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Featured Application: The purpose of this work was to provide a detailed derivation process of
the 3D analytical solution and TMs of the RDGCs based on the previous studies on the variable
ducts and propose a certain reference for designing and improving the acoustic characteristics of
the duct systems used in high-speed trains.

Abstract: Rectangular ducts used in the air-conditioning system of a high-speed train should be
carefully designed to achieve optimal acoustic and flow performance. However, the theoretical
analysis of the rectangular ducts with gradient cross-sections (RDGC) at frequencies higher than
the one-dimensional cut-off frequency is rarely published. This paper has developed the three-
dimensional analytical solutions to the wave equations of the expanding and shrinking RDGCs.
Firstly, a homogeneous second-order variable coefficient differential equation is derived from the
wave equations. Two coefficients of the solution to the differential equation are set to zero to ensure
convergence. Secondly, the transfer matrices of the duct systems composed of multiple RDGCs are
derived from the three-dimensional solutions. The transmission losses of the duct systems are then
calculated from the transfer matrices and validated with the measurement. Finally, the acoustic
performance and flow efficiency of the RDGCs with different geometries are discussed. The results
show that the REC with double baffles distributed transversely has good performance in both acoustic
attenuation and flow efficiency. This study shall provide a helpful guide for designing rectangular
ducts used in high-speed trains.

Keywords: theoretical derivation; three-dimensional wave equation; rectangular duct with gradient
cross-sections; transfer matrix

1. Introduction

Rectangular ducts are used in the air-conditioning systems of high-speed trains+ to
guide airflow. Some rectangular ducts adopt the oblique baffles (Figure 1) to form the
varying cross-sections which improve the performance of the ducts in noise attenuation [1].

 
 

 

 
Appl. Sci. 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

Article 

Three-Dimensional Acoustic Analysis of a Rectangular Duct 
with Gradient Cross-Sections in High-Speed Trains: A  
Theoretical Derivation 
Yanhong Sun, Yi Qiu, Lianyun Liu * and Xu Zheng * 

College of Energy Engineering, Zhejiang University, Hangzhou 310027, China; sunyanhong@zju.edu.cn (Y.S.); 
yiqiu@zju.edu.cn (Y.Q.) 
* Correspondence: lianyun.liu@zju.edu.cn (L.L.); zhengxu@zju.edu.cn (X.Z.) 

Featured Application: The purpose of this work was to provide a detailed derivation process of 
the 3D analytical solution and TMs of the RDGCs based on the previous studies on the variable 
ducts and propose a certain reference for designing and improving the acoustic characteristics of 
the duct systems used in high-speed trains. 

Abstract: Rectangular ducts used in the air-conditioning system of a high-speed train should be 
carefully designed to achieve optimal acoustic and flow performance. However, the theoretical anal-
ysis of the rectangular ducts with gradient cross-sections (RDGC) at frequencies higher than the 
one-dimensional cut-off frequency is rarely published. This paper has developed the three-dimen-
sional analytical solutions to the wave equations of the expanding and shrinking RDGCs. Firstly, a 
homogeneous second-order variable coefficient differential equation is derived from the wave equa-
tions. Two coefficients of the solution to the differential equation are set to zero to ensure conver-
gence. Secondly, the transfer matrices of the duct systems composed of multiple RDGCs are derived 
from the three-dimensional solutions. The transmission losses of the duct systems are then calcu-
lated from the transfer matrices and validated with the measurement. Finally, the acoustic perfor-
mance and flow efficiency of the RDGCs with different geometries are discussed. The results show 
that the REC with double baffles distributed transversely has good performance in both acoustic 
attenuation and flow efficiency. This study shall provide a helpful guide for designing rectangular 
ducts used in high-speed trains. 

Keywords: theoretical derivation; three-dimensional wave equation; rectangular duct with gradient 
cross-sections; transfer matrix 
 

1. Introduction 
Rectangular ducts are used in the air-conditioning systems of high-speed trains+ to 

guide airflow. Some rectangular ducts adopt the oblique baffles (Figure 1) to form the 
varying cross-sections which improve the performance of the ducts in noise attenuation 
[1]. 

 
Figure 1. Rectangular ducts used in a Fuxing bullet train. 

Citation: Sun, Y.; Qiu, Y.; Liu, L.; 

Zheng, X. Three-Dimensional 

Acoustic Analysis of a Rectangular 

Duct with Gradient Cross-Sections 

in High-Speed Trains: A Theoretical 

Derivation. Appl. Sci. 2022, 12, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Suchao Xie 

Received: 3 May 2022 

Accepted: 23 May 2022 

Published: 24 May 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

Figure 1. Rectangular ducts used in a Fuxing bullet train.

The current studies on the duct acoustics of high-speed train are practiced based on
simulation, such as the hybrid method of finite element and statistical energy analysis

Appl. Sci. 2022, 12, 5307. https://doi.org/10.3390/app12115307 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115307
https://doi.org/10.3390/app12115307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8891-4461
https://orcid.org/0000-0001-9000-6593
https://doi.org/10.3390/app12115307
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115307?type=check_update&version=1


Appl. Sci. 2022, 12, 5307 2 of 18

(FE-SEA) [1,2]. Most scholars have focused their research on ducts suitable for any vehicle
based on a variety of methods. Both analytical and numerical methods have been widely
used in the field of duct acoustics. Generally, the numerical methods, such as the finite
element method (FEM) [3–6], boundary element method (BEM) [7] and computational
fluid dynamics (CFD) method [8–10], are popular for analyzing duct systems with complex
geometries. Assis et al. [4] proposed a spectral FEM approach to compute the transfer
matrix (TM) of duct systems with arbitrary geometries. Liu et al. [8] proposed the time
domain CFD approaches to predict the acoustic performance of the duct systems without
and with mean flow.

On the other hand, the analytical method is more efficient in computation than the nu-
merical methods. Two types of analytical methods have been used to investigate a duct sys-
tem with varying cross–sections. The Wentzel–Kramers–Brillouin (WKB) method [11–15]
utilizes the high frequency approximation that allows to neglect certain terms in the non-
linear governing equations of the media in a duct. Subrahmanyam et al. [12] used the
WKB approximation to derive the exact solutions for one-dimensional (1D) ducts with area
variations in the absence of mean flow. Rani et al. [14,15] derived a WKB-type solution to
the generalized Helmholtz equation in 1D ducts with nonuniform cross-sectional areas
and inhomogeneity in mean flow. The WKB approximation is less accurate than solving
the full wave equations of the duct. The solutions to the wave equations of 1D ducts with
varying cross-sections have been studied for decades [16–23]. Pillai et al. [24] developed
the 1D solution to a horn-like rectangular duct at frequencies lower than 250 Hz. However,
the three-dimensional (3D) solutions to the wave equations in rectangular ducts with gra-
dient cross-sections (RDGCs), which are more accurate at higher frequencies than the 1D
solutions, are rarely seen.

The objective of this paper is to develop the 3D analytical solutions to the wave
equations of the expanding or shrinking RDGCs at frequencies up to 1600 Hz. The derived
solutions are used to obtain the TMs and transmission losses (TLs) of the duct systems
consisted of RDGCs, which have been validated with the measured results. Lastly, the
effects of the RDGC geometries on the acoustic performance and flow efficiency of the duct
systems are discussed.

The organization of this paper is as follows: Section 2 develops the 3D analytical
solutions to the wave equations of RDGCs. In Section 3, the TMs of the RDGCs are derived.
In Section 4, several duct systems consisting of RDGCs are modeled to obtain the TMs. The
TLs and pressure losses of the duct systems with different RDGC geometries are obtained
and discussed in Section 5. Finally, the conclusions are presented in Section 6.

2. 3D Analytical Solutions to the Wave Equations of a RDGC
2.1. 3D Solutions for a Straight Rectangular Duct

Figure 2 shows a uniform rectangular duct with a width of b and a height of h. The 3D
wave equation of the rectangular duct is given by [25]

∂2 p
∂t2 = c2∇2 p, (1)

where p, t and c are the sound pressure, advancing time and sound velocity, respectively.
The Laplacian operator ∇2 is given as follows:

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (2)

where x, y and z are the Cartesian coordinates shown in Figure 2.
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Figure 2. A straight rectangular duct.

The general solution of Equation (1) [25] is

p(x, y, z, t) =
(

C1e−jkzz + C2e+jkzz
)(

e−jkx x + C3e+jkx x
)(

e−jkyy + C4e+jkyy
)

ejωt (3)

where j is the imaginary unit. C1, C2, C3 and C4 are the coefficients to be determined with
boundary conditions. kx and ky are the wave numbers in the x and y direction, respectively.
kz is defined as

kz =
√

k2 − kx2 − ky2 (4)

where k = ω/c and ω is the angular frequency. The solution of the rigid-walled duct with
a width of b and a height of h is given by

p(x, y, z, t) =
∞

∑
m=0

∞

∑
n=0

cos
(mπx

b

)
cos
(nπy

h

)
p(z, t) (5)

where p(z, t) =
(

C1,mne−jkz,mnz + C2,mne+jkz,mnz
)

ejωt and kz,mn =
√

k2 − (mπ/b)2 − (nπ/h)2.
Here, cos(mπx/b) cos(nπy/h) is an eigenfunction representing the wave shape in the x-y
plane at the (m, n) mode. C1,mn and C2,mn are the amplitudes of the waves at the (m, n)
mode propagating in the positive and negative z directions.

2.2. 3D Solutions for a RDGC

A RDGC with either expanding (positive θ) or shrinking (negative θ) sections is shown
in Figure 3. θ is the angle between the bevel edge and the z axis. bi and bo are the widths of
the inlet and the outlet, respectively.
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Figure 3. (a) A rectangular duct with expanding sections, (b) a rectangular duct with shrinking sections.



Appl. Sci. 2022, 12, 5307 4 of 18

Since the cross-sectional area S changes along the z direction, the 1D sound wave
equation in the z direction is obtained with modifying Equation (1) as

1
S

∂

∂z

(
S

∂p
∂z

)
=

1
c2

∂2 p
∂t2 . (6)

For an expanding duct, S is given by

S = (z tan θ + bi)h (7)

Substituting Equation (7) into Equation (6) yields a homogeneous second-order vari-
able coefficient differential equation as follows:

∂2 p
∂z2 +

tan θ

z tan θ + bi

∂p
∂z

=
1
c2

∂2 p
∂t2 . (8)

The solution of Equation (8) is given by [26]

p(z, t) = {B+J0(kzα) + B−J0(−kzα) + C+K0(−jkzα) + C−K0(jkzα)}ejωt (9)

where α = z + bi/ tan θ. The quantities B+, B−, C+ and C− are the corresponding ampli-
tudes. J0(.) is the zeroth order of the Bessel function of the first kind, and K0(.) is the zeroth
order of the modified Bessel function of the second kind [27]. When kzα becomes imaginary,
the values of J0(kzα) and J0(−kzα) are possible to be infinite. To converge the solution, B+

and B− are set to zero. As a result, Equation (9) is simplified as

p(z, t) = {C+K0(−jkzα) + C−K0(jkzα)}ejωt. (10)

Substituting Equation (10) into Equation (5), with b replaced by bi + z tan θ, the 3D
solution of an expanding RDGC is derived as

p(x, y, z, t) =
∞

∑
m=0

∞

∑
n=0

cos
( mπx

α tan θ

)
cos
(nπy

h

)
{C+,mnK0(−jkz,mnα) + C−,mnK0(jkz,mnα)}ejωt (11)

kz,mn =

√
k2 −

( mπ

α tan θ

)2
− (nπ/h)2 (12)

where C+,mn and C−,mn are the coefficients to be determined with boundary conditions.
Solve the momentum equation [25]

∂v
∂t

= − 1
ρ0
∇ · p (13)

to give the particle velocity v of an expanding RDGC as follows:

v(x, y, z, t) = − 1
ρ0ω

∞
∑

m=0

∞
∑

n=0
kz,mn cos

( mπx
α tan θ

)
cos
( nπy

h
)
{C+,mnK1(−jkz,mnα)− C−,mnK1(jkz,mnα)}ejωt

+

(
− 1

jρ0ω

) ∞

∑
m=0

∞

∑
n=0

mπx
α2 tan θ

sin
( mπx

α tan θ

)
cos
(nπy

h

)
{C+,mnK0(−jkz,mnα) + C−,mnK0(jkz,mnα)}ejωt

︸ ︷︷ ︸
X

(14)

where ρ0 is the ambient air density and K1(.) is the first order of the modified Bessel
function of the second kind.

The derivation of the solutions for a shrinking RDGC is similar to that of an expanding
RDGC and gives the same equations of Equations (11) and (14) with a negative θ.
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3. Derivation of the TM for a RDGC

The transfer matrix T (
[

A B
C D

]
) is used to describe the relationship as follows:

[
pi
vi

]
=

[
A B
C D

][
po
vo

]
(15)

where vi and vo are the average particle velocities at the inlet and outlet of a duct system.
The quantities pi and po are the inlet and outlet average sound pressures defined with

pi =
1
Si

x

Si
p(x, y, 0)dxdy (16)

po =
1
So

x

So
p(x, y, l)dxdy (17)

where l is the length of the duct. The quantities Si and So are the inlet and outlet cross-
sectional areas, respectively. The four elements of the TM can be obtained as follows:{

A = (pi/po)|vo=0
C = (vi/po)|vo=0

(18)

{
B = {(pi − Apo)/vo}

∣∣vi=0
D = (−Cpo/vo)

∣∣vi=0
. (19)

The elements A, B, C and D can be calculated from Appendix A.

The transfer matrix T′ (
[

A′ B′

C′ D′

]
) of the shrinking RDGC is derived from the T

with a negative θ.

4. The TMs and TLs of Rectangular Expansion Chambers (RECs)
4.1. The TMs of the RECs with One or Double Baffles

To simplify the setup of a validation experiment, the circular ducts with a diameter
of 50 mm are added at the inlet and outlet of the rectangular chamber with a height (h) of
150 mm. The dimensions of the REC with one baffle are shown in Figure 4. The dimensional
parameters of REC are designed according to those of the branch rectangular ducts in high-
speed trains. The center o of the baffle coincides with that of the REC. All the RECs in
the following sections have the same circular ducts and rectangular chamber as those in
Figure 4.
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The components of the REC with one baffle are specified in Table 1.
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Table 1. Description of each component of the REC with one baffle.

Unit TM Annotations

I TI —made of two uniform ducts and one sudden expansion section
IIW TW

II —made of an expanding RDGC (II) and a shrinking RDGC (II′)
III TIII —made of two uniform ducts and one sudden contraction section

The transfer matrices (TII and TII
′) of the expanding RDGC and the shrinking RDGC

are given by

TII =

[
AII BII
CII DII

]
, T
′
II =

[
A′II B′II
C′II D′II

]
. (20)

According to the notation in Figure 4, the state variables at the two ends of each RDGC
are related by [

pi
vi

]
= TII

[
po
vo

]
,
[

p′i
v′i

]
= T

′
II

[
p′o
v′o

]
. (21)

The continuity of pressure and mass velocity at the inlet and outlet of the component
IIW gives

pII i = pi = p′i, pII o = po = p′o (22)

SII ivII i = Sivi + S′iv
′
i, SII ovII o = Sovo + S′ov′o (23)

where ′ denote the variables of the shrinking RDGC. SII i and SII o represent the cross-
sectional areas at the inlet and outlet of the component IIW , respectively. Solving simultane-
ously Equations (21)–(23) yields [28][

pII i
vII i

]
= TW

II

[
pII o
vII o

]
=

[
AW

II BW
II

CW
II DW

II

][
pII o
vII o

]
. (24)

The terms of the TM are given by

AW
II =

A′IIBIISo+AIIB′IIS
′
o

BIISo+B′IIS
′
o

BW
II =

BIIB′IISII o
BIISo+B′IIS

′
o

CW
II =

(DIISoS′i−D′IIS
′
oSi)(A′II−AII)

(BIISo+B′IIS
′
o)SII i

+
S′iCII+SiC′II

SII i

DW
II =

(DIISoS′i−D′IIS
′
oSi)B′IISII o

(BIISo+B′IIS
′
o)S′oSII i

+
SII oSi D′II

SoSII i

(25)

The TM of the REC with one baffle is calculated with

T1 = TITW
II TIII =

[
T11 T12
T21 T22

]
. (26)

where TI and TIII are calculated with the analytical solutions in the refs. [29,30].
The cut-off frequencies at the mode (m, n) of a duct with a rectangular section can be

calculated with

fcut−o f f =
c
2

√(m
b

)2
+
(n

h

)2
. (27)

Table 2 shows the calculated cut-off frequencies with m, n ≤ 2 of the rectangular
chamber (Figure 4). The maximum cut-off frequency at (2, 2) mode is 2858.3 Hz. As a result,
the number of modes with m, n ≤ 2 is enough to investigate the acoustic characteristics of
the RECs at frequencies below 1600 Hz.
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Table 2. Modal frequencies (Hz) of the rectangular chamber.

n
m

0 1 2

0 0 857.5 1715.0
1 1143.3 1429.2 2061.2
2 2286.7 2442.2 2858.3

Figures 5 and 6 show the geometries of the RECs with double baffles distributed either
axially or transversely. The distance between the centers (o1 and o2) of the baffles is 100 mm.
The TI and TIII in Figures 5 and 6 are exactly the same as those in Figure 4. TW

II and TW
V

in Figure 5 are calculated with the Equation (25), while the TIV of the straight rectangular
duct is obtained with the analytical solutions in the ref. [29].
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where U
iS  and U

oS  are the cross-sectional areas of the inlet and outlet of the component 
IIU. The TM ( 2aT ) of the REC with double baffles distributed axially and the TM ( 2tT ) with 
double baffles distributed transversely are given by  

2T TT T T TW W
a =

Ⅰ Ⅱ Ⅳ Ⅴ Ⅲ
 (30)

2 .T TT TWt =
Ⅰ Ⅱ Ⅲ

 (31)

4.2. Geometries of the RECs 

Figure 5. The REC with double baffles distributed axially.
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where U
iS  and U

oS  are the cross-sectional areas of the inlet and outlet of the component 
IIU. The TM ( 2aT ) of the REC with double baffles distributed axially and the TM ( 2tT ) with 
double baffles distributed transversely are given by  
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4.2. Geometries of the RECs 

Figure 6. The REC with double baffles distributed transversely.
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where SU
i and SU

o are the cross-sectional areas of the inlet and outlet of the component IIU.
The TM (T2a) of the REC with double baffles distributed axially and the TM (T2t) with
double baffles distributed transversely are given by

T2a = TITW
II TIVTW

V TIII (30)

T2t = TITW
II TIII. (31)

4.2. Geometries of the RECs

Table 3 shows the geometries of the RECs with different baffle configurations. All the
baffles in the RECs have a thickness of 4 mm.

Table 3. The geometries of the RECs with different baffle configurations.

Type 1

Case 1-0
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To verify the accuracy of the analytical method, the TLs of the RECs (Case 1-1, Case 
2a-1 and Case 2t-1) were measured with the two-load method [31] shown in Figure 7. The 
sound source was located at the outside of a semi-anechoic room where a REC with baffles 
was located. An acoustic stimulus was introduced into the REC through a metal duct, 
where two microphones were placed with a distance of 40 mm. The other two micro-
phones were located with the same distance at the duct connected to the outlet of the REC. 
A Brüel & Kjær (B&K) 3560 C Module was adopted to acquire the data sampled with a 
frequency of 16,384 Hz. The experimental parameters are given in Table 4. 

The REC with one baffle

lb = 0.50b, θ = 40◦

Case 1-1 lb = 0.50b, θ = 20◦

Case 1-2 lb = 0.50b, θ = 60◦

Case 1-3 lb = 0.30b, θ = 40◦

Case 1-4 lb = 0.40b, θ = 40◦

Type 2a

Case 2a-0
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To verify the accuracy of the analytical method, the TLs of the RECs (Case 1-1, Case 
2a-1 and Case 2t-1) were measured with the two-load method [31] shown in Figure 7. The 
sound source was located at the outside of a semi-anechoic room where a REC with baffles 
was located. An acoustic stimulus was introduced into the REC through a metal duct, 
where two microphones were placed with a distance of 40 mm. The other two micro-
phones were located with the same distance at the duct connected to the outlet of the REC. 
A Brüel & Kjær (B&K) 3560 C Module was adopted to acquire the data sampled with a 
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The REC with double baffles distributed axially

lb = 0.50b, θ = 40◦

Case 2a-1 lb = 0.50b, θ = 20◦
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To verify the accuracy of the analytical method, the TLs of the RECs (Case 1-1, Case 
2a-1 and Case 2t-1) were measured with the two-load method [31] shown in Figure 7. The 
sound source was located at the outside of a semi-anechoic room where a REC with baffles 
was located. An acoustic stimulus was introduced into the REC through a metal duct, 
where two microphones were placed with a distance of 40 mm. The other two micro-
phones were located with the same distance at the duct connected to the outlet of the REC. 
A Brüel & Kjær (B&K) 3560 C Module was adopted to acquire the data sampled with a 
frequency of 16,384 Hz. The experimental parameters are given in Table 4. 

The REC with double baffles distributed transversely

lb = 0.50b, θ = 40◦

Case 2t-1 lb = 0.50b, θ = 20◦

Case 2t-2 lb = 0.50b, θ = 60◦

Case 2t-3 lb = 0.30b, θ = 40◦

Case 2t-4 lb = 0.40b, θ = 40◦

4.3. Calculation and Measurement of the TLs for the RECs

The TL of a REC can be calculated from the derived TM as follows:

TL = 20 log10

(
1
2

∣∣∣∣T11 +
T12

ρ0c
+ T21 · ρ0c + T22

∣∣∣∣). (32)

To verify the accuracy of the analytical method, the TLs of the RECs (Case 1-1, Case
2a-1 and Case 2t-1) were measured with the two-load method [31] shown in Figure 7. The
sound source was located at the outside of a semi-anechoic room where a REC with baffles
was located. An acoustic stimulus was introduced into the REC through a metal duct,
where two microphones were placed with a distance of 40 mm. The other two microphones
were located with the same distance at the duct connected to the outlet of the REC. A Brüel
& Kjær (B&K) 3560 C Module was adopted to acquire the data sampled with a frequency of
16,384 Hz. The experimental parameters are given in Table 4.
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Figure 7. Experimental setup for measuring the TL of a REC.

Table 4. Experimental parameters.

Parameters Values

Temperature 24.5 ◦C
Relative humidity 29.2%

Pressure 101,300 Pa

5. Results
5.1. Experimental Validation of the Calculated Results

In order to verify the 3D analytical method, the TLs obtained by experiment, 3D ana-
lytical method and FEM are shown in Figure 8. The FEM model and boundary conditions
are shown in Appendix B. Generally, the calculated results are in good agreement with
the measured results and the accuracy of the analytical method is validated to a certain
degree. However, the frequencies of TL peaks from FEM agree less with the experimental
results than those obtained by the 3D analytical method in this paper. The inaccuracy of
the measured TLs below 200 Hz shown in the Case 1-1 of Figure 8 should be attributed
to the insufficient energy of the sound source in this frequency range. As a result, the TLs
below 200 Hz are not presented in the other cases of Figure 8. The discrepancies between
the experiment and the 3D analytical method at higher frequencies may be caused by
the following reasons. First, the analytical method regards the REC as rigid, while the
prototypes under test are made of plastic with certain elasticity. Second, the damping
in the air is ignored with the analytical method. Third, the ignorance of the B+J0(kzα),
B−J0(−kzα) in the Equation (9) and the X in Equation (14) also causes errors.

5.2. TLs of the RECs

The TLs of the RECs with one or double baffles are shown in Figures 9 and 10. It can
be seen that the peaks and troughs of the TL curves of all types move to a lower frequency
with the decreasing θ and increasing lb. Although the Type 2a has more TL peaks, it is
worse in performance than the Type 2t at frequencies from 500 Hz to 1100 Hz. Generally,
the Type 2t is better in acoustic performance than the other types, especially at frequencies
from 600 Hz to 1100 Hz.
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Figure 10. TLs of the RECs with different baffle lengths.

5.3. Pressure Losses of the RECs

The improvement of the acoustic performance of a duct system cannot be at the
expense of flow efficiency. A CFD model [32] (Figure 11), using the standard k-ε turbulence
model, is adopted to calculate the difference (pressure loss) between the area-weighted
average pressures at the inlet and outlet of the RECs. The model is discretized by about one
million unstructured tetrahedral meshes with a mesh size of 3 mm. The inlet has a velocity
of 10 m/s and the outlet has a zero gauge pressure.
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Table 5 shows the pressure losses of the RECs with one baffle or double baffles. It
can be seen that the pressure losses of the Case 1-0 and Case 2a-0 are higher than the Case
2t-0. Therefore, the REC with double baffles distributed transversely (Type 2t) has good
performance in both flow efficiency and TL.

Table 5. The pressure losses of the RECs with different baffle configurations.

Case 1-0 Case 2a-0 Case 2t-0

141 Pa 140.2 Pa 117.7 Pa

The influence of the baffle angles and lengths on the pressure losses of the RECs are
shown in Figures 12 and 13. Figure 12 shows that the pressure losses of Type 1 and Type 2t
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increase as θ increases, while the pressure loss of Type 2a decreases as θ increases from 40◦

to 60◦. Figure 13 shows that Type 1 and Type 2a have much higher pressure losses than
Type 2t, while the pressure loss of Type 2t increases faster than Type 1 and Type 2a as lb
increases. In general, Type 2t has better performance in flow efficiency than the other types,
especially at small values of θ and lb.
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6. Conclusions

Here, the 3D analytical solutions to the wave equations of the expanding and shrinking
RDGCs were derived. The TMs of the RECs consisted of multiple expanding and shrinking
RDGCs, which were then calculated from the 3D solutions. The TLs calculated from the
TMs were validated with the measured results.

In the derivation of the 3D analytical solution and TMs of the RDGC, the ignorance of
some infinite and complex terms is risky, but it can simplify the formulas and reduce the
computation. These behaviors are proved to be practicable by experiments and the TLs
obtained by the theories in this paper are accurate to a certain extent.

According to the TLs of the RECs with different baffle configurations, the peaks and
troughs of the TL curves of all types move to a higher frequency with the increasing angle
(θ) between the bevel edge and the axial direction and move to a lower frequency with the
increasing length (lb) of the baffle. The REC with double baffles distributed transversely
(Type 2t) is better in acoustic performance than the other types at frequencies from 600 Hz
to 1100 Hz. On the other hand, although the pressure losses of all types of RECs increase as
θ or lb increases, Type 2t always has a lower pressure loss than other types. In summary,
Type 2t generally has good performance in both acoustic attenuation and flow efficiency.

This achievement of research shall provide a certain reference for designing and
improving the acoustic characteristics of the duct systems used in high-speed trains.

Author Contributions: This article was prepared through the collective efforts of all the authors.
Conceptualization, methodology, and writing—original draft preparation, Y.S.; validation, Y.S. and
L.L.; writing—review and editing, Y.Q. and X.Z. All authors have read and agreed to the published
version of the manuscript.
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Appendix A. Derivation of the A, B, C and D in the TM

We set v(x, y, 0) and v(x, y, l) as v and 0, respectivley, where v is the harmonic excita-
tion with a constant amplitude. As a result, vi and vo are also equal to v and 0. To simplify
the expression, jkz,mnα is denoted as βmn. Substituting v(x, y, 0) = v into Equation (14) and
eliminating the ejωt yields

− 1
ρ0ω

∞

∑
m=0

∞

∑
n=0

kz,mn,i cos
(

mπx
bi

)
cos
(nπy

h

)
{C+,mnK1(−βi,mn)− C−,mnK1(βi,mn)} = v. (A1)

The X term in Equation (14) is ignored here, because it is too complicated to derive a
concise solution. The rationality of this mathematical operation has been verified by the
following experimental results.

Substituting v(x, y, l) = 0 into Equation (14) and ignoring the term X yields

C+,mnK1(−βo,mn)− C−,mnK1(βo,mn) = 0. (A2)

The quantities βi,mn and βo,mn represent the βmn at z = 0 and z = l, respectively. kz,mn,i
and kz,mn,o represent the kz,mn at z = 0 and z = l, respectively.

In order to obtain the coefficients C+,mn and C−,mn, operating the both sides of Equa-
tion (A1) with

s
Si

cos(m′πx/bi) cos(n′πy/h)dxdy [28] yields
s

Si
v cos

(
m′πx

bi

)
cos
(

n′πy
h

)
dxdy

= − 1
ρ0ω

∞
∑

m,m′=0

∞
∑

n,n′=0
kz,mn,i

s
Si

cos(m′πx
bi

) cos( n′πy
h ) cos(mπx

bi
) cos( nπy

h )dxdy{C+,mnK1(−βi,mn)− C−,mnK1(βi,mn)}.
(A3)

According to the orthogonality property of eigenfunctions, Equation (A3) is trans-
formed with m = m′ and n = n′ to the following equation:

x

Si
v cos

(
mπx

bi

)
cos
( nπy

h

)
dxdy = − 1

ρ0ω
kz,mn,i

x

Si
cos2(

mπx
bi

) cos2(
nπy

h
)dxdy{C+,mnK1(−βi,mn)− C−,mnK1(βi,mn)}. (A4)

The coefficients C+,mn and C−,mn can be calculated from Equations (A2) and (A4)
as follows:

C+,mn = −ρ0cv
kK1(βo,mn)

kz,mn,iW(kz,mn)

s
Si

cos(mπx
bi

) cos( nπy
h )dxdy

s
Si

cos2(mπx
bi

) cos2( nπy
h )dxdy

(A5)

C−,mn =
C+,mnK1(−βo,mn)

K1(βo,mn)
(A6)

where
W(kz,mn) = K1(−βi,mn)K1(βo,mn)−K1(βi,mn)K1(−βo,mn). (A7)

Substituting Equations (A5) and (A6) into Equation (11), the 3D solution of the pressure
is obtained as follows:

p(x, y, z) = −ρ0cv
∞

∑
m=0

∞

∑
n=0

V(kz,mn, z)
W(kz,mn)

k
kz,mn,i

cos( mπx
bi+z tan θ ) cos( nπy

h )
s

Si
cos(mπx

bi
) cos( nπy

h )dxdy
s

Si
cos2(mπx

bi
) cos2( nπy

h )dxdy
(A8)
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where
V(kz,mn, z) = K1(βo,mn)K0(−βmn) + K0(βmn)K1(−βo,mn). (A9)

Substituting Equation (A8) with z = 0 into Equation (16) to obtain the average pressure
at the inlet as follows:

pi = 1
Si

s
Si

{
−ρ0cv

∞
∑

m=0

∞
∑

n=0

V(kz,mn ,0)
W(kz,mn)

k
kz,mn,i

cos(mπx
bi

) cos( nπy
h )

s
Si

cos(mπx
bi

) cos( nπy
h )dxdy

s
Si

cos2(mπx
bi

) cos2(
nπy

h )dxdy

}
dxdy

= −ρ0cv1



V(k, 0)
W(k)︸ ︷︷ ︸

E11

+
∞

∑
m=1

V(kz,m0,i, 0)
W(kz,m0)

2k
kz,m0,i

(
2

mπ
Ψb1

)2

︸ ︷︷ ︸
E12

+
∞

∑
n=1

V(kz,0n,i, 0)
W(kz,0n)

2k
kz,0n,i

(
2

nπ
Ψh1

)2

︸ ︷︷ ︸
E13

+
∞

∑
m=1

∞

∑
n=1

V(kz,mn,i, 0)
W(kz,mn)

4k
kz,mn,i

(
4

mnπ2 Ψb1Ψh1

)2

︸ ︷︷ ︸
E14


= −ρ0cv1E1

(A10)

where
E1 = E11 + E12 + E13 + E14 (A11)

Ψb1 = cos
(

mπbic
bi

)
sin
(mπ

2

)
(A12)

Ψh1 = cos
(

nπhc

h

)
sin
(nπ

2

)
. (A13)

The quantity E11 is obtained with m = 0 and n = 0. E12 is obtained with m ≥ 1 and
n = 0. E13 is obtained with m = 0 and n ≥ 1. Additionally, E14 is obtained with m ≥ 1 and
n ≥ 1. (bic, hc) are the coordinates of the center point at the inlet shown in Figure 3.

Substituting Equation (A8) with z = l into Equation (17) to obtain the average pressure
at the outlet as follows:

po = 1
So

s
So

{
−ρ0cv1

∞
∑

m=0

∞
∑

n=0

V(kz,mn ,l)
W(kz,mn)

k
kz,mn,i

cos( mπx
bi+l tan θ ) cos( nπy

h )
s

Si
cos(mπx

bi
) cos( nπy

h )dxdy
s

Si
cos2(mπx

bi
) cos2(

nπy
h )dxdy

}
dxdy

= −ρ0cv



V(k, l)
W(k)︸ ︷︷ ︸

E21

+
∞

∑
m=1

V(kz,m0,o, l)
W(kz,m0)

2k
kz,m0,i

(
2

mπ

)2
Ψlb2Ψb1︸ ︷︷ ︸

E22

+
∞

∑
n=1

V(kz,0n,o, l)
W(kz,0n)

2k
kz,0n,i

(
2

nπ

)2
Ψh1Ψh2︸ ︷︷ ︸

E23

+
∞

∑
m=1

∞

∑
n=1

V(kz,mn,o, l)
W(kz,mn)

4k
kz,mn,i

(
4

mnπ2

)2
Ψb1Ψh1Ψlb2Ψh2︸ ︷︷ ︸

E24


= −ρ0cvE2

(A14)

where
E2 = E21 + E22 + E23 + E24 (A15)

Ψh2 = cos
(

nπhc

h

)
sin
(nπ

2

)
(A16)

Ψlb2 = cos
(

mπboc

bo

)
sin
(mπ

2

)
. (A17)
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The quantity E21 is obtained with m = 0 and n = 0. E22 is obtained with m ≥ 1 and
n = 0. E23 is obtained with m = 0 and n ≥ 1. Additionally, E24 is obtained with m ≥ 1 and
n ≥ 1. (boc, hc) are the coordinates of the center point at the outlet in Figure 3.

The elements A and C can be calculated from Equations (18), (A10) and (A14) with the
following equations

A =
−ρ0cvE1

−ρ0cvE2
=

E1

E2
(A18)

C =
vi

−ρ0cv1E12
=

v
−ρ0cvE2

=
−1

ρ0cE2
. (A19)

We set v(x, y, 0) and v(x, y, l) as 0 and v, respectively, and obtain vi = 0 and vo = v.
Substituting v(x, y, 0) = 0 into Equation (14) yields

C+,mnK1(−βi,mn)− C−,mnK1(βi,mn) = 0. (A20)

Substituting v(x, y, l) = v into Equation (14) yields

− 1
ρ0ω

∞

∑
m=0

∞

∑
n=0

kz,mn,o cos
(

mπx
bi + l tan θ

)
cos
(nπy

h

)
{C+,mnK1(−βo,mn)− C−,mnK1(βo,mn)} = v. (A21)

Operating the both sides of Equation (A21) with
s

So
cos{mπx/(bi + l tan θ)} cos(nπy/h)

dxdy and using the same transformation with m = m′ and n = n′ as in Equation (A3) yields

s
So

v cos
(

mπx
bi+l tan θ

)
cos
( nπy

h
)
dxdy

= − 1
ρ0ω kz,mn,o

s
So

cos2
(

mπx
bi+l tan θ

)
cos2( nπy

h
)
dxdy{C+,mnK1(−βo,mn)− C−,mnK1(βo,mn)}.

(A22)

The coefficients C+,mn and C−,mn can be obtained from Equations (A20) and (A22)
as follows:

C+,mn = ρ0cv
kK1(βi,mn)

kz,mn,oW(kz,mn)

s
So

cos
(

mπx
bi+l tan θ

)
cos
( nπy

h
)
dxdy

s
So

cos2
(

mπx
bi+l tan θ

)
cos2

( nπy
h
)
dxdy

(A23)

C−,mn =
C+,mnK1(−βi,mn)

K1(βi,mn)
. (A24)

Substituting Equations (A23) and (A24) into Equation (11), the 3D solution of the
pressure is obtained as follows:

p(x, y, z) = ρ0cv
∞

∑
m=0

∞

∑
n=0

U(kz,mn, z)
W(kz,mn)

k
kz,mn,o

cos
(

mπx
bi+z tan θ

)
cos
( nπy

h
)s

So
cos
(

mπx
bi+l tan θ

)
cos
( nπy

h
)
dxdy

s
So

cos2
(

mπx
bi+l tan θ

)
cos2

( nπy
h
)
dxdy

(A25)

where
U(kz,mn, z) = K1(βi,mn)K0(−βmn) + K0(βmn)K1(−βi,mn). (A26)

Substituting Equation (A25) with z = 0 into Equation (16) to obtain the average pressure
at the inlet as follows:
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pi = 1
Si

s
Si

{
ρ0cv

∞
∑

m=0

∞
∑

n=0

U(kz,mn ,0)
W(kz,mn)

k
kz,mn,o

cos
(

mπx
bi

)
cos( nπy

h )
s

So
cos
(

mπx
bi+l tan θ

)
cos( nπy

h )dxdy
s

So
cos2

(
mπx

bi+l tan θ

)
cos2( nπy

h )dxdy

}
dxdy

= ρ0cv



U(k, z)
W(k)︸ ︷︷ ︸

E31

+
∞

∑
m=1

U(kz,m0,i, 0)
W(kz,m0)

2k
kz,m0,o

(
2

mπ

)2
Ψlb2Ψb1︸ ︷︷ ︸

E32

+
∞

∑
n=1

U(kz,0n,i, 0)
W(kz,0n)

2k
kz,0n,o

(
2

nπ

)2
Ψh2Ψh1︸ ︷︷ ︸

E33

+
∞

∑
m=1

∞

∑
n=1

U(kz,mn,i, 0)
W(kz,mn)

4k
kz,mn,o

(
4

mnπ2

)2
Ψlb2Ψh2Ψb1Ψh1︸ ︷︷ ︸

E34


= ρ0cvE3

(A27)

where
E3 = E31 + E32 + E33 + E34. (A28)

The quantity E31 is obtained with m = 0 and n = 0. E32 is obtained with m ≥ 1 and
n = 0. E33 is obtained with m = 0 and n ≥ 1. Additionally, E34 is obtained with m ≥ 1 and
n ≥ 1.

Substituting Equation (A25) and z = l into Equation (17) to obtain the average pressure
at the outlet as follows:

po = 1
So

s
So

{
ρ0cv

∞
∑

m=0

∞
∑

n=0

U(kz,mn ,l)
W(kz,mn)

k
kz,mn,o

cos
(

mπx
bi+l tan θ

)
cos( nπy

h )
s

So
cos
(

mπx
bi+l tan θ

)
cos π( nπy

h )dxdy
s

So
cos2

(
mπx

bi+l tan θ

)
cos2( nπy

h )dxdy

}
dxdy

= ρ0cv



U(k, l)
W(k)︸ ︷︷ ︸

E41

+
∞

∑
m=1

U(kz,m0,o, l)
W(kz,m0)

2k
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(
2

mπ
Ψlb2

)2
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E42

+
∞

∑
n=1

U(kz,0n,o, l)
W(kz,0n)

2k
kz,0n,o

(
2

nπ
Ψh2

)2

︸ ︷︷ ︸
E43

+
∞

∑
m=1

∞

∑
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U(kz,mn,o, l)
W(kz,mn)

4k
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(
4

mnπ2 Ψlb2Ψh2

)2

︸ ︷︷ ︸
E44


= ρ0cvE4

(A29)

where
E4 = E41 + E42 + E43 + E44. (A30)

The quantity E41 is obtained with m = 0 and n = 0 . E42 is obtained with m ≥ 1 and n = 0.
E43 is obtained with m = 0 and n ≥ 1. Additionally, E44 is obtained with m ≥ 1 and n ≥ 1. The
elements B and D can be calculated from Equations (19), (A18), (A19), (A27) and (A29) with
the following equations

B =
ρ0cvE3 − Aρ0cvE4

vo
=

ρ0cvE3 − Aρ0cvE4

v
= ρ0c

(
E3 −

E1E4

E2

)
(A31)

D = −Cρ0cvE4

v0
= −Cρ0cvE4

v
=

E4

E2
. (A32)

Appendix B. FEM Methodology

Figure A1 shows the FEM model used the automatic matched layer (AML) method [33]
in LMS Virtual.Lab software to calculate TL. Tetrahedral mesh (2 mm) was used to guaran-
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tee the calculation accuracy and the total number of grid cells of every REC was more than
400,000. The fluid material among the REC was defined as air, whose velocity was 340 m/s
and density was 1.225 kg/m3. Then, the outlet was AML property, which could simulate
the nonreflecting boundary condition. The inlet acoustic boundary condition was defined
as the plane wave with 1 W sound power.
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