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Abstract: The lifestyle of humans has changed noticeably since the contagious COVID-19 disease
struck globally. People should wear a face mask as a protective measure to curb the spread of the
contagious disease. Consequently, real-world applications (i.e., electronic customer relationship
management) dealing with human ages extracted from face images must migrate to a robust system
proficient to estimate the age of a person wearing a face mask. In this paper, we proposed a
hierarchical age estimation model from masked facial images in a group-to-specific manner rather
than a single regression model because age progression across different age groups is quite dissimilar.
Our intention was to squeeze the feature space among limited age classes so that the model could
fairly discern age. We generated a synthetic masked face image dataset over the IMDB-WIKI face
image dataset to train and validate our proposed model due to the absence of a benchmark masked
face image dataset with real age annotations. We somewhat mitigated the data sparsity problem of the
large public IMDB-WIKI dataset using off-the-shelf down-sampling and up-sampling techniques as
required. The age estimation task was fully modeled like a deep classification problem, and expected
ages were formulated from SoftMax probabilities. We performed a classification task by deploying
multiple low-memory and higher-accuracy-based convolutional neural networks (CNNs). Our
proposed hierarchical framework demonstrated marginal improvement in terms of mean absolute
error (MAE) compared to the one-off model approach for masked face real age estimation. Moreover,
this research is perhaps the maiden attempt to estimate the real age of a person from his/her masked
face image.

Keywords: deep learning; masked face age estimation; COVID-19; hierarchical approach

1. Introduction

The respiratory disease COVID-19 is an unprecedented crisis that has led to an enor-
mous number of mortalities and security-related issues. This pandemic has transformed
the lives of millions of people around the world. Over the last twenty years, there have seen
several outbreaks of different coronavirus diseases across the world, but people around
the globe are facing an elusive health crisis due to the emergence of COVID-19 disease, a
member of the coronavirus family. It is a well-known fact that respiratory viruses such as
COVID-19 spread by person-to-person contact within and outside the community. One
of the modes of transmission of COVID-19 is airborne transmission. This transmission
occurs as humans breathe in droplets released by an infected person through breathing,
speaking, singing, coughing, or sneezing. Hence, public health officials have mandated the
use of face masks which can lessen virus transmission by a substantial margin. Physicians
have suggested that social distancing and contact-free services in public spaces can be
major protective measures against COVID-19 disease. Contact-free operations are highly
preferable among the possible measures, particularly in public spaces such as chain stores,
stations, etc. The use of face masks in public areas presents an arduous challenge since

Appl. Sci. 2022, 12, 5306. https://doi.org/10.3390/app12115306 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115306
https://doi.org/10.3390/app12115306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2410-7983
https://doi.org/10.3390/app12115306
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115306?type=check_update&version=2


Appl. Sci. 2022, 12, 5306 2 of 19

face-related applications are typically trained with human faces devoid of masks, but now,
due to the onset of the COVID-19 pandemic, they are forced to deal with faces with masks.
Moreover, wearing a face mask causes the following problems: (1) community access
control and face authentication become very difficult tasks when a large part of one’s face
is hidden by a mask, and (2) the whole face image might not be taken into consideration
for feature description.

Human faces largely provide better traits to recognize a person’s demographics as
opposed to other common biometric features (e.g., irises and fingerprints), as 6 mA and
SNARE proteins play roles in various cellular processes and disease pathogenesis [1,2] in
the area of biomedical research. The human face contains features that determine the age
of a person and are equally useful in various real-life applications such as security surveil-
lance, human–computer interaction, access control, demographic data extraction, law
administration, marketing intelligence, etc. Despite the progress made by the researchers,
age predictions from unconstrained masked facial images are yet to meet the demands of
business applications. Thus, as an attempt to meet the necessity of an enterprise solution
during the pandemic, we proposed an automatic age estimation system from masked faces,
which is visualized in Figure 1.
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However, face-feature-based systems are not robust enough when used with masked
faces, because the distinctive features of a face are largely covered by face masks. As
a consequence, conventional face-centered solutions should transform into upgraded
systems, as it is essential that they continue operating during the pandemic. There are
two main approaches used to handle a mask-occluded face, which are the restoration
approach [3] and the discard-occlusion-based approach [4,5]. The restoration approach
tries to restore the occluded parts of images based on the images in the training. However,
these approaches need a dictionary where each subject should have an adequate image in
the gallery. The discard-occlusion-based approach rejects the occluded parts completely
to avoid a bad reconstruction process, and then, the remaining parts of the face are used
in the feature extraction and classification processes. These discard-occlusion approaches
devote a lot of effort to detecting and discarding occlusion regions. Most current advanced
age estimation approaches are designed based on deep learning, which depends on a large
number of training samples. Accordingly, deep masked face estimation systems also need
a rich masked face dataset, which is currently not available. Age estimation from masked
face images is quite different from the orthodox age estimation approach. Firstly, there is
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no large benchmark masked face dataset annotated with proper age labels. Secondly, the
features of the mouth and nose regions are severely damaged so that effective features are
greatly reduced. Finally, faces wearing masks are hard to detect.

To handle the above challenges, we built a synthetic masked face image dataset
derived from the largest face image dataset, IMDB-WIKI [6], using the dlib machine
learning library. MTCNN [7] was incorporated to detect face areas, face key point detection,
and align the face. Our demonstrated method took a face mask as a feature in addition
to the full face and deployed deep convolutional neural network (CNN)-based models
to address the problem of masked face age estimation. It is obvious that CNN-based
methods have strong robustness to illumination and facial occlusion changes. Finally, we
conducted experiments on the hierarchical approach and compared it with the singular
approach. We also released source codes and data freely available in GitHub repository
https://github.com/MahbubSohel/Masked_Face_Age (accessed on 16 May 2022) for keen
researchers to studies further.

Overall, the contribution of this study is summarized as follows:

• We derived a synthetic face mask image dataset annotated with real age from the
largest in-the-wild face image dataset, IMDB-WIKI, toward the estimation of real age
amid the COVID-19 pandemic circumstances.

• We somewhat mitigated the data sparsity problem from the existing in-the-wild
benchmark dataset, IMDB-WIKI.

• We proposed a hierarchical approach to estimate real ages in a group-specific manner,
where the intermediate result was a group age generated by the classification model,
and the final result was a real age generated by the regression-through-classification
techniques generated by the group-specific models.

• We compared our hierarchical approach results with a one-off model and empiri-
cally demonstrated that a hierarchical approach is marginally better than a singular
approach.

• Moreover, this research is perhaps the maiden attempt toward real age estimation
from masked face images.

The rest of the article is divided into the following sections: In Section 2, the literature
related to age estimation is presented. In Section 3, we present our proposed masked age
estimation approach, describing all the components of this research. Section 4 demonstrates
the empirical results. The comparative discussion and conclusion of this research are
presented in Sections 5 and 6.

2. Related Work

Even though there is no literature available regarding masked face age estimation
(MFAE), this section succinctly reviews the associated works of facial age estimation. Facial
age estimation (FAE) has been a trending research topic among computer vision researchers
for more than a decade. Similarly, face recognition (FR) also deals with facial features to
recognize a person by looking at his/her face. Due to the COVID-19 pandemic, some face
recognition research has already expanded to the masked face recognition arena. We try
to provide a cursory outline of the way in which these tasks were approached earlier by
other researchers.

Currently, FR research approaches mainly focus on deep-learning-based solutions to
recognize a person’s face through significant systems such as DeepFace [8], DeepID [9], Ar-
cFace [10], and CosFace [11]. Although deep-learning-based approaches achieved enviable
performance, they are still deficient when dealing with faces in unconstrained settings (e.g.,
occluded faces). Facial occlusion due to wearing a mask is a challenging problem in the
event of face recognition, facial age estimation, etc. The occluded face recognition problem
is generally approached by researchers in the following ways: image reconstruction [3],
occlusion discarding [4,5], and deep face recognition. In addition to the above-stated
approached, some deep-learning-based approaches [12,13] address face recognition by uti-
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lizing a generative adversarial network and attention-based approach convolutional block
attention model [14] to simplify and focus on more discriminative and expressive features.

In parallel, academicians also commit their best efforts to creating face-feature-based
methods for demographic estimation. A recent survey of age estimation including all
approaches from the last few decades can be found in [15]. There are various prominent age
estimation models that use different image representation techniques, such as anthropomet-
ric models [16], the active appearance model (AAM) [17], active shape models (ASMs) [18],
the aging pattern subspace model (AGES) [19], models based on age manifold [20], and
appearance models [21]. From another viewpoint, the conventional classification approach
is not solely explored as a method for facial age estimation. It can be categorized as
either a multi-class classification problem [6], regression problem [22], or hierarchical
problem [23,24] as an integration of classification and regression. The lion’s share of age-
estimation-based background studies that concern classification [25–27], regression [28–34],
and hybrid [35–39] problems are reported in the references. In [19], aging features were
extracted from an aging pattern representative subspace, and a robust regressor was used
to determine age. In [25], the authors generated a face parametric statistical model and
evaluated it with classifiers formulated on a shortest-distance neural network, and used
quadratic function to model the correlation between age and face parameters. In [38], local
binary pattern (LBP) histograms were used as features for classification. In [29], a multi-
level local binary pattern (MLBP) was made up of several single-level LBPs and finally
concatenated to extract local and global texture features. Guo et al. [34,35] introduced
locally adjusted robust regression (LARR), where manifold learning was likely for feature
extraction, and then, LARR was adopted for age prediction.

In the last decade, researchers have changed their direction of study toward deep
learning, especially convolutional neural networks (CNNs), which are remarkably effec-
tive and promising compared to typical age estimation techniques. These methods can
automatically learn different image representations and provide plausible results for de-
mographic estimation [40]. The Deep Learned Ageing (DLA) pattern is a six-layer CNN
framework proposed by [41], where Principal Component Analysis (PCA) is applied after
CNN feature extraction. Manifold learning was employed to form the aging pattern and
structure extracted from different layers. Ref. [42] demonstrated better performance in age
group classification over the in-the-wild benchmark Adience dataset by using a simple
CNN structure. Ref. [27] reviewed texture and appearance descriptors in detail to explain
the significance of the fusion of both features to estimate age. Ref. [43] adopted the score
fusion of regression and classification models based on real values. Additionally, a general-
to-specific transfer learning strategy was applied to avoid the overfitting problem on a
small apparent age estimation dataset. Ref. [44] designed an ensemble of CNN models
wherein different models were trained for different age groups, and at the end, they were
combined to achieve better efficiency. Ref. [45] proposed a three-stage cascaded CNN to
deal with unconstrained face images in the order of age group classification, apparent
age estimation by considering the mean relative age found from every single group, and
an age error correction strategy. Ref. [46] classified multiple binary sub-problems and
attained them through ordinal regression problems. Biologically inspired features (BIFs)
were used for feature extraction tasks. Ranking of a CNN framework was proposed by [47],
where a single image was considered while designing the order of age group sub-networks
and ranking all these binary outputs to predict the final age label. Ref. [48] proposed
an end-to-end age estimation method, incorporating a novel cumulative hidden layer to
reduce sample imbalance problems from neighboring ages. In [49], the authors suggested a
CNN model competent to work in an unconstrained environment, where attention CNN
predicted the best attention grid and Patch CNN identified high-resolution patches for the
task of classification using a multi-layer perceptron.

In recent years, Ref. [50] unified the strength of a CNN and an extreme learning
machine (ELM) for age estimation and gender classification. Ref. [51] proposed a framework
of five cascaded structures for age prediction using gender and race information in the
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form of Gaussian Process Regression (GPR) instead of linear regression. Ref. [52] designed
a conditional multi-task learning system with weak label expansion for real age predictions
from the gender of a person. Ocular images captured from smartphones were utilized
for age classification in [53,54], which combined multi-stage learned features in the form
of score-level fusion and handcrafted features as the feature-level fusion of facial images.
In [55], the authors presented and evaluated an age estimation approach in unconstrained
images using facial parts (eyebrows, eyes, nose, and mouth), cropped from the input
images using landmarks, to feed a compact multi-stream CNN architecture. A CNN-based
architecture for a joint age–gender identification method was proposed by [56]. For the
CNN network, Gabor filter responses were used as inputs. Ref. [57] proposed a two-stage
approach, where the CNN predicted age and gender by using a modified MobileNet.
Ref. [58] proposed a novel method based on attention long short-term memory (ALSTM)
combined with a ResNet network for fine-grained age estimation. Ref. [59] introduced
a novel end-to-end two-level CNN approach to identify age and gender from unfiltered
faces. A lightweight CNN network with a mixed attention mechanism for low end-devices
was proposed in [60], where the output layer was fused by the classification and regression
approach. Another multi-task learning approach merging classification and regression
concepts to fit the age regression model with heterogeneous data with the help of two
different techniques for partitioning data towards classification was proposed in [61]. To
resolve the problem of data disparity and ensure the generality of the model, a very recent
method was proposed by Kim et al. [62], where a cycle-generative-adversarial-network-
based race and age image transformation method was used to generate sufficient data
for each distribution. All of the aforementioned CNN-based systems were evaluated
based on the constrained dataset Morph for age estimation. In our recent paper [63], we
demonstrated better MAE over the Morph dataset by pretraining a CNN network with
the in-the-wild face image dataset, IMDB-WIKI. We ensured relative balancing among the
101 age classes that exist in the IMDB-WIKI dataset towards real age estimation. Although
a lot of research has been carried out on age estimation from face images, none of the
research focuses on masked face estimation. Being motivated by masked face recognition
research amid the COVID-19 pandemic, we pursued our maiden attempt to estimate real
ages from human masked face images.

3. Proposed Method

Our proposed method was utilized during our experiments for real age estimation.
The proposed hierarchical approach was composed of two stages. In the first stage, we
performed group age classification, where 101 age classes were divided into three broad age
groups named child (0–15), adult (16–64), and elderly (65+) based on age dependency ratio
2020. After obtaining the predicted age group, the sample image was computed through
a particular network trained for each group in the final stage, utilizing the technique of
regression-through-classification. The idea behind this approach is to reduce the error
space, as the masked face real age estimation system consists of a significant amount of age
classes with less distinctive features. Moreover, the samples are not equal in every age class,
so the training can be biased to specific groups with required image samples in a balanced
fashion. Each step of the proposed approach shown in Figure 2 is depicted thoroughly in
this section.
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3.1. Data Sparsity Mitigation

Computer vision scholars acknowledged that facial age estimation in masked and
unmasked faces is a complex problem in this research area. In particular, masked face age
estimation has evolved as an obligatory research topic because of the pandemic. It is known
that solving a complex subject requires a deep structure of problem-defining components
along with sufficient data to train. If not, the trained model will endure the overfitting
issue. The main solution to the network overfitting problem is to ensure adequate data
for model training. As a matter of fact, there is a solo competent dataset, IMDB-WIKI,
which builds upon an unconstrained setting while having ample facial images. We found
that the IMDB-WIKI dataset is well-suited for training our age estimation deep network.
Although this dataset is rich enough in the context of samples, the inter-class disparity is a
concern. After screening this dataset, we observed that data in the age range 15~65 were
rationally incomparable with other age classes, which may have misled the empirical
results. As a solution to the data sparsity problem that exists in the aforementioned dataset,
the following steps can be useful:

• Set a threshold for choosing the image samples from each class considering the data
ratio all over the age classes.

• Remove the erroneously annotated samples of each age class using human visual
perception, which is shown in Figure 3.

• Enhance the image for the classes with very limited samples by (1) appending images
from the very pertinent Adience dataset [64] and (2) oversampling through data aug-
mentation operations such as flipping, rotating in the range of −30◦~30◦ maintaining
the steps of 5◦, and scaling to ensure the threshold value for the class balancing.
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Figure 3. Example of wrongly age annotated image samples in the existing IMDB-WIKI benchmark
dataset.

Additionally, some online data augmentation was also performed by rescaling the
images into 256 × 256 pixels, and a crop of 224 × 224 pixels from the center was input to
the network during training as a measure to alleviate the overfitting issues as well as the
robustness of the model. The subsequent data distribution of the underlying age classes
prior to and after initiating parity in the IMDB-WIKI dataset is presented in Figure 4.
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3.2. Face Detection and Alignment

Human face detection becomes an extremely difficult task when there are huge ap-
pearance variations and external factors. A standard network expects an input image
of identical size, centered position, and less background. As a practice, the majority of
age estimation systems perform face detection as an essential initial step because mining
discriminative facial features helps the systems to make final decisions. There are two major
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parts, named detection and alignment. Hence, a cascaded multi-task framework [7] is em-
ployed for face detection, where detection and alignment maintain an implicit relationship
for performance gain. The multi-task cascaded convolutional neural network (MTCNN)
face detection process is graphically visualized in Figure 5. Since deep CNNs are effectively
capable of dealing with tiny alignment errors, our goal was to choose a robust face detector
ensuring face alignment just via a marginal up-frontal rotation [6]. As a result, the overall
age error was reduced while using the detected face as input rather than a whole image.
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Although the chosen face detectors mostly successfully detected faces, they missed
faces in a few cases. In the case of failure, the whole image was considered for network
input. Furthermore, some extra context all around the face also boosted the system’s
performance. Thus, a 20% margin on every side was added with the detected face, and
border pixels were merely repeated while there was no context.

3.3. Regression via Classification

Conventionally, the prediction of age falls into the category of a regression problem
because age represents a continuous value, preferably a set of discrete classes. The off-the-
shelf pre-trained models evaluated for ImageNet classification consist of neurons for every
object class, normalized employing the Softmax function. In the case of the regression
task, we employed a Euclidean loss function with the replacement of the output layer with
one neuron. Unfortunately, training a CNN solely for age regression tasks experiences
a high error rate due to the instability while handling outliers. Consequently, the model
convergence had difficulty owing to high gradients and unstable predictions as well.

Under these circumstances, we considered the age regression task via a standard
classification approach where the ages were discretized into K categories. Hence, the
Softmax function was used in the output layer of the network to normalize the arbitrary
output values into probabilities across predicted age classes. Equation (1) describes the
procedure of the probability generation for each labeled class by the Softmax activation
function, mentioned below:

S(v)i =
evi

∑N
j=1 evj

(1)

where i denotes the present element index of the input vector v, N is the total number of
classes for the particular task, and all v values are the elements of the input vector.
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Following this procedure, the learning conducted by the CNN model for age classifi-
cation and quantifying the regression value out of the expected value formulated by means
of Softmax probabilities belongs to the K neurons, as shown in Equation (2).

E =
|k|

∑
i=1

yi·pi (2)

where k belongs to 101 age categories, yi ∈ [0, 100], and i = 1, 2, . . . 101. pi denote the
Softmax-normalized output probability of neuron i. From the experimental results, it is
proven that robustness throughout training and accuracy during testing is ensured by
this formula.

3.4. Deep Learning Models

Since the second decade of the twenty-first century, deep learning methods have
shown their pervasiveness in all sectors of academia and industry. Accordingly, these
technologies proved primacy in learning multiple levels of facial representations that were
persistent to facial changes due to external factors. Convolutional neural networks are
amongst the most effective deep learning class and have shown primacy in a wide range of
image-based applications such as image classification, face recognition, object detection, etc.
A convolutional neural network comprises several computational basic building blocks
named convolution, pooling, and dense layers, projected to learn spatial hierarchies of
features automatically and adaptively through a backpropagation algorithm.

Therefore, we employed several convolutional neural networks to predict the age of a
human exclusively from a single face image. This network used an aligned face with the
background as input, and the output was the predicted real age. In our system, we used
multiple popular, lightweight, and high-accuracy-based pre-trained CNN architectures
named ResNet [65], WideResNet [66], DenseNet [67], MobileNet [68], ShuffleNet [69], and
SqueezeNet [70]. The reasons for choosing these architectures were that they (1) are deep
and tractable, (2) were winners of the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in different years, (3) maintain a trade-off between performance and prediction
time, and (4) concede reasonably good starts for model training. Table 1 reviews the prime
attributes of the widely held CNN models used in human age estimation from masked
face images.

Table 1. A summary of deployed pre-trained convolutional neural networks.

Model Parameters Size Depth

ResNet 50 25.6 M 96 MB 50
Wide ResNet-50-2 68.9 M 131 MB -

DenseNet-121 8.1 M 33 MB 121
MobileNet-v2 3.5 M 13 MB 53

ShuffleNet 1.4 M 5.4 MB 50
SqueezeNet 1.24 M 5.2 MB 18

3.5. Synthetic Masked Face Generation

In order to overlay face masks, we needed to perform face detection first. For face
detection, we used dlib’s frontal face detector which is based on histograms of oriented
gradients (HOGs) and a linear SVM. Subsequently, we detected facial landmarks using
facial landmark predictor dlib.shape_predictor from dlib library [71], which estimates the
location of 68 (x, y)-coordinates that map to facial structures on the face. Facial landmarks
are used to localize and represent salient regions of the face, such as eyes, eyebrows, nose,
jawline, mouth, etc. It is a technique that has been applied to applications such as face
alignment. Once the facial landmarks were detected, we were then able to start overlaying
the face masks on the faces by joining the required points using the OpenCV drawing
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functions. Some of the face images after overlaying masks from IMDB-WIKI datasets are
presented in Figure 6.
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3.6. Performance Metric

Our masked face age estimation system was evaluated in a qualitative and quanti-
tative fashion. As a quantitative performance measure, we used two standard metrics
named mean absolute error (MAE) and cumulative score (CS). The predicted age and
corresponding age ground-truth with the face image are presented as qualitative standards
for the facial age estimation task.

MAE: The system performance is reported as the mean absolute error in years. It
calculates the mean of the absolute error amongst the predicted and ground-truth age
values. A de facto standard for evaluating the performance of age estimation is standardized
as MAE because most researchers choose it for the system evaluation. The MAE is calculated
using Equation (3).

MAE =
∑N

i=1

∣∣∣yp
i − ygt

i

∣∣∣
N

(3)

where N is the sum of test images, ygt
i denotes the ground-truth age, and yp

i implies the
predicted age of the ith image, respectively.

CS: The cumulative score is a measure based on the age error threshold value. It repre-
sents the percentage of test samples with an absolute age error less than a threshold value t
among overall test samples. The cumulative score is described below by Equation (4):

CS =
Nae<t

N
∗100% (4)

where t ∈ [0, 10] and Nae<t is the count of test images that possess an absolute age error
less than the corresponding threshold value. The overall count of test images is denoted
as N.

4. Experiments and Results
4.1. Implementation Details

We learned six different CNN models separately in singular and hierarchical manners
for the facial age classification task. The deep learning framework PyTorch [72] from
Facebook’s artificial research lab was used for network training. For faster processing
and to facilitate a parallel computing platform, the Nvidia GeForce GTX 1080 Ti graphics
processing unit (GPU) with 3584 CUDA cores and 11 GB of video memory was utilized.
The overall training time for the large IMDB-WIKI dataset took almost half a day to train a
deep network, whereas a light network only took a couple of hours.
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For the age classification, we computed the expected age value using the Softmax
probabilities corresponding to output neurons, similar to [6]. We trained the models
designed in a singular and hierarchical fashion with a relatively balanced, synthetically
generated masked face IMDB-WIKI dataset. Every age was considered as an individual
class that ranged from 0 to 100 in the singular approach. Likewise, one model for age
groups and three specific models were trained for individual groups in the hierarchical
approach. We finetuned the deployed models with our experimented dataset and reshaped
the network with a new output layer. In finetuning, we started with a pre-trained model
and updated all the model’s parameters for our task. Although both the source and target
network performed classification, we performed finetuning rather than feature extraction
because real age classification is a bit different from other object classification techniques.
Hence, the output layer was trained from scratch, while the parameters of all the other
layers were finetuned based on the parameters of the source model.

For all experiments regarding masked face real age estimation, the CNN was initialized
with the weights trained on ImageNet [73]. This pre-trained model was then further
finetuned on the IMDB-WIKI image dataset for real age prediction. Finally, the CNN was
tested with the in-the-wild synthetically masked face image dataset IMDB-WIKI. Every
training set in either age estimation approach utilized 80% of the images for training, and
the rest, 20%, was used for the system evaluation as a validation set and test set. We used
separate validation and test sets that equally comprised 20% of the total samples to validate
the system. We maintained the de facto data split strategy to ensure that the validation
and testing set minimally contained data from all the age classes. We used weighted
cross-entropy to ensure the same weight for all classes during the course of learning. The
training was optimized with Adam optimizer, keeping the momentum value of 0.9, and a
standard weight decay rate was maintained to ensure the regularization. The learning rate
was adjusted, while the loss values did not decrease for five consecutive epochs.

4.2. Dataset

In this paper, we generated a synthetic masked face image dataset from one of the
largest in-the-wild face image benchmark datasets for masked face real age estimation. A
brief description of this dataset that mentions the specifications is primarily introduced in
this section.

IMDB-WIKI: IMDB-WIKI is a leading publicly available demographic annotated
face image dataset. It is mainly a celebrity face image dataset crawled from the IMDb
website and Wikipedia, and comprises nearly 500 k samples covering a wide age range of
0~100. The age is determined by the person’s date of birth and the crawling timestamp.
Around 88% of the half-a-million images are collected from the IMDb website, and the
rest from another source. This dataset has a percentage of inferior images (i.e., funny,
sketch, occluded, several subjects in the same frame, cluttered background, and black) that
may mislead the system training. As the first step of our experiment, we removed the
noisy labels and the images containing multiple subjects from each age class. Thenceforth,
we followed the down-sampling and up-sampling strategies to maintain a close ratio of
the samples in every class. Finally, we generated a synthetic face mask dataset from the
existing samples in the revised IMDB-WIKI dataset. Hence, a total of 107k images remained
available for the model training (80%) and evaluation (20%).

4.3. Results

The quantitative results of our proposed masked face real age estimation system
are reported in this section. Our reported age estimation result is in the form of MAE.
We evaluated our system on the synthetically generated masked IMDB-WIKI dataset to
estimate the real/biological age of a person. In Table 2, we present the mean absolute
error values achieved after a massive experiment was conducted, utilizing prominent
off-the-shelf deep convolutional neural network models. From the comparison table, it is
clearly evident that in all cases of experiments, hierarchical approaches perform marginally
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better than the singular approach. The comparative results of deployed CNN architectures
are graphically presented in Figure 7.

Table 2. Mean absolute error values regarding real age estimation over synthetic masked IMDB-
WIK dataset.

Model Name Singular Approach Hierarchical Approach

ResNet 50 5.13 4.35
WideResNet 4.81 4.20

DenseNet 5.38 4.52
MobileNet 5.85 5.25
ShuffleNet 6.17 5.70

SqueezeNet 6.88 6.70
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We investigated the performance of the deployed pre-trained CNN models for each
particular age group (child, adult, and elder), which is quantitively shown in Table 3 and
graphically presented in Figure 8. A pictorial presentation that mentions the quantitative
performance (MAE) found over the synthetic masked face dataset, IMDB-WIKI, through
both approaches is reported in Table 4.

Table 3. Age-group-wise mean absolute error comparison of the experimented convolutional neural
networks regarding real age estimation over synthetic masked IMDB-WIK dataset.

Model Name Child Group Adult Group Elder Group

ResNet 50 0.80 4.70 1.52
WideResNet 0.81 4.41 1.64

DenseNet 0.92 4.63 2.04
MobileNet 1.03 5.13 2.49
ShuffleNet 1.10 5.98 2.05

SqueezeNet 1.35 6.41 3.23
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In Table 5, we compare our system performance with the existing methods concerning
the mean absolute error achieved irrespective of whether faces are masked or non-masked.
We only compare this with systems that estimate the biological age of a person rather than
the apparent age or age group. We achieved better MAE in contrast to the works AGES [19],
Kim et al. [63], OHRank [74], and CA-SVR [75], although our system handles face images
with masks.

Table 5. Performance comparison with existing prominent facial age estimation methods.

Method Dataset Number of Images Number of Subjects Wearing Mask MAE

AGES [19]

Morph 55,134 13,618

No 8.83
Kim et al. [63] No 4.29
OHRank [74] No 6.07
CA-SVR [75] No 5.88

Proposed Imdb-Wiki 523,051 20,284 Yes 4.20

As stated in the calculation procedure of the cumulative score (CS), the CS values
on the synthetic masked face image dataset under distinct error thresholds are plotted in
Figure 9. From the figure, a steady growth in CS value is observed if the allowable error
thresholds increase. A comparison of cumulative scores between singular and hierarchical
approaches is graphically presented in Figure 10. In this comparison curve, the score
achieved using the WideResNet model is plotted, where the hierarchical approach exhibits
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steady performance across all error threshold values. It is worth mentioning that in the
early stage of the curve, the hierarchical approach contains more test samples with less
errors than the singular approach and gradually performs steadily considering more error
threshold values.
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Figure 10. Cumulative score comparison among singular versus hierarchical approach designed for
the real age estimation task using the WideResNet (WRN) model.

We conducted a statistical test to observe the significant differences between the two
approaches (singular and hierarchical), because this allowed us to ensure the robustness of
the model performance. We chose the Wilcoxon Signed-Rank test because our experimented
observation does not follow the normal distribution. The null hypothesis with the Wilcoxon
Signed-Rank test is that the pairwise statistics (e.g., mean) between the observations from
both (singular and hierarchical) approaches are equal. The calculated p-values with a
confidence level of 5% validate that we would reject the null hypothesis, concluding that
the means between the groups are different. Since the p-values contain long fractional
parts, we visualize the p-value result in Figure 11, which is similar to work [76], where
−log10(p− value) is presented rather than the actual p-value.
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5. Discussion

This article proposed a deep-learning-based hierarchical approach for estimating the
biological age of a person wearing a face mask in a group-specific manner. In the hierar-
chical approach, the error spaces were squeezed by introducing the group classification
approach prior to the age regression stage of the computation. Firstly, we classified the
sample of 101 age classes into three major age groups named child, adult, and elder. Next,
the specific network designed for each age group carried out the age estimation process
through regression-via-classification strategies described in Section 3.

In the system design, we addressed two crucial types of deep learning model uncer-
tainty: epistemic uncertainty and aleatoric uncertainty. Epistemic uncertainty occurred
due to data inadequacy and systematic bias while collecting samples observed partially
because some age classes (i.e., 1, 3, 4, or 97) contained very few image samples (<100) for
training. Similarly, there was some randomness in the input data due to pixel noise, and
the incorrect annotation caused aleatoric uncertainty. We tried to mitigate both the model
uncertainties by data augmentation, data supplementation, and manually filtering out the
noisy data as much as possible.

The proposed hierarchical approach demonstrates comprehensive results over the
synthetic IMDB-WIKI masked face image dataset in anticipation of real age estimation.
From the experimental results presented in Figure 7, it is quite evident that the hierarchical
approach is marginally better than the singular approach, apart from with regard to deep
learning model selection. If we consider the cumulative score graph presented in Figure 10,
as the error threshold value is less, the difference between the approaches is quite evident.
Furthermore, the performance of the models while experimenting on individual age group
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is presented quantitively and graphically in Section 4. Our models demonstrated enviable
performances in the case of the child and adult group, whereas they were still deficient
when handling adult faces, since the changes in features among adults are relatively stable
and indifferent.

It is worth mentioning that lightweight models demonstrate a slightly higher MAE
than deeper models but are competent enough for deployment in low-end devices. Addi-
tionally, we performed a statistical significance test to ensure the system’s robustness and
proved that the performance achieved through hierarchical and singular approaches was
significantly different (see Section 4 and Figure 11).

In future research, we will try to build a new face mask dataset by maintaining parity
among the age classes since the amount of data in every age is insufficient to train a deep
learning model for a complex problem such as real age estimation. We will try to lessen the
mean absolute error in the adult group, which was somewhat higher than the other groups
formulated in this experiment.

6. Conclusions

In this paper, we proposed a biological age estimation system from masked face
images amid the COVID-19 pandemic that has been taking place since 2020. As we know,
due to the pandemic, people should wear a face mask, which necessitates the migration
of existing face-based real-world applications. Hence, the proposed research could be
a promising solution for real-world applications of those services based on the age of a
person. Since there is shortage of research regarding demographic estimation from masked
face images, the authors were motivated to conduct this research by following research
regarding masked face recognition. We tried to tackle the masked face age estimation
problem in a group-specific manner, where age group classification is performed prior
to age regression via classification. We performed a comparative analysis between the
singular and proposed hierarchical approach in terms of the mean absolute error of age.
The empirical results proved that the hierarchical approach is marginally better than the
singular approach, comprising only one model for masked face real age estimation. It is
an insightful observation that the proposed approach performs better considering the low
error threshold value shown in the cumulative score comparison curve. As this is perhaps
the maiden attempt toward masked face real age estimation, the authors tried to give
an empirical outline utilizing multiple accuracies versus memory-efficient convolutional
neural networks and prove the superiority of the proposed hierarchical approach.
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