02

Total 2.80 111.00

Additionally, multiple comparisons were performed using Tukey’s confidence in-
tervals [53] (see Figure 5). In the chart, it is possible to identify which pairs of Factor
A (prediction models) significantly differ across scenarios. If a confidence interval does
not include 0, then the pair is significantly different. The results obtained from Figure 5
revealed that there were significant differences between ensemble models (RF) and all indi-
vidual models (NB, SVM, and KNN). Similarly, there were significant differences between
NB–SVM and SVM–KNN.

5.3.7. Impact of Parameter Tuning for Random Forests

In Table 17, the performance of AUC for RF with default parameters was compared
with that of Mtry parameter tuning. Boldface values in the table highlight the best results
among each dataset in each scenario, whereas AUC-T refers to the AUC for parameter
tuning and AUC-D refers to the AUC for default parameters. The comparison of the results
indicated that AUC-T outperformed AUC-D across all datasets in all scenarios, except mct
dataset in the third scenario, which achieved the same result of AUC-D (0.99). AUC-T
reached the optimal result (1.00) in the mcMMO dataset in the third scenario, and the
average of AUC-T in all datasets in this scenario provided the highest prediction accuracy.
Additionally, the grid search method provided different Mtry values for different datasets,
which indicates that this method is an alternative to save time and effort instead of trying
different parameters manually. The percentage of change between the average AUC-T and
AUC-D across all datasets was 10.13%, 8.97%, 3.19%, and 2.20 in the first, second, third,

Appl. Sci. 2022, 12, 5234 22 of 28

and fourth scenarios, respectively. This indicates that tuning the Mtry parameter in RF had
a positive influence in each scenario. However, this influence was higher in the original
datasets (e.g., without FS or sampling in the first scenario) and lower in the edited datasets
(e.g., with FS and sampling in the fourth scenario). Additionally, there is a good agreement
between the findings in this section and those in the previous section, in which the third
scenario achieved considerable performance.

Figure 5. Multiple comparisons for prediction models using AUC.

Table 17. Scenario AUC values for performance evaluation of RF with default and Mtry
parameter tuning.

Scenario First Second Third Fourth

Mtry AUC-T AUC-D Mtry AUC-T AUC-D Mtry AUC-T AUC-D Mtry AUC-T AUC-D

antlr4 3 0.81 0.7 2 0.84 0.81 6 0.94 0.89 1 0.87 0.85

junit 15 0.84 0.73 3 0.81 0.75 5 0.95 0.92 5 0.89 0.85

MapDB 2 0.90 0.79 10 0.72 0.7 8 0.96 0.89 2 0.98 0.95

mcMMO 11 0.89 0.79 2 0.89 0.7 6 1.00 0.98 5 0.98 0.96

mct 2 0.96 0.89 4 0.96 0.89 1 0.99 0.99 14 0.99 0.98

oryx 8 0.82 0.81 1 0.85 0.8 6 0.94 0.92 14 0.90 0.85

titan 8 0.90 0.81 6 0.85 0.8 15 0.99 0.97 2 0.93 0.9

Average NA 0.87 0.79 NA 0.85 0.78 NA 0.97 0.94 NA 0.93 0.91

% of change NA 10.13% NA 8.97% NA 3.19% NA 2.20%

5.3.8. Discussion and Answers to Research Questions

This section provides the discussion of the results presented above and answers the
RQs for this study.

RQ1. What is the impact of ensemble FS techniques on the performance of prediction
models?

Appl. Sci. 2022, 12, 5234 23 of 28

Ensemble FS techniques in the second scenario improved the prediction accuracy
of NB and KNN models. Analyzing the likely reasons behind this finding, firstly, NB is
called naive because it creates conditional assumptions, which are independent from the
features [37]. Second, using the Euclidean measure,

KNN determines the closest neighbors, which are also independent from the features [40].
Therefore, these models may have performed well with FS techniques because they do not
perform attribute selection [45]. However, ensemble FS techniques had no clear impact
on the overall performance of SVM and RF. This result may be explained by the fact that
SVM algorithm includes the C parameter that selects the number of features, and the
kernel function creates a suitable feature space [32]. Regarding the RF result, this occurs
because RF has multiple decision trees that apply the same concept of FS using a top-down
greedy search algorithm to choose the best feature at each step [58]. Therefore, SVM and RF
algorithms already perform the FS concept during their creation. Additionally, RF includes
many decision trees, which perform adequately with an imbalanced dataset because they
tend to build several tests to recognize the difference between the minority and majority
classes [59]. For this reason, RF achieved the best prediction accuracy in the second scenario.

RQ2. What is the impact of ensemble sampling techniques on the performance of
prediction models?

The machine learning models with ensemble sampling techniques achieved good per-
formance. Again, RF achieved the best results of AUC values across all the datasets except
mcMMO. These findings may help us to conclude that performing ensemble sampling
techniques and removing inappropriate features in the data analysis step without applying
ensemble FS is sufficient to predict change proneness accurately. This is consistent with
what has been found in a series of recent studies [8,9] that used several types of sampling
techniques: SMOTE [8], UPSAMPLE, SMOTE and RUSBoost [9], and emphasizes the effect
of these techniques to improve the performance of the prediction models.

Interestingly, ensemble sampling techniques in this particular case increased the
prediction accuracy of SVM and RF. This supports the findings in the previous question
indicting that SVM and RF algorithms can deal with FS during their creation. Consequently,
these algorithms respond to sampling techniques more than FS techniques.

RQ3. What is the impact of applying both ensemble FS and sampling techniques on
the performance of prediction models?

Applying both ensemble FS and sampling techniques improved the performance of
the prediction models, and RF achieved the best performance across all datasets except
mcMMO. These findings corroborate the ideas of Kumar and Sureka, who used the same
datasets to predict refactoring and performed principal component analysis and SMOTE
techniques to extract the best features and resolve the imbalanced data problem [8]. Their
results indicated that the prediction accuracy with the SMOTE technique was better than
that without SMOTE, and the prediction accuracy of all metrics was better than that with
FS. A possible explanation for these results may be the lack of adequate datasets, and the
rank of the best ten features selected is considered low (the average ranking of the best ten
metrics ranges from 0.1 to 0.6), whereas the difference before and after applying sampling
techniques is high (see Tables 10 and 11).

RQ4. What is the performance of the individual model and do the ensemble models
(i.e., RF) outperform individual models?

KNN achieved the best prediction accuracy among most cases. RF outperformed
other individual models and achieved the best result in terms of average AUC value
(see Figure 3) across all scenarios. The results of the ANOVA test reveal that there were
significant differences between RF and all individual models (see Figure 5). In addition, the
results of the effect size were large (see Table 16). Therefore, applying ensemble sampling
techniques on RF produced the highest accuracy to predict change-proneness. This finding
is in accordance with previous studies, in which RF provided the best performance to
predict change-proneness [4], software faults [60], and maintenance changes [61].

RQ5. What is the impact of the Mtry parameter tuning in RF?

Appl. Sci. 2022, 12, 5234 24 of 28

Mtry parameter tuning in RF using grid search method, along with RF, mlbench, and
caret packages, improved prediction accuracy. This improvement increased in the original
datasets (e.g., without FS or sampling) and decreased in the edited datasets (e.g., with FS
and sampling in the fourth scenario). The findings of this RQ are consistent with those
of Fernández-Delgado et al., who stated that RF created using caret package in R was the
best model among 179 models applied on 121 original datasets [62]. Furthermore, the Mtry
parameter differed from various datasets, and this difference was behind the study showing
that there are no suggestions to choose the specific number of the Mtry parameter [26]. In
addition, this supports the use of automatic parameters tuning to simply and effectively
improve performance [63,64]. Based on these findings, it is recommended to tune the Mtry
parameter automatically to save time and efforts and improve the results. In future work, a
statistical test will be used to investigate the performance difference between RF without
and with parameter tuning.

6. Threats to Validity

The threats to validity usually emerge in any experimental software engineering
study [65]. This section describes the threats to validity using four categories: external,
conclusion, internal, and constructed, and also provides an explanation of how they are
resolved and handled.

6.1. External Validity

External validity indicates the degree of generalization of results outside the empirical
study setting [65]. Publicly available datasets extracted from open-source software systems
were used to enable reprehensibility and comparison with other empirical studies that used
the same datasets. However, these datasets were collected from only a particular program-
ming language (i.e., Java), and therefore additional research requires to be conducted for
other programming languages (e.g., C++ and C#). Moreover, we believe that the datasets
used in this study are likely to be valid in terms of the number of classes and number
of releases. We also emphasize that the application of the results can be generalized by
considering other releases of the same projects or using method level instead of the class
level that used in this study. Additionally, the ensemble FS and sampling techniques used
in this study can be easily implemented to other change-proneness datasets.

6.2. Conclusion Validity

Conclusion validity relates to the statistical relationship between the results and the
output of the experiment, which impacts on the capability to reach the right conclusion [66].
To avoid the threat of conclusion validity, ten-fold cross validation was performed to reduce
potentially biased results by selecting tests from the entire dataset. This validation is
repeated ten times to generate statistically reliable results and avoid the conclusion threat.
In addition, we only used AUC to evaluate and compare the prediction models because
AUC is more effective for imbalanced datasets than other measurements (e.g., precision or
recall). Moreover, the conclusions are dependent on statistical tests for significance. We
used ANOVA test, which is a parametric statistical test that requires some assumptions,
such as normal distribution for the datasets and independent observations of each other.
However, these assumptions were met and one of the main advantages of the parametric
statistical test is to provide more reliable results with both non-normally and continuous
datasets. Hence, the threat to conclusion validity may exist due to using a parametric
statistical test.

6.3. Internal Validity

Internal validity is the ability to present the results with different experimental vari-
ables [66]. In order to prevent threat of internal validity, we explore the effectiveness of
ensemble FS and sampling techniques on the performance of the prediction models using
several source code metrics across four scenarios. Nevertheless, evaluating the impact of

Appl. Sci. 2022, 12, 5234 25 of 28

each metric on predicting change-proneness was outside the scope of this study but could
be explored as future work. Four prediction models were built, and these models were the
most frequently used in [7] and appropriate for classification problems. In addition, Weka,
which is an established and frequently employed tool, is used to select features, perform
sampling, and build prediction models [41]. Therefore, there are no threats to internal
validity in term of selection of prediction models and tool.

6.4. Construct Validity

Construct validity measures the relationship between the dependent and independent
variables [67]. In this study, we create machine learning models depending on 125 metrics
that were manually validated and extracted from class-level to capture several features
of the software product [13]. Some of these metrics were eliminated before conducting
empirical study (see Section 4.1) and some of them were removed by applying data analysis
and ensemble FS in Sections 4.1.3 and 4.1.4, respectively. However, many of these metrics
are used for the first time to predict change-proneness and we can conclude that the metrics
used in this study are investigated recently, so there is threat to construct validity of these
metrics. Furthermore, other validity concerns relate to the dependent variable (i.e., change-
proneness), which is a Boolean variable that reflects changes of refactoring (i.e., changes
of the structure of the internal source code without affecting the functionality of source
code [8]). The prediction of change-proneness variable has been investigated in several
studies and it is considered as good indicator [5,15]. However, this study did not recognize
the types of changes (i.e., adaptive, corrective, preventive, or perfective). Therefore, we
are aware that this can threaten the construct validity of the dependent variable. However,
we still used change-proneness as a dependent variable as recommended by [2], because
limited studies considered the types of the change proneness [4].

7. Conclusions and Future Work

Ensemble FS and sampling techniques play a vital role for improving the prediction
accuracy of machine learning models. However, the application of these techniques on
software maintainability is limited. In this study, we apply three individual models,
NB, SVM, and KNN, along with one ensemble model, RF, on seven publicly available
datasets collected from open-source software systems. We evaluated and compared the
effectiveness of ensemble FS and ensemble sampling techniques on the performance of
prediction change-proneness. This study presents many insights, which are based on
comprehensive experimentation and analyses:

• The results obtained from this study provide empirical evidence of the positive impact
of ensemble FS in improving the performance of some of the prediction models
(KNN and NB). However, ensemble FS techniques had no clear effect on the overall
performance of SVM and RF because these models have FS techniques as a part of the
model’s creation.

• This study also showed the good performance of applying ensemble sampling meth-
ods on all prediction models and that there was a clear improvement in SVM and RF.

• Across all scenarios, the ensemble model (RF) achieved the best performance in
predicting change-proneness compared to other models, and there were significant
differences between RF and all individual models. In addition, the effect size was
large. A possible explanation of the good performance of RF in both high-dimensional
and imbalanced datasets is that RF performs the concept of FS through the creation of
several decision trees. It also involves many decision trees that perform well with the
imbalanced dataset.

• The experimental results in this empirical study showed that the performance of the
ensemble models for predicting change-proneness is significantly improved, and the
effect size was large in all prediction models.

Appl. Sci. 2022, 12, 5234 26 of 28

Indeed, the results obtained from this study provide empirical evidence of the positive
impact of ensemble FS and sampling techniques in improving the performance of the
prediction models to predict change-proneness. We observed that the ensemble model (RF)
achieved the best performance in predicting change-proneness compared to other models.
Moreover, the proposed ensemble FS and sampling techniques improved the prediction
accuracy of change-proneness. In future work, we will investigate the combination of
different FS and sampling techniques to achieve more consistent results. Moreover, we
will employ different prediction models on various software maintainability datasets,
and the study can also be extended to recognize the most suitable metrics to indicate
change-proneness.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
app12105234/s1, Supplementary A: Provides the descriptive static of the datasets. Supplementary B:
Shows a correlation matrix to identify the dependence between variables. Supplementary C: Presents
the datasets used in this study.

Author Contributions: Conceptualization, H.A.; methodology, H.A.; software, H.A.; validation, H.A.;
formal analysis, H.A.; investigation, H.A.; resources, H.A.; data curation, H.A.; writing—original
draft preparation, H.A.; writing—review and editing, H.A.; visualization, H.A.; supervision, M.R.;
project administration, M.R.; funding acquisition, H.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint
Abdulrahman University, through the Pioneer Researcher Funding Program (Grant No#PR-1440-5).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alsolai, H. Predicting Software Maintainability in Object-Oriented Systems Using Ensemble Techniques. In Proceedings of the

2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), Madrid, Spain, 23–29 September 2018;
pp. 716–721.

2. Koru, A.; Tian, J. Comparing high-change modules and modules with the highest measurement values in two large-scale
open-source products. IEEE Trans. Softw. Eng. 2005 , 31, 625–642. [CrossRef]

3. Alsolai, H.; Roper, M. A Systematic Literature Review of Machine Learning Techniques for Software Maintainability Prediction.
Inf. Softw. Technol. 2020, 119, 106214. [CrossRef]

4. Catolino, G.; Ferrucci, F. An extensive evaluation of ensemble techniques for software change prediction. J. Softw. Evol. Process
2019, 31, 1–15. [CrossRef]

5. Malhotra, R.; Khanna, M. Particle Swarm Optimization-Based Ensemble Learning for Software Change Prediction. Inf. Softw.
Technol. 2018, 102, 65–84. [CrossRef]

6. Nucci, D.; Palomba, F.; Oliveto, R.; Lucia, A. Dynamic Selection of Classifiers in Bug Prediction: An Adaptive Method. IEEE
Trans. Emerg. Top. Comput. Intell. 2017, 1, 202–212. [CrossRef]

7. Alsolai, H.; Roper, M. A Systematic Review of Feature Selection Techniques in Software Quality Prediction. In Proceedings of the
International Conference on Electrical and Computing Technologies and Applications, Ras Al Khaimah, United Arab Emirates,
19–21 November 2019; pp. 1–5.

8. Kumar, L.; Sureka, A. Application of LSSVM and SMOTE on Seven Open Source Projects for Predicting Refactoring at Class
Level. In Proceedings of the Asia-Pacific Software Engineering Conference, Nanjing, China, 4–8 December 2017; pp. 90–99.

9. Kumar, L.; Satapathy, S.; Murthy, L. Method Level Refactoring Prediction on Five Open Source Java Projects using Machine
Learning Techniques. In Proceedings of the India Software Engineering Conference, Pune, India, 14–16 February 2019; pp. 1–10.

10. Loyola-González, O.; García-Borroto, M.; Medina-Pérez, M.; Martínez-Trinidad, J.; Carrasco-Ochoa, J.; Ita, G. An Empirical Study
of Oversampling and Undersampling Methods for Lcmine An Emerging Pattern Based Classifier. In Mexican Conference on Pattern
Recognition; Springer: Berlin/Heidelberg, Germany, 2013; pp. 264–273.

11. Khoshgoftaar, T.; Gao, K.; Napolitano, A.; Wald, R. A Comparative Study of Iterative and Non-Iterative Feature Selection
Techniques for Software Defect Prediction. Inf. Syst. Front. 2014, 16, 801–822. [CrossRef]

12. Liu, Y.; An, A.; Huang, X. Boosting Prediction Accuracy on Imbalanced Datasets with SVM Ensembles; Springer: Berlin/Heidelberg,
Germany, 2006.

https://www.mdpi.com/article/10.3390/app12105234/s1
https://www.mdpi.com/article/10.3390/app12105234/s1
http://doi.org/10.1109/TSE.2005.89
http://dx.doi.org/10.1016/j.infsof.2019.106214
http://dx.doi.org/10.1002/smr.2156
http://dx.doi.org/10.1016/j.infsof.2018.05.007
http://dx.doi.org/10.1109/TETCI.2017.2699224
http://dx.doi.org/10.1007/s10796-013-9430-0

Appl. Sci. 2022, 12, 5234 27 of 28

13. Hegedűs, P.; Kádár, I.; Ferenc, R.; Gyimóthy, T. Empirical Evaluation of Software Maintainability Based on a Manually Validated
Refactoring Dataset. Inf. Softw. Technol. 2018, 95, 313–327. [CrossRef]

14. Cukic, B. Guest Editor’s Introduction: The Promise of Public Software Engineering Data Repositories. IEEE Softw. 2005, 22, 20–22.
[CrossRef]

15. Elish, M.; Al-Khiaty, M. A suite of metrics for quantifying historical changes to predict future change-prone classes in object-
oriented software. J. Softw. Evol. Process 2013, 25, 407–437. [CrossRef]

16. Chidamber, S.; Kemerer, C. Towards a Metrics Suite for Object Oriented Design. In Proceedings of the Conference Proceedings
on Object-Oriented Programming Systems, Languages, and Applications, Phoenix, AZ, USA, 6–11 October 1991; pp. 197–211.

17. Malhotra, R.; Khanna, M. Inter Project Validation for Change Proneness Prediction using Object Oriented Metrics. Softw. Eng.
Int. J. 2013, 3, 21–31.

18. Malhotra, R.; Khanna, M. Investigation of relationship between object-oriented metrics and change proneness. Int. J. Mach. Learn.
Cybern. 2013, 4, 273–286. [CrossRef]

19. Kumar, L.; Rath, S.; Sureka, A. Empirical analysis on effectiveness of source code metrics for predicting change-proneness. In
Proceedings of the 10th Innovations in Software Engineering Conference, Jaipur, India, 5–7 February 2017; pp. 4–14.

20. Lu, H.; Zhou, Y.; Xu, B.; Leung, H.; Chen, L. The Ability of Object-Oriented Metrics to Predict Change-Proneness: A Meta-Analysis.
Empir. Softw. Eng. 2012, 17, 200–242. [CrossRef]

21. Ueda, N.; Nakano, R. Generalization Error of Ensemble Estimators. In Proceedings of International Conference on Neural
Networks 1996, Washington, DC, USA, 3–6 June 1996; Volume 1, pp. 90–95.

22. Wang, T.; Li, W.; Shi, H.; Liu, Z. Software defect prediction based on classifiers ensemble. J. Inf. Comput. Sci. 2011, 8, 4241–4254.
23. Zhang, Y.; Lo, D.; Xia, X.; Sun, J. An Empirical Study of Classifier Combination for Cross-Project Defect Prediction. In Proceedings

of the Annual Computer Software and Applications Conference, Taichung, Taiwan, 1–5 July 2015; pp. 264–269.
24. Minku, L.; Yao, X. Ensembles and Locality: Insight on Improving Software Effort Estimation. Inf. Softw. Technol. 2013,

55, 1512–1528. [CrossRef]
25. Azzeh, M.; Nassif, A.; Minku, L. An Empirical Evaluation of Ensemble Adjustment Methods for Analogy-Based Effort Estimation.

J. Syst. Softw. 2015, 103, 36–52. [CrossRef]
26. Scornet, E. Tuning Parameters in Random Forests. ESAIM 2017, 60, 144–162. [CrossRef]
27. Github. The Largest Open Source Community in The World. Available online: https://github.com/ (accessed on 5 May 2017).
28. SourceMeter Static Code Analysis Tool. Available online: https://www.sourcemeter.com/resources/java/ (accessed on 8 June

2019).
29. Briand, L.; Wüst, J.; Daly, J.; Porter, D. Exploring the Relationships Between Design Measures and Software Quality in Object-

Oriented Systems. J. Syst. Softw. 2000, 51, 245–273. [CrossRef]
30. Corder, G.; Foreman, D. Nonparametric Statistics: A Step-by-Step Approach; Wiley: Hoboken, NJ, USA, 2014; p. 288.
31. Badr, W. Why Feature Correlation Matters . . . A Lot! Available online: https://towardsdatascience.com/why-feature-correlation-

matters-a-lot-847e8ba439c4 (accessed on 6 May 2020).
32. Han, J.; Pei, J.; Kamber, M. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2011; p. 744.
33. Gao, K.; Khoshgoftaar, T.; Wald, R. Combining Feature Selection and Ensemble Learning for Software Quality Estimation. In

Proceedings of the International Florida Artificial Intelligence Research Society Conference, Beach, FL, USA, 21–23 May 2014;
pp. 47–52.

34. Brownlee, J. Machine Learning Mastery with Weka, Ebook, ed.; Available online: https://machinelearningmastery.com/machine-
learning-mastery-weka/ (accessed on 9 July 2019).

35. Chawla, N. Data Mining for Imbalanced Datasets: An Overview. In Data Mining and Knowledge Discovery Handbook; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 875–886.

36. Wolff, R. Classification Algorithms in Machine Learning: How They Work. Available online: https://monkeylearn.com/blog/
classification-algorithms/ (accessed on 7 April 2020).

37. John, G.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence, Montreal, QC, Canada, 18–20 August 1995; pp. 338–345.

38. Shevade, S.; Keerthi, S.; Bhattacharyya, C.; Murthy, K. Improvements to the SMO algorithm for SVM regression. IEEE Trans.
Neural Netw. 2000, 11, 1188–1193. [CrossRef]

39. Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers
and System Designers; Apress: Berkeley, CA, USA, 2015; pp. 67–80.

40. Aha, D.; Kibler, D.; Albert, M. Instance-Based Learning Algorithms. Mach. Learn. 1991, 6, 37–66. [CrossRef]
41. Witten, I.; Frank, E.; Trigg, L.; Hall, M.; Holmes, G.; Cunningham, S. Weka: Practical Machine Learning Tools and Techniques with Java

Implementations; University of Waikato, Department of Computer Science: Hamilton, New Zealand, 1999.
42. Aher, S.; Lobo, L. Data Mining in Educational System Using Weka. In Proceedings of the International Conference on Emerging

Technology Trends, Kollam, India, 21–22 October 2016; Volume 3, pp. 20–25.
43. Venkatesh, A.; Jacob, S. Prediction of Credit-Card Defaulters: A Comparative Study on Performance of Classifiers. Int. J. Comput.

Appl. 2016, 145, 36–41.
44. Mean Median Mode Formula. Available online: https://www.cuemath.com/mean-median-mode-formula/ (accessed on 25

March 2022).

http://dx.doi.org/10.1016/j.infsof.2017.11.012
http://dx.doi.org/10.1109/MS.2005.153
http://dx.doi.org/10.1002/smr.1549
http://dx.doi.org/10.1007/s13042-012-0095-7
http://dx.doi.org/10.1007/s10664-011-9170-z
http://dx.doi.org/10.1016/j.infsof.2012.09.012
http://dx.doi.org/10.1016/j.jss.2015.01.028
http://dx.doi.org/10.1051/proc/201760144
https://github.com/
https://www.sourcemeter.com/resources/java/
http://dx.doi.org/10.1016/S0164-1212(99)00102-8
https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4
https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4
https://machinelearningmastery.com/machine-learning-mastery-weka/
https://machinelearningmastery.com/machine-learning-mastery-weka/
https://monkeylearn.com/blog/classification-algorithms/
https://monkeylearn.com/blog/classification-algorithms/
http://dx.doi.org/10.1109/72.870050
http://dx.doi.org/10.1007/BF00153759
https://www.cuemath.com/mean-median-mode-formula/

Appl. Sci. 2022, 12, 5234 28 of 28

45. Gao, K.; Khoshgoftaar, T.; Wang, H.; Seliya, N. Choosing Software Metrics for Defect Prediction: An Investigation on Feature
Selection Techniques. Softw. Pract. Exp. 2011, 41, 579–606. [CrossRef]

46. Zhi-Qiang, Z.; Hong-Bin, Y.; Hua-Rong, X.; Yan-Qi, X.; Ji, G. Fast Training Support Vector Machines Using Parallel Sequential
Minimal Optimization. In Proceedings of the International Conference on Intelligent System and Knowledge Engineering,
Xiamen, China, 17–19 November 2008; Volume 1, pp. 997–1001.

47. Freund, Y.; Schapire, R. Experiments With A New Boosting Algorithm. In Proceedings of the International Conference on
International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; pp. 148–156.

48. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
49. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. The WEKA Data Mining Software: An Update. ACM

SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
50. Conte, S.; Dunsmore, H.; Shen, V. Software Engineering Metrics and Models; Benjamin-Cummings Publishing Co., Inc.: San Francisco,

CA, USA, 1986; p. 396.
51. Bradley, A. The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognit. 1997,

30, 1145–1159. [CrossRef]
52. Hosmer, Jr, D.; Lemeshow, S.; Sturdivant, R. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; p. 528.
53. Berenson, M.; Levine, D.; Goldstein, M. Intermediate Statistical Methods and Applications: A Computer Package Approach; Prentice-Hall,

Inc.: Hoboken, NJ, USA, 1983; p. 579.
54. Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for T-Tests and ANOVAs.

Front. Psychol. 2013, 4, 863. [CrossRef]
55. Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013.
56. Osman, H.; Ghafari, M.; Nierstrasz, O. Hyperparameter Optimization to Improve Bug Prediction Accuracy. In Proceedings of the

Workshop on Machine Learning Techniques for Software Quality Evaluation 2017, Klagenfurt, Austria, 21–21 February 2017;
pp. 33–38.

57. Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155. [CrossRef]
58. He, H.; Garcia, E. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284.
59. Batista, G.; Prati, R.; Monard, M. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data.

ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [CrossRef]
60. Catal, C.; Diri, B. Investigating the Effect of Dataset Size, Metrics Sets, and Feature Selection Techniques on Software Fault

Prediction Problem. Inf. Sci. 2009, 179, 1040–1058. [CrossRef]
61. Kaur, A.; Kaur, K.; Pathak, K. Software Maintainability Prediction by Data Mining of Software Code Metrics. In Proceedings of

the International Conference on Data Mining and Intelligent Computing, Delhi, India, 5–6 September 2014; pp. 1–6.
62. Fernandez-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification

problems? J. Mach. Learn. Res. 2014, 15, 3133–3181.
63. Fu, W.; Menzies, T.; Shen, X. Tuning for Software Analytics: Is it Really Necessary? Inf. Softw. Technol. 2016, 76, 135–146.

[CrossRef]
64. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.; Matsumoto, K. Automated Parameter Optimization of Classification Techniques

for Defect Prediction Models. In Proceedings of the International Conference on Software Engineering 2016, Austin, TX, USA,
14–22 May 2016; pp. 321–332.

65. Wright, H.; Kim, M.; Perry, D. Validity Concerns in Software Engineering Research. In Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, Santa Fe, NM, USA, 7–8 November 2010; pp. 411–414.

66. Khoshgoftaar, T.; Seliya, N.; Sundaresh, N. An Empirical Study of Predicting Software Faults with Case-Based Reasoning. Softw.
Qual. J. 2006, 14, 85–111. [CrossRef]

67. Pai, G.; Dugan, J. Empirical Analysis of Software Fault Content and Fault Proneness Using Bayesian Methods. IEEE Trans. Softw.
Eng. 2007, 33, 675–686. [CrossRef]

http://dx.doi.org/10.1002/spe.1043
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1016/S0031-3203(96)00142-2
http://dx.doi.org/10.3389/fpsyg.2013.00863
http://dx.doi.org/10.1037/0033-2909.112.1.155
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1016/j.ins.2008.12.001
http://dx.doi.org/10.1016/j.infsof.2016.04.017
http://dx.doi.org/10.1007/s11219-006-7597-z
http://dx.doi.org/10.1109/TSE.2007.70722

	Introduction
	Related Work
	Change-Proneness Metrics
	Ensemble Prediction Models
	Ensemble Feature Selection Techniques
	Ensemble Sampling Techniques

	Research Methodology
	Framework of the Research Method
	Framework of the Fourth Scenario

	Experimental Design and Setup
	Datasets
	Dependent Variable: Change-Prone
	Independent Variables: Source Code Metrics
	Dataset Analysis
	Data Preprocessing

	 Prediction Models
	 ZeroR
	 Naive Bayes
	 K-Nearest Neighbors
	 Support Vector Machine
	 Random Forest

	 Prediction Accuracy Measures
	 Performance Measures
	 Statistical Tests and Effect Size
	Grid Search

	Results and Analyses
	Feature Selection
	 Sampling
	Prediction Models
	 Baseline
	First Scenario: Datasets without FS or Sampling
	Second Scenario: Datasets with FS and without Sampling
	Third Scenario: Datasets without FS and with Sampling
	Fourth Scenario: Datasets with Both FS and Sampling
	 Statistical Tests
	Impact of Parameter Tuning for Random Forests
	 Discussion and Answers to Research Questions

	Threats to Validity
	External Validity
	Conclusion Validity
	Internal Validity
	Construct Validity

	Conclusions and Future Work
	References

