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Abstract: The transition toward decentralized renewable energy transforms the energy grid, with the
prosumers playing an active role in the local energy management. Accurate day-ahead prediction
of their energy demand is a prerequisite to ensure the stability and efficiency of the power grid by
balancing the energy demand with the production, while incorporating renewable energy as much
as possible. In this paper, we propose a 24-steps-ahead energy prediction model that integrates
clustering and multilayer perceptron classification models used to detect the classes of energy profiles
and multilayer perceptron regression models used to fine-tune the energy prediction, considering
the energy data streams. We introduce new features derived from the raw energy data collected
from prosumers, such as the profile peaks and valleys, concerning the energy baseline and describe
a software infrastructure for integrating the real-time energy data streams with the hybrid deep
learning models training and prediction. The evaluation tests consider energy datasets that are closer
to the real-time energy data streams from prosumers. The results show that, even on energy data
streams, the model offers a good prediction accuracy for small- and medium-scale prosumers.

Keywords: energy prediction; deep neural network; multilayer perceptron regression; ensemble
prediction; prosumers

1. Introduction

Lately, there has been a considerable increase in interest in developing automated
power grid management and distribution systems. The transition toward decentralized
renewable energy makes energy grid management rather complicated and exposed to
uncertainty. The stochastic nature of renewable energy and high variability in the energy
demand of small and medium-scale consumers makes it difficult to correlate the increasing
energy demand and energy availability at the edge of the grid. Moreover, with the adoption
of small-scale renewable energy, the consumers of energy are transformed into prosumers
that can play an active role in the management of the smart grid [1]. To better plan the
available energy sources, the energy grid management processes are relying on the short-
term prediction of energy demand, production, or flexibility. Accurate energy prediction
catalyzes the transformation of prosumers into active energy players into smart grids [2].
They can contribute to the stability and efficiency of the power grid by balancing the energy
demand with the production in demand response programs, while incorporating, at a
larger extent, renewable energy.

There are many use cases related to energy trading, management, and optimization of
microgrids or hybrid energy storage that require accurate predictions of energy or price
with different time granularities and forecast horizons. Energy prediction is necessary to
address problems related to optimal energy management, safety in distribution, and losses
reduction. The energy consumption and production of a microgrid must be estimated
in advance to better plan the available energy resources or storage usage. In the case of
energy trading, the prediction of energy price helps in minimizing the energy costs or
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increasing the profit of energy prosumers [3,4]. Energy forecasting engines integrated
with grid controllers are studied for better energy management [5–7]. The prediction of
price-based demand–response signal and energy consumption patterns are integrated with
home energy management controllers to increase energy efficiency and reduce electricity
bills. The optimal power flow strategies could be implemented by using model-based
predictive control [8]. The prediction models can be extended to the integration of other
flavors of energy, such as the thermal energy or water distribution [9,10], and are useful in
detecting abnormal behavior in energy consumption [11].

The significant increase in computing power and the evolution areas, such as the
Internet of Things (IoT), Big Data, and Machine Learning, facilitate the development of
intelligent management and control of energy systems [12,13]. Smart energy meters or
sensors can be easily installed in key points of the grid or at prosumers to monitor and
collect relevant information for the management processes. They provide a constant flow
of data to be used by intelligent systems in the prediction processes and to take decisions
to enforce the security, safety, stability, and performance of the smart grid.

The challenge is that the huge amount of energy data generated by all these measuring
instruments must be collected and processed as soon as possible to extract estimates that
will support the automatic decision process. There are two types of energy prediction mod-
els applicable for small and medium-scale prosumers white-box and black-box models [14].
The white-box prediction models use deterministic models [15] and feature a good general-
ization ability but do not feature large-scale applicability as they base on specific building
data (e.g., construction details, operation schedules, HVAC design, etc.) [16]. The black-box
models, on the other hand, use big-data-driven techniques. The models are trained using
energy data collected by smart meters and are used to predict energy consumption. They
have good applicability, as they do not depend on the characteristics of the prosumer
but more on the energy data availability. The most common are data-driven models that
are relying on machine learning, but only a few approaches use real-time energy data
streams for model training and prediction. The data-driven prediction models [17] should
consider only raw energy data as features but also contextualized information and energy
and non-energy features to improve the prediction accuracy. The features used for model
training can be related to the energy and weather characteristics, indoor environmental
conditions, building characteristics, and occupancy features [18]. Models for a specific type
of prediction often achieve better performance because the patterns of energy consumption
depend on the type of the system used by the prosumer (e.g., heating, cooling, and lighting)
and indirectly on the resident behavior; thus, it is less predictable. Finally, a significant
challenge to the accuracy of the energy prediction is the prediction horizon. As the time
horizon grows, the prediction accuracy decreases; thus, efforts should be committed to
improving the multi-step energy prediction, such as the hourly day-ahead forecasting. A
significant amount of the literature considers the one-step-ahead energy prediction, and
only a few address the multi-step prediction.

To address the identified challenges in this paper, we bring the following novel
contributions:

• Definition of a prediction model for multi-steps ahead energy prediction of prosumers
that integrates clustering and multilayer perceptron classification models used to
detect the classes of energy profiles and multilayer perceptron (MLP) regression
models used to fine-tune the energy prediction considering the energy data streams;

• Introduction of new features derived from the raw energy data collected from pro-
sumers into the machine learning prediction, such as peaks and valleys, concerning
the energy baseline;

• Development of a software infrastructure that allows for the integration of real-time
energy data streams with the deep learning models’ training and prediction;

• The evaluation tests are made not only by considering the offline datasets of energy
data, as most state-of-the-art approaches do, but also using the real-time data streams
of energy data from prosumers and their estimated impact on the prediction accuracy.
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The rest of the paper is structured as follows: Section 2 presents the state-of-the-
art approaches related to machine-learning-based energy prediction models highlighting
the main gaps identified, Section 3 presents the multi-step energy prediction model for
prosumers, and Section 4 show the evaluation results considering datasets and real-time
data streams for prosumers of different scales. Finally, Section 5 presents the paper’s
conclusions and planned future work.

2. Related Work

State-of-the-art approaches on data-driven energy prediction are combining machine-
learning models to achieve results with better accuracy [19,20]. Some of the most-used
machine-learning algorithms are support vector machines (SVMs) or support vector regres-
sion (SVR), neural networks, and more specific recurrent long short-term memory (LSTM).
Moreover, some approaches are using other techniques, such as transfer learning, reinforce-
ment learning, and wavelet transform. There are multiple SVM and SVR approaches that
achieve high performance in forecasting energy, but the models show poor adaptability to
different temporal or spatial granularities, and the predictions are made by using only one
single step ahead. in reference [21], the performance of an SVR energy-consumption fore-
casting model is studied for different times and spatial granularities (e.g., 10 min, hourly,
daily, etc.). This paper focuses on how these different data scales impact the prediction
accuracy that is made per unit (an independent family from the building), per floor, and the
entire building. The best performance was obtained for the predictions with hourly time
granularity, whilst the worst was for the unit predictions with a time granularity of 10 min.
Another approach is using a multi-SVR weighted model with parameters and weights
optimized by a differential evolution algorithm. The solution proposed in reference [22]
involves a hybrid forecasting model which can make single-step energy-consumption pre-
dictions for a building with a half-hourly and daily time granularity. After the optimization
of the SVR models’ parameters and their weights, the MAPE (Mean Absolute Percentage
Error) obtained on the test set was 5.84% for daily predictions and 3.76% for half-hourly
predictions.

Hybrid models using long short-term memory (LSTM) with different variations and
optimization algorithms for model parameters are used for building energy-consumption
forecasting [23]. A model combining long short-term memory recurrent neural network
with an Improved Sine Cosine Optimization Algorithm is used in reference [24] for different
forecasts’ horizons. In this case, the optimization algorithm is used to select the best
hyperparameters for the LTSM model. The input and forecast window sizes are adjusted
for different scenarios. In reference [25], parallel LSTM neural networks were combined
with singular spectrum analysis (SSA) for multiple prediction time intervals, showing
high prediction accuracy and computation efficiency. The SSA algorithm is used for data
preprocessing, and the energy consumption data are decomposed to obtain more regular
time series. The performance is between 4% and 18%. in reference [26], a prediction model
is proposed by using unidirectional and bidirectional LSTM models. The bidirectional
model has an additional backward pass in which the inputs are processed from future to
past. Similarly, a bidirectional LSTM model is proposed in reference [27]. It is combined
with a convolutional neural network to forecast building energy for the next hour. Some
of the models proposed for energy predictions, such as Elman Neural Networks [28], can
store data in memory neurons. An optimized gradient boosting regressor model with a
swarm particle optimization was proposed to monthly energy forecasting in reference [29]
as a solution for energy prediction to verify the actual monitored values from different
prosumers. Deep reinforcement learning was studied in reference [30] for predictions
with a horizon of 5 min up to one hour in advance. Another proposed solution for the
problem of short-term load forecasting is the Ranger-Based Online Learning Approach [31].
A hybrid approach that combines machine-learning algorithms with stationary wavelet
transform was presented in reference [32]. The wavelet transform decomposes the actual
monitored data used as input for the machine-learning algorithm, while its inverse is used
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to reconstruct power values from the predicted ones. Moreover, there are solutions based
on techniques such as transfer learning [33] with good results for buildings or federated
learning [34].

An improvement proposed in multiple studies for the problem of forecasting energy is
using a clustering-based approach to identify energy patterns in the dataset before training
the prediction models [35,36]. Clustering approaches have been proposed to identify
and group similar energy profiles and train different forecasting models for each cluster.
For instance, in reference [35], a clustering method is proposed for a Functional Wavelet-
Kernel approach. The clustering is made through unsupervised curve classification and
groups days with similar consumption patterns. The proposed model predicts day-ahead
energy-load curves at the household level, with a time granularity of 30 min. Likewise,
in reference [36], a clustering is applied to find similar weather regimes to predict hourly
day-ahead solar-power generation. An ensemble containing multiple random forest models
is proposed to make predictions for each cluster, but the result is computed by integrating
all predicted values. Self-organizing map (SOM) and learning vector quantization (LVQ)
networks were proposed in reference [37] by H.-T. Yang et al. for PV power output
classification before training multiple SVR models. The SOM model can be used to find the
patterns in the power output of the PV and associate them with a defined weather type. The
LVQ model is the classifier that assigns different classes for the weather features identified
by using SOM. Thus, similar days are grouped based on weather data. In reference [38],
the Fuzzy C-means pattern recognition algorithm was studied as an energy-consumption
forecasting technique at the subentry level that is very useful in energy management.
A hybrid prediction model is proposed in reference [20] to forecast hourly day-ahead
energy based on consumption patterns of an office building. This work aims to improve
energy prediction by using a pattern-classification strategy for the consumption profiles.
Multiple forecasting models are built for patterns identified by a decision tree, using date
and time information. There are patterns inside a day and for the weekdays according to
the month of the year and one for the weekend. They are suitable for an office building
with a fixed working schedule, and the pattern corresponding to the non-working hours
has the lowest energy consumption. A similar hybrid solution based on consumption
patterns is discussed in reference [39], and the energy predictions are made a day ahead
with hourly time granularity for commercial buildings. The commercial buildings were
classified as stationary buildings (e.g., office buildings, administration buildings, shopping
malls, etc.) and non-stationary buildings (e.g., hotels or venues). The more complex
energy prediction problem is for the non-stationary building where the fluctuation of the
energy demand depends on the occupant’s behavior. A fuzzy c-means algorithm is used
to identify days and hours with similar historical consumption, and then a modified SVR
with a wavelet decomposition is used for energy predictions according to the clustering
results. The clustering algorithms are useful to group the consumer by their consumption
patterns and reduce the number of trained models. Such an approach was presented in
reference [40], and the algorithm used for clustering to recognize consumption patterns
was k-Medoid. The medoids have a central location and are used as reference points to
identify similar consumption patterns and to reduce the number of trained models. The
transformers are grouped by considering their energy-consumption profiles, and a single
model is trained for each group. In reference [41], a clustering-based approach is proposed
to group consumers. The DBSCAN algorithm is used to identify clusters in a dataset with
multiple consumers. The K-Means algorithm is applied to group them in low energy and
high energy consumers. Then, a pyramid CNN approach is proposed with different models
trained for each identified consumer cluster.

Finally, time horizon and the time granularity affect the accuracy of the energy predic-
tions. The forecast horizon refers to the period for which the prediction is made, and the
time granularity indicates the prediction step [2]. Most of the state-of-the-art solutions ad-
dress the one-step-ahead energy prediction. Very few approaches in the literature address
the multi-step energy prediction, such as the hourly day-ahead forecasting for different
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types of consumers or producers [42,43]. They feature purer accuracy than the one-step
energy forecasting. An ensemble learning framework is proposed in reference [44] for
average day-ahead energy consumption forecasting, but only a single value is predicted for
the next day. The solution was tested at the household level and obtained a MAPE between
11% and 16%. Different approaches for the prediction of hourly day-ahead photovoltaic
energy generation are studied in reference [45]. Several learning models are compared with
a second-order regressive method and an ensemble model combining all models which
achieved the highest performance. In reference [46], a deep residual neural network–based
solution is used for the prediction of electrical energy consumption of households. The
model performance was evaluated by using a dataset containing energy-consumption data
from several households in the same region with a time granularity of 1 min. The model
predicts energy values for 24 h of the next day. In this context, a relevant problem is that
the energy-prediction results are difficult to be compared because they use different or
non-public datasets and the metrics used to quantify the performance of the system are
different [47,48].

When analyzing the above-presented state-of-the-art, we noticed that most of the
literature is focused on one-step-ahead energy prediction and only several approaches
to the day-ahead energy prediction for energy prosumers. Moreover, the data-driven
deep-learning models focus on raw energy data. Few consider other types of features that
could be related to improve the prediction accuracy. In this paper, we address the identified
knowledge gap in the literature by proposing a hybrid deep-neural-network model for
day-ahead energy prediction that ensembles classification with regression models. The
classification model is implemented by using K-Means clustering and multilayer perceptron
to predict the energy classes concerning the prosumer daily peaks, valleys, and baseline
of each energy. The multilayer perceptron regression model is trained to fine-tune the
energy-prediction results. We are not using only the raw monitored energy, but we derive
several energy-based features useful in the prediction process, such as the prosumer
energy profile peaks and valleys concerning the daily baseline, correlated with weather
information. Moreover, the prediction model was tested not only on historical datasets, but
it was integrated with two prosumers, and the real-time data streams of energy data were
considered in the training and prediction process.

3. Multi-Step Energy Prediction Model

We propose a multi-step energy prediction model (see Figure 1) for prosumers that
forecasts the energy values for each hour, t, of the next day with respect to the current day
denoted as “day” (i.e., 24 steps ahead):

Eprosumer,day
predicted =

{
eday+1

t

∣∣∣ t = {1, . . . , 24} and day ∈ Z+
}

. (1)

The features for the energy-prediction model are defined based on energy time-series
intervals of 24 h corresponding to days in the past with time intervals of 1 h granularity
spreading over the entire monitored data history:

Eprosumer,day
historical =

{
eday−d

t

∣∣∣ t = {1, . . . , 24}, d ∈ {1, 2, . . .}
}

. (2)

We have considered and extracted relevant energy features by decomposing the energy
profiles of the prosumer into three components: energy baseline, valleys, and peaks. This
process is shown in Figure 2, where the energy profile is represented with blue, while the
baseline profile is colored in orange.



Appl. Sci. 2022, 12, 5346 6 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 1. Overview of defined energy-prediction process. 

We have considered and extracted relevant energy features by decomposing the en-

ergy profiles of the prosumer into three components: energy baseline, valleys, and peaks. 

This process is shown in Figure 2, where the energy profile is represented with blue, while 

the baseline profile is colored in orange. 

 

Figure 2. Decomposition of prosumer energy data in baseline, peak, and valley profiles. 

To determine the daily baseline energy profile of a prosumer, we selected and aver-

aged similar intervals from X previous days, with each featuring 24 values for the hours, 

not including the highest and lowest profiles [2]: 

���������
��������,���

=
�

�������
∑ �����������

��������,����������

��� ∈ ���(�����)
.  (3)

where ����� represents the number of days in the past considered. 

The valleys and the peaks were computed as the energy profile values that are lower 

or higher than the baseline, as shown in Algorithm 1. 

Algorithm 1: Determine Peaks and Valleys 

Inputs: �����������
��������(�) —historical energy data of prosumer, � ∈ {1, … ,24} 

        �����—number of days in the past used to determine the baseline;  

        ���—the current day with monitored energy data 

Outputs: �������
��������,���

(�), �����
��������,���

—the energy peaks and valleys for the current ��� 

Begin 

1 �����������
��������,���

= �����������
��������

+ ��������
��������,���

 

Figure 1. Overview of defined energy-prediction process.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 1. Overview of defined energy-prediction process. 

We have considered and extracted relevant energy features by decomposing the en-

ergy profiles of the prosumer into three components: energy baseline, valleys, and peaks. 

This process is shown in Figure 2, where the energy profile is represented with blue, while 

the baseline profile is colored in orange. 

 

Figure 2. Decomposition of prosumer energy data in baseline, peak, and valley profiles. 

To determine the daily baseline energy profile of a prosumer, we selected and aver-

aged similar intervals from X previous days, with each featuring 24 values for the hours, 

not including the highest and lowest profiles [2]: 

���������
��������,���

=
�

�������
∑ �����������

��������,����������

��� ∈ ���(�����)
.  (3)

where ����� represents the number of days in the past considered. 

The valleys and the peaks were computed as the energy profile values that are lower 

or higher than the baseline, as shown in Algorithm 1. 

Algorithm 1: Determine Peaks and Valleys 

Inputs: �����������
��������(�) —historical energy data of prosumer, � ∈ {1, … ,24} 

        �����—number of days in the past used to determine the baseline;  

        ���—the current day with monitored energy data 

Outputs: �������
��������,���

(�), �����
��������,���

—the energy peaks and valleys for the current ��� 

Begin 

1 �����������
��������,���

= �����������
��������

+ ��������
��������,���

 

Figure 2. Decomposition of prosumer energy data in baseline, peak, and valley profiles.

To determine the daily baseline energy profile of a prosumer, we selected and averaged
similar intervals from X previous days, with each featuring 24 values for the hours, not
including the highest and lowest profiles [2]:

Eprosumer,day
baseline =

1
Xdays − 2 ∑

Xdays−2
day ∈ MID(Xdays)

Eprosumer,day
historical . (3)

where Xdays represents the number of days in the past considered.
The valleys and the peaks were computed as the energy profile values that are lower

or higher than the baseline, as shown in Algorithm 1.
The energy-based features are enhanced by adding contextual information, as we

expect different energy profile patterns in different time intervals of a day or for different
days in the week or month, etc. The timestamp-derived features allow for the identification
of complex and hidden energy patterns and the representation of the time differences in the
energy profiles. Weather-related features such as solar irradiance, temperature, or humidity
are considered similarly in the prediction process.
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Algorithm 1: Determine Peaks and Valleys

Inputs: Eprosumer
historical (t) —historical energy data of prosumer, t ∈ {1, . . . , 24}

Xdaysnumber of days in the past used to determine the baseline;
daythe current day with monitored energy data

Outputs: Eprosumer,day
valley (t), Eprosumer,day

peak the energy peaks and valleys for the current day
Begin

1. Eprosumer,day
historical = Eprosumer

historical + Eprosumer,day
current

2. Eprosumer,day
baseline = determineBaseline

(
Eprosumer

historical , Xdays

)
3. For each hour t of the day do

4. If Eprosumer,day
historical (t) < Eprosumer,day

baseline (t) then

5. Eprosumer,day
valley (t) = Eprosumer,day

historical (t)

6. If Eprosumer,day
historical (t) > Eprosumer,day

baseline (t) then

End

The defined energy-prediction model described in Figure 1 uses the above-presented
features, and it is based on an ensemble learner to aggregate partial prediction results from
regressors and classifiers. A weighted average of two partial predictions is used to handle
data heterogeneity, where the sum of the model weights is equal to one:

Eprosumer
ensemble (t) = ω1(t)× Eprosumer

classi f ication(t) + (1−ω1(t))× Eprosumer
regression(t), ∀t ∈ {1 . . . 24} (4)

The classification-based models predict the energy peak and valley classes, for the day
ahead energy profile of a prosumer using a clustering algorithm (see Figure 3):

f valley
classi f y : R24 →

{
1 . . . Nvalley

}
, f valley

classi f y

(
Eprosumer,day

valley

)
= classk

valley, (5)

f peak
classi f y : R24 →

{
1 . . . Npeak

}
, f peak

classi f y

(
Eprosumer,day

peak

)
= classk

peak. (6)
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The functions f valley
classi f y and f peak

classi f y use K-Means clustering to group the energy valley
and energy peak patterns from the historical data of the energy prosumer in Nvalley and
Npeak clusters, respectively. We chose K-Means because previous studies in the literature
have shown that it is effective in clustering individual households based on their daily
energy patterns [49]. However, to our knowledge, it was never applied for classifying the
peaks and valleys which may be found inside of a daily energy pattern.
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All valley and peak cluster classes, k, have as the centroid an energy pattern that is com-
puted as follows (Nk is the number of clusters determined by K-Means, and
t ∈ {1, . . . , 24} hours of the day):

meank
valley(t) =

1
Nk

∑Nk
i=1, Eprosumeri

valley (t), where Eprosumeri
valley ∈ classk

valley, (7)

meank
peak(t) =

1
Nk

∑Nk
i=1 Eprosumeri

peak (t), where Eprosumeri
peak ∈ classk

peak. (8)

The energy prediction model defines a set of two neural-network-based classifiers
that aim to predict the class of the peak and the class of the valley for the next day-ahead
prediction. The general architecture of the component is shown in Figure 4. The two neural
networks have the same inputs, arrays of length 2× T + |CF|, where T is the historical data
length given as input, and |CF| is the cardinality of the contextual feature (CF) set. The
inputs of the model are the historical energy data, Ehistorical

prosumer, over a time interval [0 . . . T] in
the past and the baseline of the prosumer, denoted as Eprosumer

baseline .
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Furthermore, the models receive as the contextual features derived from the times-
tamp of the prediction. The predictors can be expressed as functions fpeak and fvalley
which are learned and modeled by using MLP-based neural networks and defined in
Equations (9) and (10):

fpeak : R2×T+|CF | →
{

1 . . . Npeak

}
, fpeak

(
Eprosumer,day

historical , Eprosumer,day
baseline , CF

)
= classprosumer

peak , (9)

fvalley : R2×T+|CF | →
{

1 . . . Nvalley

}
, fvalley

(
Eprosumer,day

historical , Eprosumer,day
baseline , CF

)
= classprosumer

valley . (10)

There are several advantages of MLP that have led us to adopt it for this implemen-
tation, such as fast development and training, robustness to outliers and missing data,
and the fact that it is a universal approximator [50]. At the same time, the MLP network
will be eventually translated to a set of non-linear mathematical functions, which, in the
case of regression, map the set of input features to set of real numbers. Being feedforward
networks, they do not keep track of time, so each classification operation is independent
from the last one.

The two predictors, together with the baseline computation component, are put
together, as shown in Figure 4, to compute the energy prediction for the prosumer. The
components get the historical data from the database and compute the contextual features
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out of the timestamp. Based on this data, the classifiers defined compute the foreseen peak
and valley class for the prosumer.

Knowing the predicted class of the energy valley, classprosumer
valley , and the predicted class

of the energy peak, classprosumer
peak , the energy prediction values for the peak and the valley

are determined as being the centroid of the corresponding class.
Finally, the energy prediction is estimated as being the sum of the baseline energy, the

centroid of the peak class, and the centroid of the valley class, as shown in Equation (11):

Eprosumer
classi f ication = Eprosumer

baseline − Eprediction
valley + Eprediction

peak . (11)

In case of the energy prediction model based on regression, we are aiming to estimate
the finer granularity fluctuations of the energy-consumption patterns. Thus, we define a
regressor having the same inputs as the classifier above, but, as outputs, it should have the
energy patterns for the prediction window:

fregression : R2×T+|CF | → RT , fregression

(
Eprosumer

historical , Eprosumer
baseline , CF

)
= Eprosumer

regression. (12)

The function fregression is learned by using a multilayer perceptron (MLP), depicted in
Figure 5, having as inputs the Eprosumer

historical over an interval in the past; the baseline Eprosumer
baseline ;

and a set of contextual features, such as year, month, day, day of week, season, and holiday.
The output of the model is a set of T values, Eprosumer

regression, where the value from index h
represents the energy consumption prediction for hour, h.
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4. Evaluation Results

The proposed energy-prediction solution was implemented in a proof-of-concept
prototype that has three main components (see Figure 6): (i) the prosumer data integration
(i.e., hardware monitoring infrastructure with the data storage), (ii) the preprocessing of
raw data, and (iii) the deep-learning models for energy prediction.
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Figure 6. Proof-of-concept prototype used in evaluation.

From smart energy meters, the data are sent through MQTT queues. It contains the
monitored value, the timestamp, the measuring unit, and the sensor ID. An MQTT listener
checks for new samples, and all data received are validated and inserted into a MongoDB
NoSQL database. The interaction with MongoDB is made with the Mongoose framework
that facilitates the data-validation process before inserting it into the database. The weather
data (e.g., temperature, humidity, etc.) is collected and used as a feature to improve the
energy-demand prediction. We are using periodical requests to weather APIs with the
areas in which the smart meters are installed.

A data-preprocessing thread is associated with each sensor and scheduled to run
every hour. The data are converted if necessary and aggregated over one hour, and the
missing data are handled by using a multiplicative seasonal method for imputation. The
processed database stores the field device configuration, the energy data, and the prediction
results. It can store the hourly energy values, the determined clusters, and data needed
for model training, such as the daily baseline demand, the valleys, and the peaks. The
historical datasets used for evaluation are directly fed into this database. The prediction
module implements the prediction algorithms. The K-Means model used for clustering
is developed by using the Weka library and the configurable MLP models by using the
Deep java library. The input for the MLP is defined as a generic map to enable the model’s
training with a different number of features.

We used historical and live energy data streams acquired from the smart meters associ-
ated with energy prosumers [51] to evaluate the energy-prediction solution. Combinations
of energy and weather features for two categories of prosumers have been considered to
determine the energy-prediction accuracy (see Table 1). The models are re-trained on a
daily basis, and a thread is scheduled to make predictions in day-ahead (i.e., 24 energy
values, one for each hour of the next day).
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Table 1. Energy-prediction evaluation test cases.

Type Characteristics

Evaluation Setup
Evaluation

Case IDPrediction Features Live Energy
Data StreamsEnergy Temperature Humidity

Small

- Maximum energy demand:
13.7 kWh

- Four years of monitored data
- 15 min the Granularity of the

monitored data

Yes No No No TC-S1

Yes No No Yes TC-S2

Yes Yes No Yes TC-S3

Medium

- Maximum energy demand:
260 kWh

- Three years of monitored
data:

- 1 h the granularity of the
monitored data

Yes No No No TC-M1

Yes Yes No No TC-M2

Yes No Yes No TC-M3

4.1. Small-Scale Prosumer

For the first evaluation case (TC-S1), historical data from a prosumer with a low energy
demand was used to train the models and evaluate the energy prediction results. The data
were split in 60% for models training, 20% for validation and weight computation, and 20%
for prediction testing.

The clustering was made on the 24-energy consumption peaks’ and valleys’ values
computed daily concerning the baseline energy profile. Figure 7 shows the centers of the
clusters determined. In the case of the peak profiles, there are two clusters representing
periods with very low energy consumption (0–0.5 kWh), two clusters representing periods
with increased energy consumption in the intervals (6–11 and 9–14), and one cluster
for profiles where the energy consumption is increased for hour interval 6–19. In the
case of the valleys, four clusters store profiles representing a small constant decrease in
energy consumption and five cluster aggregate profiles indicating a significant decrease in
consumption at different time intervals during the day.
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Figure 7. Energy peak (left) and valley (right) profiles clusters.

Over 1000 epochs were used to train the prediction models. The weights for the
models were found by using the genetic algorithm and saved in the database to compute
the final predicted values by ensemble the individual prediction results. The average
SMAPE (Symmetric Mean Absolute Percentage Error) was approx. 6.5%, and the minimum
error obtained for one day was 2.44%. The best predicted day can be seen in Figure 8.
SMAPE was selected because it measures accuracy based on a percentage that is scale-
independent and, therefore, can be used for comparing the energy prediction of prosumers
with different energy scales [49,52]. Moreover, it is symmetric having both lower and upper
bounds addressing one of the main disadvantages of MAPE.
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Figure 8. TC-S1: best day predicted (SMAPE = 2.44%).

In the case of test cases, TC-S2 and TC-S3 energy data streams are collected in real-time
for three months and used for model training and energy prediction. We use the same
energy prediction methodology. The daily baseline is computed to determine the energy
peak and valley values. The K-Means algorithm is applied to daily energy patterns to
cluster the peaks’ and valleys’ profiles.

The distance from each energy profile to the cluster centroids is computed by using
a 24-dimensional Euclidean distance. Figure 9 shows the centers of the clusters. Seven
clusters for the peaks and seven for the valleys were determined. Figure 10 presents the
energy profiles for the peaks and valleys of the clusters with the ID_6 and ID_3, respectively.
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Figure 10. The energy profiles from clusters with id 6 (energy peaks—left) and label 3 (energy
valley—right). The dashed curves are the energy profiles belonging to the cluster, and the straight
line is the cluster center.
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For test case TC-S2, we used only energy features. The higher variability of live energy
data streams and the size of the training data affect the accuracy of the energy prediction.
The average SMAPE was 37.58%. Figure 11 shows the energy predicted values, considering
the monitored energy data stream for 24 h.
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Figure 11. TC-S2: best day (SMAPE = 14.9%), with only energy features.

To improve the accuracy of the energy prediction on real-time data streams in test
case TC-S3, we considered temperature as an additional feature. After we added the
temperature sensor to the model training, the average SMAPE was 29.9%. Figure 12 shows
the prediction improvement compared to Figure 11. The forecasted energy values follow
with better accuracy the actual energy profile.
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Figure 12. TC-S3: best day (SMAPE = 11.2%), with energy and temperature as features.

As it can be seen, the use of temperature as a feature brings a significant improvement
for the energy prediction values, with the SMAPE decreasing for the best predicted day
from 14.9 down to 9.06.

4.2. Medium Scale Prosumer

For medium-scale prosumer, five clusters representing the peak profiles and five
clusters representing the valleys profiles were identified. The centroids of the clusters can
be seen in Figure 13.
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Figure 13. Energy peak and valley cluster centroids.

For the first test case, TC-M1, we have considered only the energy features in the
prediction configuration. The training configuration of the models (i.e., splits size of data—
60%, 20%, and 20%; number of epochs—over 1000) was similar to the previous evaluation
cases. The average SMAPE was about 14%, while the minimum value was 4.8% (see
Figure 14).
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Figure 14. TC-M1: best predicted day (SMAPE = 4.8%).

We have considered the temperature taken from weather services as a feature to
improve the prediction accuracy (i.e., test case TC-M2). With a higher number of epochs,
the accuracy was improved, with the average SMAPE being around 12%, and the SMAPE
for the best predicted was 4.7% (see Figure 15).
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In the last tested configuration, TC-M3, the temperature sensor was substituted with a
humidity sensor, and slightly better results were obtained, with a lower best SMAPE (see
Figure 16).
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5. Conclusions and Discussion

In this paper, we have proposed a deep neural network model for day-ahead prediction
of energy profiles of prosumers. Such energy prediction is a prerequisite for their active
participation in energy grid management. Our model uses an ensemble of classification-
based models used to cluster similar energy profiles and regression models used to fine-tune
the energy prediction. We propose and successfully used the peaks and valleys of the
energy profile with respect to the energy baseline as features of the learning process. Our
solution addresses some of the challenges related to the use of machine learning models for
energy prediction. As most of the literature is focused on one-step-ahead energy prediction,
we provide a solution for the significantly difficult case of multi-step energy prediction
in which 24 values are predicted in advance, corresponding to a day-ahead prediction at
one hour granularity. We are not using only the raw monitored energy, but we also collect
several energy-based features that are correlated with weather information. Moreover, the
prediction model was tested not only on historical datasets, but also on prosumers feeding
real-time energy data. We have provided a prosumer integrated solution, and the real-time
data streams of energy data were considered in the training and prediction process. The
software infrastructure defined allows the integration of real-time energy data streams with
the deep learning models’ training and prediction.

Table 2 summarizes the energy prediction results for the various test case configura-
tions used. For the small-scale prosumer, when the historical data are available, the results
are significantly better than the real-time predictions, where less and more scarce energy
data are available. The additional weather information, such as temperature, improves the
accuracy but has a small impact on the prediction results. In the case of the medium-scale
prosumer, when additional weather sensors (e.g., temperature and humidity) were added,
the predictions improved significantly, and the average SMAPE decreased from 14% to 12%.

Table 2. Energy prediction results.

Evaluation Case ID
SMAPE

Best Average

TC-S1 2.44% 6.5%
TC-S2 14.9% 37.58%
TC-S3 11.2% 29.9%
TC-M1 4.8% 14%
TC-M2 4.7% 12%
TC-M3 3.38% 12%
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For the small-scale prosumer, the lowest average SMAPE (6.5%) is in the case in which
historical data are available for a longer period (TC-S1). The performance achieved by
the models in this evaluation case is higher than for the medium energy prosumer with
a training set similar in size, where the average SMAPE is between 12% and 14%. The
number of identified peaks’ and valleys’ clusters corresponding to energy consumption
patterns is not higher than in the case of the small prosumer. Thus, the errors for the second
prosumer can be due to a higher range of variation for the energy consumption values
in the same cluster. A higher number of clusters can bring improvements for the best
predicted days, but the general performance would be affected by the higher complexity of
peaks and valleys classes prediction due to more similarities between clusters. Moreover,
the first prosumer has a lower best-predicted day error than the prosumer with higher
energy consumption (2.44% for the small prosumer, and 4.8% for the medium prosumer)
when only the energy historical features are used for prediction.

In the evaluation cases using live energy data streams, the data available for training
are on a shorter period, and the performance of the predictions is affected. For the small
prosumer (TC-S2), if only the historical energy consumption is used, the average SMAPE is
37.58%. When the monitored temperature is added in the features set (TC-S2), the average
SMAPE is significantly lower (29.9%), and there are also improvements for the best cases
from 14.9% to 11.2%. When more features that correlate energy consumption are available,
such as the temperature, the prediction accuracy is higher. The improvements brought by
additional weather data can also be observed in the case of the medium-scale prosumer
when temperature and humidity data were considered in two test scenarios (TC-M2 and
TC-M3). The best prediction day has a lower error for both test scenarios, but a significant
improvement is shown for the worst predicted day error that decreases consistently.

As future work, we plan to combine the black-box machine learning models with
the white-box models provided as digital twins of energy assets. We will move toward
the direction of physical informed machine learning by developing a hybrid solution that
integrates physical realities and data model predictions to capture finer-grained details
and provide more precise predictions. Digital twins’ models of the energy assets will be
used to model the physical features and to conduct data-driven simulations for better
understanding their fine-grained energy behavior, operational constraints, and optimal
integration/usage with multi-energy services. Moreover, such models will allow the
generation of data with better quality that will cover non-optimal situations and will
complement the monitored data. For the black-box models, we will implement deep neural
network models that can be used on top of the big data-processing infrastructure, while
considering the comprehensive modeling of demand and supply provided by the digital
twins. Lambda architectures could be used to dispatch heterogenous monitored data to
both a batch layer managing historical datasets and a speed layer for managing closer to
the real-time streams of data. Finally, the coupling and association of energy data with
other non-energy vector data, such as social data or cross-sectors’ data, can be investigated,
with a view of generating more accurate predictions.
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