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Featured Application: The purpose of this work was to provide a detailed derivation process of
the 3D analytical solution and TMs of the RDGCs based on the previous studies on the variable
ducts and propose a certain reference for designing and improving the acoustic characteristics of
the duct systems used in high-speed trains.

Abstract: Rectangular ducts used in the air-conditioning system of a high-speed train should be
carefully designed to achieve optimal acoustic and flow performance. However, the theoretical
analysis of the rectangular ducts with gradient cross-sections (RDGC) at frequencies higher than
the one-dimensional cut-off frequency is rarely published. This paper has developed the three-
dimensional analytical solutions to the wave equations of the expanding and shrinking RDGCs.
Firstly, a homogeneous second-order variable coefficient differential equation is derived from the
wave equations. Two coefficients of the solution to the differential equation are set to zero to ensure
convergence. Secondly, the transfer matrices of the duct systems composed of multiple RDGCs are
derived from the three-dimensional solutions. The transmission losses of the duct systems are then
calculated from the transfer matrices and validated with the measurement. Finally, the acoustic
performance and flow efficiency of the RDGCs with different geometries are discussed. The results
show that the REC with double baffles distributed transversely has good performance in both acoustic
attenuation and flow efficiency. This study shall provide a helpful guide for designing rectangular
ducts used in high-speed trains.

Keywords: theoretical derivation; three-dimensional wave equation; rectangular duct with gradient

cross-sections; transfer matrix

1. Introduction

Rectangular ducts are used in the air-conditioning systems of high-speed trains+ to
guide airflow. Some rectangular ducts adopt the oblique baffles (Figure 1) to form the
varying cross-sections which improve the performance of the ducts in noise attenuation [1].

Oblique baffles

Figure 1. Rectangular ducts used in a Fuxing bullet train.

The current studies on the duct acoustics of high-speed train are practiced based on
simulation, such as the hybrid method of finite element and statistical energy analysis
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(FE-SEA) [1,2]. Most scholars have focused their research on ducts suitable for any vehicle
based on a variety of methods. Both analytical and numerical methods have been widely
used in the field of duct acoustics. Generally, the numerical methods, such as the finite
element method (FEM) [3-6], boundary element method (BEM) [7] and computational
fluid dynamics (CFD) method [8-10], are popular for analyzing duct systems with complex
geometries. Assis et al. [4] proposed a spectral FEM approach to compute the transfer
matrix (TM) of duct systems with arbitrary geometries. Liu et al. [8] proposed the time
domain CFD approaches to predict the acoustic performance of the duct systems without
and with mean flow.

On the other hand, the analytical method is more efficient in computation than the nu-
merical methods. Two types of analytical methods have been used to investigate a duct sys-
tem with varying cross—sections. The Wentzel-Kramers—Brillouin (WKB) method [11-15]
utilizes the high frequency approximation that allows to neglect certain terms in the non-
linear governing equations of the media in a duct. Subrahmanyam et al. [12] used the
WKB approximation to derive the exact solutions for one-dimensional (1D) ducts with area
variations in the absence of mean flow. Rani et al. [14,15] derived a WKB-type solution to
the generalized Helmholtz equation in 1D ducts with nonuniform cross-sectional areas
and inhomogeneity in mean flow. The WKB approximation is less accurate than solving
the full wave equations of the duct. The solutions to the wave equations of 1D ducts with
varying cross-sections have been studied for decades [16-23]. Pillai et al. [24] developed
the 1D solution to a horn-like rectangular duct at frequencies lower than 250 Hz. However,
the three-dimensional (3D) solutions to the wave equations in rectangular ducts with gra-
dient cross-sections (RDGCs), which are more accurate at higher frequencies than the 1D
solutions, are rarely seen.

The objective of this paper is to develop the 3D analytical solutions to the wave
equations of the expanding or shrinking RDGCs at frequencies up to 1600 Hz. The derived
solutions are used to obtain the TMs and transmission losses (TLs) of the duct systems
consisted of RDGCs, which have been validated with the measured results. Lastly, the
effects of the RDGC geometries on the acoustic performance and flow efficiency of the duct
systems are discussed.

The organization of this paper is as follows: Section 2 develops the 3D analytical
solutions to the wave equations of RDGCs. In Section 3, the TMs of the RDGCs are derived.
In Section 4, several duct systems consisting of RDGCs are modeled to obtain the TMs. The
TLs and pressure losses of the duct systems with different RDGC geometries are obtained
and discussed in Section 5. Finally, the conclusions are presented in Section 6.

2. 3D Analytical Solutions to the Wave Equations of a RDGC
2.1. 3D Solutions for a Straight Rectangular Duct
Figure 2 shows a uniform rectangular duct with a width of b and a height of /. The 3D
wave equation of the rectangular duct is given by [25]
9%p

where p, t and c are the sound pressure, advancing time and sound velocity, respectively.
The Laplacian operator V2 is given as follows:
2 2 2
, O 9 d

—ﬁ‘FWﬁL@ )

where x, y and z are the Cartesian coordinates shown in Figure 2.
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)

Figure 2. A straight rectangular duct.

The general solution of Equation (1) [25] is
p(x,y,z,t) = (Cle_jkzz + Cze+jkzz) (e‘jkxx + C3€+jkxx) (e‘jkyy + C4e+jkyy)ej‘”t (3)

where j is the imaginary unit. Cq, Cp, C3 and Cy are the coefficients to be determined with
boundary conditions. ky and ky, are the wave numbers in the x and y direction, respectively.
k; is defined as

ke = k2 — k2 — k2 4)

where k = w/c and w is the angular frequency. The solution of the rigid-walled duct with
a width of b and a height of & is given by

p(x,y,z,t) = i i cos(m;[x) cos(n;lry)p(z,t) (5)

m=0n=0

where p(z,t) = (clrmne—ikz,mnz + cz,mneﬂ‘kz,mﬂ) ét and k, = \/ k2 — (mm/b)? — (nm/h)>.
Here, cos(mmx/b) cos(nry/h) is an eigenfunction representing the wave shape in the x-y
plane at the (m, n) mode. Cy ,,, and Cy ,, are the amplitudes of the waves at the (m, n)
mode propagating in the positive and negative z directions.

2.2. 3D Solutions for a RDGC

A RDGC with either expanding (positive 8) or shrinking (negative ) sections is shown
in Figure 3. 0 is the angle between the bevel edge and the z axis. b; and b, are the widths of
the inlet and the outlet, respectively.

@ (b)
Figure 3. (a) A rectangular duct with expanding sections, (b) a rectangular duct with shrinking sections.
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Since the cross-sectional area S changes along the z direction, the 1D sound wave
equation in the z direction is obtained with modifying Equation (1) as

ap 19%p
S 0z (S 82) c2ot2” ©)

For an expanding duct, S is given by
S = (ztanf + b;)h (7)

Substituting Equation (7) into Equation (6) yields a homogeneous second-order vari-
able coefficient differential equation as follows:

0%p tanf dp 19%p

o2 P zano oz 2o ®
The solution of Equation (8) is given by [26]
p(z,t) = {B4Jo(kze) + B_Jo(—kza) + C+Ko(—jkza) + C_Ko (jkza) }l* )

where & = z + b;/ tan 6. The quantities B, B_, C4 and C_ are the corresponding ampli-
tudes. Jo(.) is the zeroth order of the Bessel function of the first kind, and Kq(.) is the zeroth
order of the modified Bessel function of the second kind [27]. When k,a becomes imaginary,
the values of Jy(k;a) and Jo(—k,«) are possible to be infinite. To converge the solution, B
and B_ are set to zero. As a result, Equation (9) is simplified as

p(z,t) = {C1Ko(—jka) + C_Ko(jkoa) }e. (10)

Substituting Equation (10) into Equation (5), with b replaced by b; 4 z tan 8, the 3D
solution of an expanding RDGC is derived as

nmy . . i
oz mzonz () cos (T ) (Ko (—kemnt) + CnKo(GKe )} (1)
- 2 mrit 2 _ 2
Kemn = \/k (uctanQ) (n7t/h) (12)

where C4 ;;, and C_ ,,, are the coefficients to be determined with boundary conditions.
Solve the momentum equation [25]

Jdv 1

to give the particle velocity v of an expanding RDGC as follows:

o(x,y,z,t) = Pow 2 2 Kz, mn COS(,X";;%) COS(Ty) {Ctmn Ky (—jkzmna) — C— mnKy (jkz,mn“)}ejwt

m=0n=0
1 2 & mmax mrx nmy :
- i ; jwt (14)
—I—( i >m§ 0,; Ztanf Sm(octan()) cos( ){C+ mnKo(—jkzmn) + C— nKo (jkz,mna) }e

X

where pg is the ambient air density and K (.) is the first order of the modified Bessel
function of the second kind.

The derivation of the solutions for a shrinking RDGC is similar to that of an expanding
RDGC and gives the same equations of Equations (11) and (14) with a negative 6.
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3. Derivation of the TM for a RDGC

C g } ) is used to describe the relationship as follows:

pi|_|A B Po
al=le sl &
where v; and v, are the average particle velocities at the inlet and outlet of a duct system.
The quantities p; and p, are the inlet and outlet average sound pressures defined with

The transfer matrix T ( { 4

1
pi =5 JJ, vy, 0)dxdy (16)

1
Po = STJIISO p(x,y,1)dxdy 17)

where | is the length of the duct. The quantities S; and S, are the inlet and outlet cross-
sectional areas, respectively. The four elements of the TM can be obtained as follows:

A = (pi/po)lo,=0
{ C = (vi/Po)lv,=0 (18)
B = {(pi - APO)/UO}|UZ.=O
{ D = (—Cpo/0)| ;=0 ' (19)

The elements A, B, C and D can be calculated from Appendix A.

/ !
A B } ) of the shrinking RDGC is derived from the T

The transfer matrix T’ ({ oD

with a negative 6.

4. The TMs and TLs of Rectangular Expansion Chambers (RECs)
4.1. The TMs of the RECs with One or Double Baffles

To simplify the setup of a validation experiment, the circular ducts with a diameter
of 50 mm are added at the inlet and outlet of the rectangular chamber with a height (1) of
150 mm. The dimensions of the REC with one baffle are shown in Figure 4. The dimensional
parameters of REC are designed according to those of the branch rectangular ducts in high-
speed trains. The center o of the baffle coincides with that of the REC. All the RECs in
the following sections have the same circular ducts and rectangular chamber as those in
Figure 4.

100mm 250mm 100mm
Nassssssssssssssssssssssssusss
: i i E  Rectangular
b=200mln\i : i E/chamber
[} II' 1

b i | .

] ik

L] : : L]

a = [P ¢ :Pna, .
B S b St ——————1 L
b = v b ' Vir,
\

L/ 1z v
! . o ! 'l,“‘ i n -
: Circular duct ! E. Dis I v, i : Circular duct i
1
: AT - :
! ] iy i o i
(: II‘.IIIIIlllllllwvlllllllllilll :
: 1 ; I : I :
it il e i -

Figure 4. The gemometry of the REC with one baffle.

The components of the REC with one baffle are specified in Table 1.
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Table 1. Description of each component of the REC with one baffle.

Unit ™ Annotations
I T —made of two uniform ducts and one sudden expansion section
i T}/IV —made of an expanding RDGC (II) and a shrinking RDGC (II)
1 T —made of two uniform ducts and one sudden contraction section

The transfer matrices (Ty; and Ty’) of the expanding RDGC and the shrinking RDGC
are given by

An B ] ' [ A'yn By ]

Ty = ,Ta= . 20
1I |: CH DH 11 C/H D/H ( )
According to the notation in Figure 4, the state variables at the two ends of each RDGC

are related by

pi | _ Po pi ] _ [ Po
Gl ] @
The continuity of pressure and mass velocity at the inlet and outlet of the component
" gives

pui = pi = pi, Piio = Po = Pl (22)
Suivni = Sivi + Siv}, Sievio = SeVo + Sy (23)

where / denote the variables of the shrinking RDGC. Syj; and Sy, represent the cross-
sectional areas at the inlet and outlet of the component 11"V, respectively. Solving simultane-
ously Equations (21)—(23) yields [28]

W W
P :TW[ Pro } _ { Ap By ] [ Piio ] o4
{ (¢ } T o, cy DY Ullo @4)

The terms of the TM are given by

i BiiSo+B[;Ss
W _ BBy Sio
i BySo+B[;Sh

oW _ (DuSoS[=DjiS,S;) (Af—Au) | SiCutSicy (25)
1 (BuSo+Bj;Sy ) Sii Smi

DW — (Dllsosz{_Dl,Isési)Bﬁsno S11,S:Djy
Il (BuSo+B};S})ShSmi SoSu1

The TM of the REC with one baffle is calculated with

Ty The ]
T, = T;T) Ty = . 26
1=T/Ty Ty [ Ty, T (26)
where T and Ty are calculated with the analytical solutions in the refs. [29,30].

The cut-off frequencies at the mode (1, n) of a duct with a rectangular section can be

calculated with
ot =Sy O+ (' @)

Table 2 shows the calculated cut-off frequencies with m, n < 2 of the rectangular
chamber (Figure 4). The maximum cut-off frequency at (2, 2) mode is 2858.3 Hz. As a result,
the number of modes with m, n < 2 is enough to investigate the acoustic characteristics of
the RECs at frequencies below 1600 Hz.
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Table 2. Modal frequencies (Hz) of the rectangular chamber.

m
0 1 2
n
0 0 857.5 1715.0
1 1143.3 1429.2 2061.2
2 2286.7 24422 2858.3

Figures 5 and 6 show the geometries of the RECs with double baffles distributed either
axially or transversely. The distance between the centers (01 and 0,) of the baffles is 100 mm.
The T; and Ty in Figures 5 and 6 are exactly the same as those in Figure 4. T}/IV and T{/}]
in Figure 5 are calculated with the Equation (25), while the Ty of the straight rectangular
duct is obtained with the analytical solutions in the ref. [29].

I v

I o”imvg v” III

Figure 5. The REC with double baffles distributed axially.

I )1 L III
Figure 6. The REC with double baffles distributed transversely.

The transfer matrices (Tyy, Ty’ and TILII ) of the expanding RDGC, the shrinking RDGC
and the uniform duct (II¥) in Figure 6 are given by

An B Al B
Tn—[ 1l H]’Th_[ o on

C D D I
/ ’ I
I I 11 11

A4 BY ]
1 °n
u pu |- (28)
Ci Dy

The transfer matrix (T{/IV ) of the component 11" is calculated with a similar process
presented in the Equations (21)—(24) and the four elements are given by

u u u u u
AW — AUB} By SY+ A} BY By SH+ Ay Bj BYS,
I BBy S5'+Bl B S, + B} BY'S,
_ B};B¥BuiSuo
B! By S5 +BY By Sh+BjBY S,
AUB! BySU+ Al BUByS! + Ay Bl BUS, , D/S! DUsY DpS:
— 21 PnPioe 1271 P20 T APy Py 2o A0 11 2 oi
B} By S5'+BY By Sh+B BYS, BySu; -+ BYSy; © BuSu
Uuplcu ucu
_ ( AuDiSi + A Dy S AnDyS; ) SiChi+Si Cri+SiCu
B Su; BYsy; BuSui Sii
_ Stio (D BY BySi+DH BBy SH+ Dy By BY S;)
Sui(Bj;BuSS+BY By Sh+B4BH S,)

W
BH

Cy (29)

W
DII



Appl. Sci. 2022,12, 5307

8 of 18

where Sl.u and SY are the cross-sectional areas of the inlet and outlet of the component ITY.
The TM (Ty,) of the REC with double baffles distributed axially and the TM (Ty;) with
double baffles distributed transversely are given by

Ty, = T/ T Ty T Ti (30)
Ty = T, T} T (31)

4.2. Geometries of the RECs

Table 3 shows the geometries of the RECs with different baffle configurations. All the
baffles in the RECs have a thickness of 4 mm.

Table 3. The geometries of the RECs with different baffle configurations.

Case 1-0 I, = 0.500, 0 = 40°
Case 1-1 o I, = 0.50b, 6 = 20°
Type 1 Case 1-2 I: ) o :l I, = 0.500, 6 = 60°
Case 1-3 I, = 0.300, 0 = 40°
Case 1-4 The REC with one baffle Iy = 0.400, 6 = 40°
Case 2a-0 I, = 0.50D, 6 = 40°
Case 2a-1 e R I, =0.50b, 6 = 20°
Type 2a Case 2a-2 — / ’ / e — I, = 0.50b, 6 = 60°
Case 2a-3 I, =0.30D, 0 = 40°
Case 2a-4 The REC with double baffles distributed axially Iy = 0.40D, 6 = 40°
Case 2t-0 i I, = 0.50D, 0 = 40°
Case 2t-1 = I, = 0.500, 6 = 20°
Type 2t Case 2t-2 — ] %ﬂ — I, = 0.50b, 6 = 60°
Case 2t-3 e I, = 0.300, 6 = 40°
Case 2t-4 The REC with double baffles distributed transversely I = 0.400, 6 = 40°

4.3. Calculation and Measurement of the TLs for the RECs

The TL of a REC can be calculated from the derived TM as follows:

> . (32)

To verify the accuracy of the analytical method, the TLs of the RECs (Case 1-1, Case
2a-1 and Case 2t-1) were measured with the two-load method [31] shown in Figure 7. The
sound source was located at the outside of a semi-anechoic room where a REC with baffles
was located. An acoustic stimulus was introduced into the REC through a metal duct,
where two microphones were placed with a distance of 40 mm. The other two microphones
were located with the same distance at the duct connected to the outlet of the REC. A Briiel
& Kjeer (B&K) 3560 C Module was adopted to acquire the data sampled with a frequency of
16,384 Hz. The experimental parameters are given in Table 4.

1 T
TL = 201og;, (2 Tyy + p—;i + To1 - poc + T
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—=

E==90
B&K software
with computer

B&K 3560 C
Module

‘ ! Semi-anechoic Room
1,

Figure 7. Experimental setup for measuring the TL of a REC.

Table 4. Experimental parameters.

Parameters Values

Temperature 245°C

Relative humidity 29.2%
Pressure 101,300 Pa

5. Results
5.1. Experimental Validation of the Calculated Results

In order to verify the 3D analytical method, the TLs obtained by experiment, 3D ana-
lytical method and FEM are shown in Figure 8. The FEM model and boundary conditions
are shown in Appendix B. Generally, the calculated results are in good agreement with
the measured results and the accuracy of the analytical method is validated to a certain
degree. However, the frequencies of TL peaks from FEM agree less with the experimental
results than those obtained by the 3D analytical method in this paper. The inaccuracy of
the measured TLs below 200 Hz shown in the Case 1-1 of Figure 8 should be attributed
to the insufficient energy of the sound source in this frequency range. As a result, the TLs
below 200 Hz are not presented in the other cases of Figure 8. The discrepancies between
the experiment and the 3D analytical method at higher frequencies may be caused by
the following reasons. First, the analytical method regards the REC as rigid, while the
prototypes under test are made of plastic with certain elasticity. Second, the damping
in the air is ignored with the analytical method. Third, the ignorance of the B ], (k:«),
B_Jo(—kza) in the Equation (9) and the X in Equation (14) also causes errors.

5.2. TLs of the RECs

The TLs of the RECs with one or double baffles are shown in Figures 9 and 10. It can
be seen that the peaks and troughs of the TL curves of all types move to a lower frequency
with the decreasing 0 and increasing [;,. Although the Type 2a has more TL peaks, it is
worse in performance than the Type 2t at frequencies from 500 Hz to 1100 Hz. Generally,
the Type 2t is better in acoustic performance than the other types, especially at frequencies
from 600 Hz to 1100 Hz.
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= = —3D analytical method

TL{dB
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TL {dB
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Case 2t-1 ’
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10 :'I 4
e ']I i :
3 I '
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o
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/ :
0 1 L LY
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Figure 8. The comparison of TLs obtained by experiment, 3D analytical method and FEM.
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Figure 9. TLs of the RECs with different baffle angles.
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Figure 10. TLs of the RECs with different baffle lengths.

5.3. Pressure Losses of the RECs

The improvement of the acoustic performance of a duct system cannot be at the
expense of flow efficiency. A CFD model [32] (Figure 11), using the standard k-¢ turbulence
model, is adopted to calculate the difference (pressure loss) between the area-weighted
average pressures at the inlet and outlet of the RECs. The model is discretized by about one
million unstructured tetrahedral meshes with a mesh size of 3 mm. The inlet has a velocity
of 10 m/s and the outlet has a zero gauge pressure.

Pressure Outlet

Velocity Inlet
—)

—)

Figure 11. CFD model of the REC with one baffle.

Table 5 shows the pressure losses of the RECs with one baffle or double baffles. It
can be seen that the pressure losses of the Case 1-0 and Case 2a-0 are higher than the Case
2t-0. Therefore, the REC with double baffles distributed transversely (Type 2t) has good
performance in both flow efficiency and TL.

Table 5. The pressure losses of the RECs with different baffle configurations.

Case 1-0 Case 2a-0 Case 2t-0
141 Pa 140.2 Pa 117.7 Pa

The influence of the baffle angles and lengths on the pressure losses of the RECs are
shown in Figures 12 and 13. Figure 12 shows that the pressure losses of Type 1 and Type 2t
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increase as 0 increases, while the pressure loss of Type 2a decreases as ¢ increases from 40°
to 60°. Figure 13 shows that Type 1 and Type 2a have much higher pressure losses than
Type 2t, while the pressure loss of Type 2t increases faster than Type 1 and Type 2a as [,
increases. In general, Type 2t has better performance in flow efficiency than the other types,
especially at small values of 8 and [,,.

150 T T T T T
I O ]
140 F e O=====-=---- o §
[ o/ o _
g 130 O s .
EREUS A - ’
g 110 _Ib=0-50b e 4
2 | e ]
() 7
- .
~ 100 | _/'/ —{J—Type | |
90 7 -X-Typﬂa-
L - —/\— Type 2t 1
80 Z> n 1 n 1 yp
20° 40° 60°
0

Figure 12. The pressure losses of the RECs with different baffle angles.

150 T T T T T

140 - O ——=0 -
< 130 O====-=""" 8_ T ]
& I |
2 —A()\O
& 12016=40 _A ’
(o] -
g 110 e .
% -
k= -" -
& 100 | .,_—A/' —{J=Type 1 |

9 T —O- Type 2a |

L A= —/\—Type 2t |
80 1 1 1
0.306 0.40b 0.50b

Figure 13. The pressure losses of the RECs with different baffle lengths.

6. Conclusions

Here, the 3D analytical solutions to the wave equations of the expanding and shrinking
RDGCs were derived. The TMs of the RECs consisted of multiple expanding and shrinking
RDGCs, which were then calculated from the 3D solutions. The TLs calculated from the
TMs were validated with the measured results.

In the derivation of the 3D analytical solution and TMs of the RDGC, the ignorance of
some infinite and complex terms is risky, but it can simplify the formulas and reduce the
computation. These behaviors are proved to be practicable by experiments and the TLs
obtained by the theories in this paper are accurate to a certain extent.

According to the TLs of the RECs with different baffle configurations, the peaks and
troughs of the TL curves of all types move to a higher frequency with the increasing angle
(6) between the bevel edge and the axial direction and move to a lower frequency with the
increasing length (I) of the baffle. The REC with double baffles distributed transversely
(Type 2t) is better in acoustic performance than the other types at frequencies from 600 Hz
to 1100 Hz. On the other hand, although the pressure losses of all types of RECs increase as
6 or I increases, Type 2t always has a lower pressure loss than other types. In summary,
Type 2t generally has good performance in both acoustic attenuation and flow efficiency.

This achievement of research shall provide a certain reference for designing and
improving the acoustic characteristics of the duct systems used in high-speed trains.
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Appendix A. Derivation of the A, B, C and D in the TM

We set v(x,y,0) and v(x,y,1) as 7 and 0, respectivley, where T is the harmonic excita-
tion with a constant amplitude. As a result, v; and v, are also equal to ¥ and 0. To simplify
the expression, jkz,mn is denoted as B,,. Substituting v(x,y,0) = v into Equation (14) and
eliminating the ¢! yields

1 & & mrx nrt _
- P()iwmgo n;() kz,mn,i Ccos ( b; ) COos (Ty> {C+,mnK1 (*.Bi,mn) — C_ Ky (,Bi,mn)} = 0. (A1)
The X term in Equation (14) is ignored here, because it is too complicated to derive a
concise solution. The rationality of this mathematical operation has been verified by the
following experimental results.
Substituting v(x, y,1) = 0 into Equation (14) and ignoring the term X yields

C+,mnK1 (*,Bo,mn) - C*,mnKl(,Bo,mn) =0. (AZ)

The quantities B; ,,, and By mun represent the B, at z = 0 and z = |, respectively. k, ;, ;
and k; ;0 represent the k; ;,,; at z = 0 and z = ], respectively.

In order to obtain the coefficients C ;;, and C_ ,;,,, operating the both sides of Equa-
tion (A1) with [fg. cos(m'mx/b;) cos(n'my/h)dxdy [28] yields

JJs, ocos ( ’"Z’x ) cos ( ",;fy ) dxdy

1 S S m X ",ﬂy
= _POW Z Z zmnlJIS COS 7 )COS( I )COS(
m,m'=0nn'=0

(A3)

) COS( )dXdy{C+ mnKl( ﬁi,mn) - C—,mnKl (ﬁi,mn)}'

According to the orthogonality property of eigenfunctions, Equation (A3) is trans-
formed with m = m’ and n = n’ to the following equation:

sti T cos (mT:rx) cos(nhﬂ) dxdy = — (m%kz’m”’ijfsj cos2(mb—7irx) COSZ(nhﬂ)dXdy{CJr,mnKl (=Bimn) — C—mnK1(Bimn) }- (A4)
The coefficients C ;;;, and C_ ,;; can be calculated from Equations (A2) and (A4)

as follows:

KK (Bom) s, (") dxdy
C = —PoCU A5
o Fo Kz, mn,iW (kz,mn Hs cos2 5 ) $2(47)dxdy (A5)
C+ mnKl (_,Bo mn)
Copn = — . A6
,Jmn Kl (‘Bormn) ( )
where

W(kz,mn) = Kl (_,Bi,mn)Kl (,Bo,mn) - Kl (,Bi,mn)Kl (_,Bo,mn ) . (A7)

Substituting Equations (A5) and (A6) into Equation (11), the 3D solution of the pressure
is obtained as follows:

(5,2) = —poca 3 5 Vlkamz) K cos (57 ana) cos(“7" Hs cos( ") cos( 5" )dxdy
P %) Fo o= Wkemn) Kzpmn,i Hs cos? (" (My)dXdy

(A8)
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where
V(kz,mn/ Z) = Kl(,Bo,mn)KO(_,an) + KO(,an)Kl(_,Bo,mn)-

Substituting Equation (A8) with z = 0 into Equation (16) to obtain the average pressure
at the inlet as follows:

(A9)

Vkyn0) _ 0s() cos(5) ffs; cos(#5) cos(S5 )dxdy
=3 JIS,' { p()cvméo Z W(kz,mn) Kzmn,i ﬂ‘si COS2(mb7im)COSZ( y)dxdy dxdy
(k O) - V szwO) 2k ( 2 >2
+ ¥
W( ) Z W sz) kz,m(),i mrit b1
S~——
Eny E1z
2k (2 2
4 zOnu < v >
= —pocv1 nzl W ZOn) kz,On,i nrt h (AlO)
Ey3 ,
R V(kzmniro) 4k ( 4 )
T - ¥, ¥
mglngl W(kzmn) k; mn,i mnr? b1t
_ Eyy
= —pocv1Eq
where
Ei1=E1+Eip+Eis+Enu (A11)
o mrcbic . mrit
i = con (M () (A12)
h
Y= cos(m;l C) sin(%). (A13)

The quantity Ej; is obtained with m = 0 and n = 0. Ej, is obtained with m > 1 and
n = 0. Eq3 is obtained with m = 0 and n > 1. Additionally, Eq4 is obtained with m > 1 and
n > 1. (bj., h¢) are the coordinates of the center point at the inlet shown in Figure 3.

Substituting Equation (A8) with z = | into Equation (17) to obtain the average pressure
at the outlet as follows:

— l kz mnr k COS(bif]T;na)cos 717T]/ JTS COS b’ )COS( )dXdy
So JISO { Ocvlmzo nz() W kz mn kz i ffs C052 mrfx (nm/)d dy dxdy
) 2
sz 07s ) 2k 2
— ) ¥p¥
2 W sz) kz,mO,i <m7‘( 102201
E21 E22
> V zOno;) 2k <2>2
+ Y, Y
—pPocv nz1 W zOn) kz,On,i nrt h1 =2 (A14)
Ex3 )
2 o Vikzmno 1) 4k 4
— Y1 ¥,1¥Y ¥
+m§1n§1 Wlkorn) Foms \mrz ) For Yoo
Epyg
—pocvEy
where
Ey = Ey + Exp + Ex3 + Eog (A15)
_ nrthe\ . /nm
Yo = cos(h ) sm(7) (A16)
_ mrtboe\ . /mm
Yo = cos( b, )sm( > ) (A17)
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The quantity E; is obtained with m = 0 and n = 0. Ep; is obtained with m > 1 and
n = 0. Ep3 is obtained with m = 0 and n > 1. Additionally, Ey4 is obtained with m > 1 and
n > 1. (byc, h.) are the coordinates of the center point at the outlet in Figure 3.
The elements A and C can be calculated from Equations (18), (A10) and (A14) with the
following equations
. —pPocTUE . Eq

- Al18
—pocvE;  Ep (A18)

v; [ -1
C= L = — = . A19
—pPoc01E1;  —pocUEy  pocEp (A19)
We set v(x,y,0) and v(x,y,1) as 0 and 7, respectively, and obtain v; = 0 and v, = .
Substituting v(x, y,0) = 0 into Equation (14) yields

C+,mnK1<_ﬁi,mn) - Cf,mnKl(,Bi,mn) =0. (AZO)

Substituting v(x,y,!) = 7 into Equation (14) yields

— L Z Z kz,mn,o COS( X > COS(nZy) {C+,mnK1 (_,Bo,mn) - Cf,mnKl (,Bo,mn)} =7. (A21)

POW o= = b; +1tan®

Operating the both sides of Equation (A21) with [f cos{m7x/(b; +Itan)} cos(nmy/h)
dxdy and using the same transformation with m = m’ and n = n’ as in Equation (A3) yields

IJs, vcos(m> cos(*7Y)dxdy
= powkzmMHs cos (7,J +ltane)cos (52) dxdy{CqmnKia (—Bomn) — C— mnK1 (Bomn) }-

The coefficients C4 ;;; and C_ j;; can be obtained from Equations (A20) and (A22)
as follows:

(A22)

kK1 (Bin) s, Cos(m) cos(“5*) dxdy
kz,mn,ow(kz,mn J’J"SO cos2 ( ) cos? ( )dxdy

Cee o = 00T (A23)

bi+ltan9

C+ mnKl( ﬁz mn)
Kl (ﬁz mn)

Substituting Equations (A23) and (A24) into Equation (11), the 3D solution of the
pressure is obtained as follows:

C—,mn =

(A24)

U(kzmn,z) k cos(ﬁ%)cos( )HSOCOS(thane)COS( ¥)dxdy

p(x,y,2z) = pocv (A25)
m;O 7;) W(kz mn) kz,mn,ﬂ _US €os (b flf:ne) cos? ( )dXdy
where
u(kz,mnr Z) = Kl (,Bi,mn)KO(*,an) + KO(,an)Kl (*,Bi,mn)- (A26)

Substituting Equation (A25) with z = 0 into Equation (16) to obtain the average pressure
at the inlet as follows:
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1 Ukepn0) K cos(%) cos(w)ﬂso cos(%)cos("hﬂ)dxdy
= |e OCUZZ — dxd
pi S; IIS, {P = W(kz mn) Kzmno 15, cosz(b J’flrt[;n(a) cos? (") dxdy Y
u(k,z) U(kzmoi0) 2k (2 \?
Y ¥
Wk 2 Wkomo) Kamoo \mr) —12701
——
Es1 E3
o U(k,0,,0) 2k < 2 >2
+ £ Y, ¥ (A27)
= ppcv ,;1 W(kz,On) kz,On,o nr h2 =
E33 )
2 & U(kymn,i0) 4k ( 4 >
+ YoV ¥ ¥
mgl n;l W(kz mn) kz,mn,o mnnZ lb2 h2 hl ]’ll
Ezy
= poCﬁEg
where
E3 = E31 + E3p + E33 + E3q. (A28)
The quantity E3; is obtained with m = 0 and n = 0. E3; is obtained with m > 1 and
n = 0. E33 is obtained with m = 0 and n > 1. Additionally, E34 is obtained with m > 1 and
n>1.
Substituting Equation (A25) and z = [ into Equation (17) to obtain the average pressure
at the outlet as follows:
_ 1 kz mis ) k Cos(b-flﬁne) COS( i )\H‘So COS(b +ltan€) cos T[( )dxdy
= = 0C0 Z Z L dxd
pO So J]‘SU {p W(kz mn kz,mnrﬂ J‘fs cos (b 4’:117:;119) cos ( )dxdy y
u z m0,07 ) 2k < 2 >2
b4
2 W z mO) kz,mO,o mrit 02
‘~ ,—/
Ey Egp
00 2
u z,0n,07 ) 2k < 2 )
+ —Y (A29)
= poCU nzl W(kzon) kzono \n7 "2
Eg )
> > u(kzmno,l> 4k ( 4 )
+ " Y'Y
mgl ngl W(kz,mn) kz,mn,o mnrc? b2 h2
Eyq
= PoCUE4
where
Ey = Exy + Egp + Eg3 + Egg. (A30)

The quantity E4; is obtained with m = 0 and n = 0. E4; is obtained withm > 1and n = 0.
Ey3 is obtained with m = 0 and n > 1. Additionally, E44 is obtained with m > 1and n > 1. The
elements B and D can be calculated from Equations (19), (A18), (A19), (A27) and (A29) with
the following equations

DE3 — ApocvE DE3 — ApocvE E.E
p — PocOEs — ApocOEs _ pocOEs — ApocOEs _ OC(E3_ 1 4) (A31)
Vo v E
D _ CpocvEy _ _ CpocvEy ﬂ (A32)
0o 4 E2

Appendix B. FEM Methodology

Figure A1 shows the FEM model used the automatic matched layer (AML) method [33]
in LMS Virtual.Lab software to calculate TL. Tetrahedral mesh (2 mm) was used to guaran-
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tee the calculation accuracy and the total number of grid cells of every REC was more than
400,000. The fluid material among the REC was defined as air, whose velocity was 340 m/s
and density was 1.225 kg/m3. Then, the outlet was AML property, which could simulate
the nonreflecting boundary condition. The inlet acoustic boundary condition was defined
as the plane wave with 1 W sound power.

Figure A1l. The FEM model of the REC.
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