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Abstract: Most of the current malware detection methods running on Android are based on signature
and cloud technologies leading to poor protection against new types of malware. Deep learning
techniques take Android malware detection to a new level. Still, most deep learning-based Android
malware detection methods are too inefficient or even unworkable on Android devices due to their
high resource consumption. Therefore, this paper proposes MSFDroid, a lightweight multi-source
fast Android malware detection model, which uses information from the internal files of the Android
application package in several dimensions to build base models for ensemble learning. Meanwhile,
this paper proposes an adaptive soft voting method by dynamically adjusting the weights of each base
model to overcome the noise generated by traditional soft voting and thus improves the performance.
It also proposes adaptive shrinkage convolutional unit that can dynamically adjust the convolutional
kernel’s weight and the activation function’s threshold to improve the expressiveness of the CNN.
The proposed method is tested on public datasets and on several real devices. The experimental
results show that it achieves a better trade-off between performance and efficiency by significantly
improving the detection speed while achieving a comparable performance compared to other deep
learning methods.

Keywords: android malware dectection; multi-source; lightweight model; deep learning; ensemble
learning

1. Introduction
1.1. Background

According to the “2020 Android Platform Security Situation Analysis Report” released
by Qi’anxin Threat Intelligence Center [1], Qi’anxin Threat Intelligence Center intercepted
a total of 2.3 million new malicious program samples on the Android platform in 2020
with an average of 6,301 new malicious program samples intercepted every day. Among
them, the malicious deduction category accounted for 34.9%, the toll consumption category
accounted for 24.2%, the rogue behaviour category accounted for 22.8%, the privacy theft
category accounted for 12.3%, the lure fraud category accounted for 4.3%, and the remote
control category accounted for 1.5%. From a global perspective, the security governance of
the mobile Internet is relatively weak, especially the Internet banking theft Trojan horse
virus is still widespread, showing a wide variety of types, methods and other characteristics,
the threat to user property is serious. Internet banking Trojan horse virus often disguised
as other applications to lure users into downloading and installing. Monitoring shows that
Chrome (23.7%), Sagawa Express (8.2%, a famous Japanese courier application) and Flash
Player (4.7%) are the applications with the highest number of counterfeits. Analysis of
the attack techniques revealed that hacker groups mainly stole users’ bank card credential
information in the following four ways: first, using phishing pages, such as pop-up bank
card binding pages to trick users into entering their bank card credentials; second, spoofing
bank APPs, disguising Trojan horse programs as legitimate Internet banking APPs to steal
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users’ Internet banking information; third, pop-up phishing pages to cover bank APPs,
where the attacker hides the Trojan horse program in the background of the phone. The
Trojan hides in the background of the cell phone, and once the Internet banking starts, a
phishing page will pop up to cover the original Internet banking page to trick users into
entering their bank card credentials for theft; fourth, using accessibility services, after the
Trojan starts, the user is asked to open the accessibility services provided by Android for
people with disabilities to listen to the user’s use of the banking APP, and the Trojan also
records keyboard input information to steal bank card credentials. The Trojan also records
keystrokes to steal bank card credentials. With the emergence of the Internet of Things,
more and more IoT devices are equipped with Android. IoT devices’ overall security
protection and security management ability is far less than smartphones. Therefore, IoT
devices have become a new target for many blackmail gangs. The old mining family
AdbMiner is more active in targeting IoT devices. The Trojan continues to infect insecure
IoT devices through specific ports to implement mining for revenue, so the security research
for the Android system must consider IoT devices.

1.2. Motivation

Android has become the most popular operating system for smart mobile devices
since its release in 2008. According to Statista, Android retained its position as the world’s
leading mobile operating system in June 2021, controlling the mobile operating system
market with a 73% share. Google’s Android and Apple’s iOS together have more than 99
percent of the global market share [2]. However, due to various factors such as the open
ecological model of Android, coarse-grained permission management, and the ability to call
third-party code, many security attack surfaces have emerged, which seriously threaten the
security of Android [3]. At present, while most of the current malware detection services
for the Android platform need to be supported by cloud technology and a vast virus
database established by authoritative security agencies, and such solutions are mostly on
server side for app markets. In addition to the official Google Play, a large number of users
will use third-party application markets such as Amazon App Store, GetJar, Mobogenie
Market, etc., and these different application markets have different censorship of the
applications on the shelves, when a new family of Android malware is reported, not all
app marketplaces are able to respond within the response time. At the same time, there
are also some users will choose to download applications from some third-party websites,
the security of which cannot be guaranteed. Fingerprint databases that rely on hashing
and cloud technologies are inefficient in coping with the huge number of new applications
generated every day, and as with traditional methods such as signature-based malware
detection (based on identifying specific patterns of known malware), malware can easily
change its fingerprints to bypass such detection methods [4]. Instead of relying on a fixed
fingerprint, artificial intelligence based technology Android malware detection method use
machine learning or deep learning algorithms to automatically extract the most appropriate
features and combinations of features to determine whether an Android application is
a malware according to a pre-designed objective function. A large number of current
research on Android malware detection based on artificial intelligence technology focuses
on accuracy, and various complex models are designed to achieve accurate detection, but
these models are too complex to achieve efficient detection on the user’s Android devices.
Currently, most malware detection tools running on the Android platform are implemented
by comparing signatures through cloud technology or by uploading software installation
packages to a server for detection, however, the traditional server-side based malware
detection surely has unignorable drawbacks when detecting such apps, because (1) it is
a time-consuming task to upload the apps to server before the installation, especially for
large apps; (2) the uploading process via the Internet is not secure. For example, attackers
may modify the malware during the uploading period such that an incorrect “benign”
result is returned [5]. Therefore, a last line of defense on mobile devices is necessary and
much-needed, it is necessary to propose a method that does not rely on fingerprints or
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cloud technologies but rather an offline algorithm to efficiently discriminate malware before
it is installed and run.

1.3. Our Works

To solve the above problems, we designed a lightweight and fast machine learning
model. We used a computational server to complete the training of the model, and finally
deployed the trained model to Android mobile devices. Experimental results showed that
our model achieved efficiency while achieving considerable accuracy. In summary, our
main contributions are as follows.

• We propose a multi-source approach for Android malware detection which uses
multiple files in an Android application package. It extracts relevant features contained
in the files from multiple dimensions, such as information in the file headers and the
power spectral density of the structural entropy of the executable file, which makes
the extraction of features more comprehensive.

• We studied the information in each field of the header of DEX files and found some
key features in the DEX file header that can be used for malware detection. Therefore,
a DEX header parser is proposed to extract key features from the DEX file header.

• We propose an adaptive shrinkage convolutional neural network, which can dynam-
ically adjust the convolutional kernel weights and activation function thresholds
through an attention mechanism, making the convolutional network with denoising
ability while improving the expressiveness of the neural network model.

• We propose a new adaptive soft voting method, which can dynamically change the
weight of each base model during the training process, overcoming the noise generated
by the traditional soft voting due to the large performance gap and jitter of the base
models, while significantly improving the performance of soft voting.

2. Related Work

The sandbox mechanism of Android makes it more challenging to monitor the dy-
namic behaviour of applications in non-custom systems. Many methods have been pro-
posed for Android malware detection in many previous studies. Most of the traditional
anti-virus techniques based on signature detection methods can detect known malware
quickly and effectively, signature-based detection is mainly achieved by extracting signa-
tures from malware and building malware libraries, but some malware can be hidden in the
system by using different obfuscation and disguise techniques to the extent that it cannot
detect unknown malware [6]. Machine learning algorithms usually have less than three
layers of computational units and limited computational power to process raw data [7].
As a result, the performance of machine learning models relies heavily on the features
extracted, and malware producers can bypass trained machine learning models by continu-
ously updating their fraudulent techniques to harm users and companies. In the face of
the increasing difficulty of Android malware detection, it is not easy to build a robust and
transparent detection model or system through traditional machine learning techniques [8].
While deep learning is one of the mainstream algorithms in recent years, feature extraction
by deep learning methods differs from conventional machine learning techniques. Deep
learning can learn feature representations from the raw input data without requiring much
prior knowledge. In addition, its ability to detect previously undetected types of malware
based on identifying specific patterns of known malware can provide better performance in
terms of detection efficiency and effectiveness, which is the key advantage of deep learning.

Techniques such as machine learning and deep learning are combined with program
analysis techniques to infer the behavioral properties of applications. In the following, we
will focus on two categories of program analysis techniques for the Android platform, static
analysis and dynamic analysis, to discuss the related work and analyze the characteristics
of these two categories of program analysis techniques.
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2.1. Static Analysis

Static analysis is widely used for Android malware detection. The code is examined
without execution, and the results are generated by analyzing the code structure, the
sequence of statements, and how variable values are handled in different function calls.
An example is the AndroidManifest.xml file, which describes the permissions, API calls,
package names, referenced libraries, and application components. Another one is the
classes.dex file contains all Android classes compiled into dex file format [9]. Some static
methods can represent the analyzed application code as abstract models such as opcodes in
the form of n-grams or other information about the program such as metadata (application
description, application ratings, number of application downloads) depending on the
purpose of the study, which can be collected from other perspectives for static analysis [3].
Daniel et al. [10] proposed Drebin, a lightweight mathod for Android malware detection
that enabled identifying malicious applications directly on smartphone, Drebin performs
a broad static analysis, gathering features and embedding them in a joint vector space,
finally, the features were classified by support vector machines, achieving 94% accuracy.
Zachariah et al. [11] looked at three aspects of static analysis (i.e., signature-based detection,
permission-based detection and Dalvik bytecode detection), proposed methods for An-
droid malware detection, and discussed the advantages and limitations of these methods.
HybriDroid [12] extracted permissions, API calls, the number of users downloading the
application and the rating of the application, and built a malware detection model using a
nonlinear integrated decision tree forest (NDTF) approach with a detection rate of 98.8%.
Xusheng et al. [13] used seven feature selection algorithms to select permissions, API calls,
and opcodes, and then merged the results of each feature selection algorithm to obtain a
new feature set. subsequently, they used this to train the base learner, and set the logical
regression as a meta-classifier to learn the implicit information from the output of base
learners and obtain the classification results and the F1-Score reached 96%. Although
static analysis has some problems resisting malicious deformation techniques such as java
reflection and dynamic code loading, static analysis is not only scalable and usable when
facing batch unknown APKs detection, but also can traverse all possible execution paths of
the APKs [14]. Moreover, static analysis can detect malware quickly and prohibit malware
before installation, which is one of the key factors that will enable us to achieve our goals.
so it is essential to use static analysis in Android malware detection.

2.2. Dynamic Analysis

Dynamic analysis techniques focus on runtime monitoring and profiling applications
to obtain multiple behavioral characteristics and enable efficient malware detection. The
dynamic analysis approach is used in a controlled environment to detect the application’s
behavior. Automatic dynamic analysis of Android applications requires user-simulated
input event streams, such as touch, gestures, or clicks, to achieve more excellent code
coverage when running in an emulator or on an actual phone [15]. The main objects of
dynamic analysis include network traffic, battery usage, CPU utilization, IP addresses,
and opcodes. One type of dynamic analysis relies on the Dalvik runtime or ART runtime
to obtain the same level of privileges as the Android application, which usually requires
modifications to the Android OS or the Dalvik virtual machine. Another type of dynamic
analysis typically uses Android Virtual Devices (AVDs), emulators (Genymotion), or in real
devices for data collection and analysis and achieves higher security through isolation [9].
Bläsing et al. [16] proposed a sophisticated kernel space sandbox that automatically executes
applications without human interaction and saves system calls and logs. IntelliDroid [17]
presented two input generation and injection techniques that iteratively detect event chains
and compute the appropriate injected inputs and the injection order to enable them to
trigger a broader code path. Dixon et al. [18] proposed a power-aware malware detection
framework based on the method [19] that collects power samples and constructs power
consumption based on the collected samples’ history and generates success rate signatures
based on the constructed history using noise filtering and data compression methods. The
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Andromaly framework [20] proposed a dynamic feature-based classification framework.
The framework consists of a host-based malware detection system capable of monitoring
features (i.e., CPU consumption, number of packets sent over the network, number of
running processes, and battery power) and events obtained from the mobile device during
execution. Dynamic analysis solves the problems that static analysis faces concerning
malware code obfuscation and insufficient detection of dynamic code loading means. Still,
it is pretty time-consuming and does not meet the light and fast detection of malware needs.
Moreover, our system is running on the user’s Android device, and dynamic analysis
requires running programs. If dynamic analysis is performed on the user’s device, the
user’s device is already threatened by malware before the analysis is completed, which is
unacceptable. Therefore dynamic analysis is not applicable to our approach.

2.3. Hybrid Analysis

Many types of malware have the ability to differentiate between environments, which
makes dynamics-only analysis much less reliable [21]. Hybrid analytics can be produced
by combining static and dynamic analytics. It is a method or technique that integrates
run-time data obtained from dynamic analysis with static analysis algorithms used to detect
malicious behavior or suspicious functionality, which can compensate for the shortcomings
of static and dynamic analysis. Arora et al. [22] proposed a mechanism to detect Android
malware from permissions and functions based on network traffic. In this method, permis-
sion and network traffic characteristics are used in FP growth algorithm to detect malicious
behavior. AspectDroid [23] performs static bytecode inspection at the application level
and does not require any specific support from the operating system or the Dalvik virtual
machine. It monitors the code at compile time using a set of predefined security questions.
The target application is then executed on any Android platform of choice and its behavior
patterns are dynamically monitored and documented. SamaDroid [24] is a hybrid malware
detection model for Android devices. SamaDroid works in two steps. In the first step, static
functions are extracted from the source code, such as requested hardware components,
requested permissions, used permissions, application components, intention filters and
suspicious and restricted API calls, and dynamic functions are collected after execution,
such as files generated by the application and network related system calls, such as opening,
reading, etc. In the second stage, these static and dynamic features are preprocessed and
used as the input of two different machine learning classifiers (such as SVM) to identify
whether the application is malware. If the results of static and dynamic analysis are mali-
cious, the application will be regarded as malware. Ahmed et al. [25] proposed a hybrid
approach that examined permissions, text and network-based features both statically and
dynamically by monitoring memory usage, system call logs and CPU usage, finally, stacked
ensemble learning is used to make predictions. Hybrid analysis greatly compensates for the
shortcomings of static and dynamic analysis, making the detection effect further improved.
However, hybrid analysis also brings a problem that it takes more time than using only
static or dynamic analysis. In addition, since dynamic analysis is a part of hybrid analysis,
hybrid analysis is not adopted by our method.

3. A Lightweight Multi-Source Fast Android Malware Detection Model

To achieve lightweight and fast Android malware detection, we propose a detection
method by combining power spectral density, file headers of Dalvik virtual machine
executables, and Intent and Permission call features in Android manifest files. Our method
is divided into two parts, feature extraction, and classification. The following paper
describes the feature extraction scheme, the ensemble model and the base model for each
feature in several aspects.

3.1. Android Application Structure and Its Feature Selection and Feature Extraction Scheme

As shown in Figure 1, Android application package is a ZIP file with the extension
.apk, which contains all the contents of the Android application. Assets stores the static



Appl. Sci. 2022, 12, 5394 6 of 25

resource files required by the application, such as images, etc. The resources files in the res
directory are compiled into binary to generate the corresponding index IDs in the R.java
file. lib directory stores the library files written in C/C++. META-INF stores the signature
information of the application, which will be checked before installing the application to
ensure the integrity and security of the Android application package. resources.arsc file is
used to record the correspondence between the resource files and IDs in the res directory.
This model mainly uses the classes.dex and AndroidManifest.xml files.

assets

Static files required by the 

application

Native libraries that the 

application depends on
lib

Application's resource files

res

Application signatures and 

certificates
META-INF

Application manifest file

Application executable file

Application's resource 

index table

Android application package

classes.dex

resources.

arsc

Android

Manifest.xml

Figure 1. The Android application package with the file extension apk is a container file in which all
parts of the Android application are packaged.

classes.dex is an executable file for the Android Runtime (ART) and Dalvik virtual
machines. The compact Dalvik executable format is designed to work on limited memory
and processor speed systems.

classes.dex is essentially all the program logic of an Android application, given that
Android applications are typically written in Java and compiled to bytecode by the dx tool.
The Java compiler compiles all Java source files to Java bytecode (.class files), and then the
dx tool converts them from Java bytecode to Dalvik-compatible bytecode Dex files. The
dx tool eliminates the redundant information present in classes, and in dex files, all .class
files are wrapped into one file, merging the .class header information and sharing a pool of
constants and indexes as in Figure 2. As a result, the vast majority of the code logic of an
Android application is contained in the classes.dex file.

Mobile apps frequently request access to sensitive information, such as unique device
ID, location data, and contact lists. Android currently requires developers to declare what
permissions an app uses [26]. AndroidManifest.xml is the manifest file of the Android
application, which describes each component of the application and defines the manifes-
tation of the component such as component name, theme, launch type, operation of the
component, launch intent, etc. The manifest file also declares the application properties
and permission information.
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Figure 2. The structure of a Dalvik executable.

In summary, the classes.dex and AndroidManifest.xml files contain most of the features
of Android applications, so this paper ignores the other files in the APK file and only takes
the classes.dex file and AndroidManifest.xml file to extract the features.

3.2. Ensemble Model and Base Models

Based on the above, we propose a model to detect Android malware by Dex file
header information, power spectrum density information of dex file structure entropy, and
permission and intent information in the AndroidManifest.xml file. The structure of the
model is shown in Figure 3, this model is divided into four base models and one ensemble
learning model.
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Figure 3. The structure of the lightweight multi-source fast Android malware detection model. This
model takes the classes.dex and AndroidManifest.xml files in the APK sample as input, followed
by feature selection and feature extraction of these two files. The extracted features are predicted by
4 different base models, these base models are integrated by adaptive soft voting method, and finally
the probability of the sample being malicious is output.
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Specifically, we used the following base models.

• Base model 1 : Abbreviated as MLP(H). It extract and parse the header information
of the classes.dex file, encode it as header features, and use the multilayer perceptron
for prediction;

• Base model 2: Abbreviated as MLP(P). It calculate the entropy of the classses.dex file,
extract the power spectral density of the entropy signal as features by the maximum
entropy method, and use the multilayer perceptron for prediction as well;

• Base model 3: Abbreviated as ASCNN(I). perform the prediction on the AndroidMan-
ifest.xml file is decoded and parsed. Permission and intent keywords are extracted
and encoded as features by bag-of-words model. Since the dimensionality is too high,
we use adaptive shrinkage convolutional neural network for dimensionality reduction
and then prediction by multilayer perceptron;

• Base model 4: Abbreviated as ASCNN(C). Since theoretically using more base models
for ensemble learning will give better results. To improve the ensemble learning, we
additionally added a base model that concatenate the features extracted from the DEX
file header and the permission and intent features and uses an adaptive shrinkage
convolutional neural network and a multilayer perceptron for prediction.

Finally, we use the adaptive soft voting method to perform ensemble learning and
predict the final results.

3.3. Base Model for Identifying Android Malware by Dex Header

Since the Dex files of different Android applications have different sizes, and some Dex
files have large sizes, scanning the entire dex file for all data can be quite time-consuming. A
malware detection tool proposed by Zubair et al. for extracting features from PEs completed
a single scan of all features in the dataset with a detection rate of over 99% [27]; however,
they scanned the entire contents of the PE file, which took nearly an hour. Therefore, we
elicit an approach to distinguish malicious and benign applications based only on the
header information. Dex headers hold meta-information about a dex file, such as the size
and offset information of each index area within the dex, which describes the summary
structure of a dex file. In this paper,We analyzed and compared the values of some fields in
the dex file header of the dataset malware and benign software samples and presented them
by data visualization as shown in Figure 4, we found that malware and benign software
have large differences in the distribution of the values of these fields, so we considered
that using header information for Android malware classification is effective, while we
confirmed this in our experiments.

The above analysis shows significant differences between malware and benign soft-
ware in the values of several fields in the Dex header. Thus we extract malware features
based on the Dex header to discriminate the base model of malware.

The Dex file header parser reads the basic section of the Dex header based on the
definition of the dex structure in dalvik/libdex/DexFile.h in the Android source code.
First, it determines whether it is a valid dex file by checking the Dex magic number field,
which the first 8 bytes of the dex file, represented by eight 1-byte unsigned numbers. Its
value is a combination of the dex string and the file version number combination, such as
“64 65 78 0A 30 33 35 00”, using the ASCII table for conversion to get “dex\n\035\0”,
where the version number is used for the system to identify and parse different versions of
the format of The version number is used to provide support for the system to recognize
and parse Dex files with different version formats. After judging the legitimate dex file by
checking, parse it according to the definition of DexHeader structure in DexFile.h, and get
all the fields in the structure. The size and offset information of the parsed file signature,
link segment, mapping item, type identifier, string identifier, prototype identifier, etc., are
encoded in hexadecimal and normalized to obtain a one-dimensional gray matrix is the
feature extracted from the dex header.
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Figure 4. Distribution of values in the header of malware and benign software files.

3.4. Base Model for Identifying Android Malware by Power Spectral Density of Structural Entropy
of Dex File

Entropy measures the randomness or uncertainty of a variable. Shannon relates
information to uncertainty; if one can measure the uncertainty of a thing, then one can also
measure the amount of information in a given piece of information.

Shannon entropy formula is expressed as Equation (1):

H(X) = −
n

∑
i=1

P(xi) log P(xi) (1)

where H(X) is the entropy of the variable X, ∑ defines the sum of the possible values xi of
the variable X, and P(xi) is the probability of occurrence of the possible outcomes xi of the
variable X, where i represents the number of outcomes, varying between 1 and n.

Malware of the same type usually has similar malicious code segments, which are
compiled and eventually reflected in the binary data stream of the Dex file. Therefore,
these malicious code fluctuations will also react to the entropy sequence obtained from
the binary data stream chunking calculation. The binary stream of the classes.dex file is
subjected to the information measure to obtain the entropy sequence. Many scholars have
detected the malware based on the entropy features. Wojnowicz et al. [28] proposed a
method for the detection of parasitic malware based on the entropy features and achieved
good performance. Liu et al. [29] extracted the entropy sequence of malicious documents
and detected the malware based on the machine learning algorithms.

Unlike previous studies, we use structural entropy for the detection against classes.dex
files, and also because the size of the classes.dex file of different Android programs is
inconsistent. The length of the received entropy sequence is also varying. So we use
the power spectral density method to calculate the power spectral density of the entropy
sequence to quickly obtain the fixed-length features for machine learning.
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The power spectral density of a signal (Power Spectral Density) describes the power
present in a signal as a function of frequency per unit. The calculation methods of power
spectrum mainly include the fast Fourier transform method, Welch method, multi-window
method, maximum entropy method, etc. The first three belong to the periodogram method.
Since the periodogram method is a method to estimate the finite length autocorrelation of
the signal, it requires truncation or windowing of the signal sequence so that the estimated
power spectrum is the convolution of the true spectrum of the signal sequence and the win-
dow spectrum, so its ability to produce accurate power spectrum estimates is limited [30],
which is why we use the maximum entropy method to calculate the power spectral density
P( f ) [31], which is expressed as Equation (2):

P( f ) =
Pm4t

|1 + ∑m
k=0 γm,kexp(−i2π f k4t)|2 (2)

where P(m) is the output power of the filter at the fluctuation period of the mth order, γm,k
is the filter coefficient when m = 0, 1, . . . , M, and M is the corresponding filter coefficient at
the optimal filter order, and Pm and γm,k are obtained by solving the Yule-Walker equation
through Burg method [32,33].

We randomly selected a benign sample and a malware sample and calculated the
structural entropy sequences of the binary streams of their Dex files and power spectral
densities of the entropy sequences, which we abbreviate as MEM-PSD, as shown in Figure 5,
from which we can learn that different lengths of structural entropy sequences can be
calculated for a fixed-length power spectral density.

0 2000 4000 6000 8000
1

2

3

4

5

6
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Figure 5. Distribution of structural entropy and MEM-PSD of benign software samples and malware
samples.

We take the byte stream of classes.dex as a time series, divide the sequence with a
block size of 256 bytes, and then construct a structural entropy sequence according to
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Algorithm 1. We compute the power spectral density of the structural entropy sequence
to obtain a power spectral sequence of length 128 as a feature vector. This feature vector
is used as input and the multilayer perceptron is used as a classifier to construct this
base model.

Algorithm 1: Calculate the structural entropy sequences using Shannon entropy
Input: byte sequence Sb, block size bs
Output: structural entropy sequence SH

1 Lsb = Length of Sb;
2 Le f t = Lsb mod bs;
3 if Le f t < bs/2 then
4 Truncate the end of Sb by the length Le f t;
5 else if Le f t > bs/2 then
6 Pad the end of Sb with an all-zero sequence of length bs− Le f t;
7 end
8 X = Reshape Sb to a 2D matrix of size (Lsb|256 + 1256);
9 Initialize a one-dimensional array SH ;

10 for Row in first dimension of X do
11 Calculate the number of occurrences of each value in Row and assign the result

to C;
12 P = C/bs;
13 Filter out the elements of P equal to 0;
14 H = ShannonEntropy(P);
15 SH=Append H to SH ;
16 end

3.5. Base Model for Identifying Android Malware by Permission and Intent

Permission control is a key problem in the security of the Android operating system.
Android permissions enforce the restrictions on the specific operation to offer concrete
security features [34].

The AndroidManifest.xml holds information about the application structure and
is organized in the form of Components. Android Framework defines four kinds of
Components, namely Activity, Service, Broadcast Receiver, and Content Provider. The
manifest file also contains the list of permissions which are requested by the application to
work and needed to access its components [35].

Usually, AndroidManifest.xml is encrypted, we extract the application permissions
usage, components, and intent by decrypting the file into a legal XML document and
parsing it. The extracted information is used to construct a feature vector.

As shown in Figure 6, malicious applications make intensive use of some specific
permissions. They are more homogeneous in their functionality than general applica-
tions, requiring only a combination of specific permissions. The analysis shows that this
information in the manifest file plays a crucial role in determining the type of application.

Since the set of permission and intent keywords is small, we use a sparse expression
to reduce the model complexity, using the idea of the Bag of word model, which treats
the occurrence of each permission and intent keyword as an independent probability. All
permissions and intentions of the dataset are extracted and filtered to sieve out keywords
with frequencies less than 2, constituting a lexicon containing N keywords. The keywords
are removed from the list file of each application and encoded using Bag of Word model.
UNK replaces the keywords not in the dictionary to form an N + 1-dimensional feature
vector. Since the dimensionality of the bag-of-words vector is equal to that of the dictionary
(the number of words in the dictionary), the bag-of-words vector is also sparse, with often
only a few tens or hundreds of non-zero items in thousands or even tens of thousands
of dimensions. In our model, we designed a dictionary of size 4380. If we directly use a
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multilayer perceptron to predict this feature, we will generate a large number of redundant
parameters, which will greatly increase the size of our model, so we use a convolutional
network to further extract and optimize the feature, and at the same time reduce its
dimensionality so that the classifier can classify it quickly. We constructed a shallow
convolutional network using three layers of adaptive shrinkage convolution as shown in
Figure 7. This network finally outputs 128-dimensional feature vectors, which are finally
classified by a multilayer perceptron. Next, we explain the adaptive systolic convolution
unit in detail in the next subsection.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

android.intent.action.MAIN

android.intent.category.LAUNCHER

android.permission.INTERNET

android.permission.READ_PHONE_STATE

android.permission.WRITE_EXTERNAL_STORAGE

android.permission.SEND_SMS

android.permission.ACCESS_NETWORK_STATE

android.permission.RECEIVE_SMS

android.intent.action.BOOT_COMPLETED

android.permission.READ_SMS

android.permission.WAKE_LOCK

android.permission.RECEIVE_BOOT_COMPLETED

android.permission.ACCESS_WIFI_STATE

android.permission.GET_TASKS

Frequency

Benign Malware

Figure 6. Statistics of permissions and intent used by benign software samples versus malware samples.
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128 × 1

Figure 7. Convolutional network structure and feature dimension.

3.6. Adaptive Shrinkage Convolution Unit

For many Android malware applications, malicious code fragments are mixed into a
large number of normal code fragments. As a result, many noises unrelated to malicious
code fragments appear in the extracted features. The features need to be noise-reduced
to improve the feature learning ability to address this problem. The classical wavelet
threshold noise reduction method consists of three main steps: wavelet decomposition, soft
thresholding, and wavelet reconstruction; in this noise reduction method, it is a challenging
problem to construct a suitable filter operator to set a reasonable soft threshold. An adaptive
shrinkage convolution unit is proposed in this paper to solve this problem, its specific
structure is shown in Figure 8.



Appl. Sci. 2022, 12, 5394 13 of 25

Conv

BN

Conv

BN

AvgPool

FC+Relu

FC+Softmax

AvgPool

FC+Relu

FC+Softmax

A
tt

en
ti

o
n

A
tt

en
ti

o
n

D
y

n
am

ic
 C

o
n
v

AvgPool

FC+Relu

FC+Softmax

AvgPool

FC+Relu

FC+Softmax

Input

Output

Soft Thresholding

π1 π2 πk
...π1 π2 πk
...

Conv1 Conv2 Convk
...Conv1 Conv2 Convk
...

π1 π2 πk
...

Conv1 Conv2 Convk
...

...* * *

π1 π2 πk
...

Conv1 Conv2 Convk
...

...* * *

π1 π2 πk
...

Conv1 Conv2 Convk
...

...* * *

Figure 8. Adaptive shrinkage convolution unit structure.

The convolutional layer is used to compute the output feature mapping by convolving
the feature mapping of the previous layer with a set of filters. These filters are the only
parameters of the convolutional layer and are usually learned in training by a backpropaga-
tion algorithm. This model makes two main improvements on the traditional convolutional
layer, which uses convolutional kernels (filters) learned in training and kept constant in
testing. In contrast, our model uses convolutional kernels that change during testing as
the input varies. This is achieved by learning the kernel functions that map the inputs to
the convolutional kernels through an attention mechanism. Meanwhile, the key of feature
learning method is not only to extract the target information related to the labels, but it
is also important to eliminate irrelevant information, so it is important to introduce soft
thresholding inside the deep neural network to adaptively eliminate redundant information
during the feature learning process and improve the learning of useful features. More
importantly, each sample should have a different threshold value. This is because a sample
set often contains many samples, and the amount of noise contained in these samples is
often different. In deep learning algorithms, the size of the threshold cannot be interpreted
because these features have no clear physical meaning, but the reasoning is similar, each
sample should have a different threshold, so this model also uses the attention mechanism
to learn to map the input to the threshold of the soft-threshold activation function.

The model representation for each convolutional layer is enhanced by superimposing
convolutional kernels nonlinearly according to attention by the dynamic convolution [36,37]
method. Let the traditional static convolution be represented as y = g(WT(x)x + b), where
W and b are the weight matrix and bias vector, and g is an activation function, and define
the dynamic convolution by aggregating multiple (K) linear functions W̃T

k x + b̃k as in
Equations (3)–(5):

y = g(W̃T(x)x + b̃(x)) (3)

W̃(x) =
K

∑
k=1

πk(x)W̃k (4)

b̃(x) =
K

∑
k=1

πk(x)b̃k (5)

where πk is the attention weight of the kth linear equation W̃T
k x + b̃k, πk(x) ∈ [0, 1] and

∑K
k=1 πk(x) = 1, the weight W̃(x) and the bias b̃(x) are functions of the inputs and share

the same attention. The attention weights πk(x) are not fixed but vary for each input
x, and they represent the best aggregation of a linear model W̃T

k + b̃k for a given input.
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The aggregated model W̃T(x)x + b̃(x) is nonlinear. Therefore, it is possible to change the
convolution kernel weights adaptively according to the input x to make it more expressive
compared to static convolution.

Meanwhile, in this paper, based on the study of deep residual shrinkage networks [38],
a soft thresholding activation function is introduced to set the features corresponding to
these noises to zero with the help of soft thresholding and dynamically set the thresholds
for each sample individually according to each sample through an attention mechanism,
integrated into this unit as a nonlinear transformation layer. Let x be the input feature, y
be the output feature, and τ be the threshold value. The formula for soft thresholding is
expressed as Equation (6).

y =


x− τ x > τ
0 − τ ≤ x ≤ τ
x + τ x < −τ

(6)

This unit improves the expressiveness of the convolutional network, at the same time,
it seeks a balance between the performance of the network and the computational load.
The computational complexity of the convolutional kernel and activation function increases
slightly, but the kernel function and activation function of the convolutional kernel need to
be computed only once, and the computational resources used are much smaller than those
of using more layers of convolution, thus reducing the complexity of the overall model.

3.7. Adaptive Soft Voting Ensemble Method

An ensemble learning method combines the results of two or more separate machine
learning algorithms and attempts to produce results that are more accurate than any single
algorithm.

Voting is a combination strategy for classification problems within ensemble learning.
The basic idea is to select the class with the most output among all machine learning
algorithms. There are two types of machine learning algorithm outputs for classification:
one is the direct output of class labels, and the other is the output of class probabilities,
using the former for voting is called Hard voting, and using the latter for classification is
called Soft voting.

Soft voting obtains the weighted average of each class probability by inputting weights,
and selects the class with the more significant value; soft voting returns the class labels
as Argmax of the sum of predicted probabilities, which is achieved by outputting class
probabilities. We propose the soft voting method using the above base models for ensemble
learning. The weights of traditional static weighted average probability soft voting are
determined manually. Generally, they use multiple homogeneous base models, but we
extract different features using different models. Since different features and models have
different training curves and fitting abilities, the voting weights need to be dynamically
adjusted during the training process. So we propose a dynamic weighted soft voting
method, where the gradient descent principle automatically determines the voting weights,
and a new loss function is designed for this model.

Let N be the number of samples, pi be the probability that the ith sample is a positive
case, and yi be the label of the ith sample, then the binary cross-entropy formula is as
Equation (7).

LBCE(p, y) =
1
N

N

∑
i=1
−[yi · log(pi) + (1− yi) · log(i− pi)] (7)

where the probabilities [p1, p2, · · · , pj] of the positive cases derived from M models and
the weights W are calculated by the Hadamard product of Softmax operations to derive
the probability of positive cases pvote after soft voting, and the Softmax function σ(W) and
pvote is calculated as Equations (8) and (9).
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σ(W)j =
eWj

∑M
m=1 eWm

j = 1, 2, · · · , M (8)

pvote =
M

∑
j=1

([p1, p2, · · · , pj] ◦ σ(W)) (9)

The binary cross-entropy loss [l1, l2, · · · , lj] derived from M models for Softmax op-
eration and the absolute value of the difference between the value of the weights after
Softmax operation are calculated as the average and multiplied by the value obtained from
the weight parameter µ. Finally, the sum of this value and the binary cross-entropy of the
soft voting results is calculated as the loss Loss of adaptive soft voting, which is calculated
as Equation (10).

Loss = LBCE(pvote, y) + µ×
∑M

j=1 |σ(−[l1, l2, · · · , lj])− σ(W)|
M

(10)

This loss function can effectively suppress the problem that the adaptive soft voting
method assigns too small weights to the base model with slow gradient decline during
the training process so that the output of the base model is not considered even if the base
model achieves good results at the later stage of training, leading to the problem of falling
into a local optimum.

4. Experimental Results and Analysis

In this section, we first introduce the dataset, experimental environment for the
experiments. Then, we compare our model with other benchmark models through several
experiments to examine the performance of each module of this model, and finally we
analyze the experimental results and give the experimental conclusions.

4.1. Dataset

Three publicly available datasets were used in this experiment, the CICMalDroid2020
dataset [39] and CIC-InvesAndMal2019 dataset [40] from the Canadian Institute for Cyber-
security Research (CIC) and the Drebin (2012) dataset [10] from the Institute for Systems Se-
curity at the Technical University of Braunschweig: the CICMalDroid 2020 dataset has more
than 17,341 Android samples, including VirusTotal Service, Contagio Security Blog, AMD,
Maldozer and other datasets used in recent research contributions; CIC-InvesAndMal2019
contains 5491 samples (426 malware and 5065 benign software); the Drebin dataset contains
5560 malware samples. Since the sample size of individual datasets is too small, we decided
to combine them to build a larger dataset.

4.2. Experimental Setup

This experiment is trained on a Tesla V100 GPU (16 GB) using the Pytorch 1.9.0
framework in Centos7 and Cuda10.2 environments. The experiment sets the batch size to
16, the momentum of stochastic gradient descent SGD to 0.9, the learning rate to 0.5× 10−2,
and the multiplicative factor of learning rate decay to 0.5.

Three metrics, area under the ROC curve (AUC), which formula is Equations (11)
and (12), accuracy (ACC), which is expressed as Equation (13), and the summed mean of
precision and recall (F1-Score), which is expressed as Equation (14), are selected to evaluate
the model performance.

AUC =
∑ I(Ppos, Pneg)

M · N (11)

I(Ppos, Pneg) =


1 Ppos > Pneg
0.5 Ppos = Pneg
0 Ppos < Pneg

(12)



Appl. Sci. 2022, 12, 5394 16 of 25

where M is the number of positive samples (malware), N is the number of negative samples
(benign software), so there are M · N pairs of samples in the data set. Ppos is the prediction
probability of positive samples, and Pneg is the prediction probability of negative samples.

ACC =
TP + TN

TP + TN + FP + FN
(13)

F1 =
N − TN

N + TP− TN
(14)

where TP is the number of results that correctly predicted that the sample is malware, TN
is the number of results that correctly predicted that the sample is not malware, FP is the
number of results that incorrectly predicted that the sample is malware, and FN is the
number of results that incorrectly predicted that the sample is not malware.

4.3. Comparison of Different Methods

The methodology in this paper is compared with several recent benchmark models
for detecting Android malware, and their brief descriptions and experimental results are
given below.

• Meenu’s method: CNN-Based Android Malware Detection [41]. It Extracts permission
information from AndroidManifest.xml, encodes it into a permission vector, and
extracts features using LeNet.

• XushengXiao’s method: An Image-Inspired and CNN-Based Android Malware De-
tection Approach [42]. It reads Dalvik bytecode in hexadecimal, transforms it into a
three-channel color matrix, and extracts features using CNN.

• Muhammad’s method: Static Malware Detection and Attribution in Android Byte-
code through an End-to-End Deep System [43]. It proposes an end-to-end network to
detect the byte-code of an application by using a bidirectional LSTM on the extracted
opcodes to detect Android malware by using bi-directional LSTM.

• David’s method: EntropLyzer: Android Malware Classification and Characterization
Using Entropy Analysis of Dynamic Characteristics [44]. It proposes an entropy-
based behavior analysis technique using memory, API, network, Logcat, and battery
dynamic characteristics to classify and characterize Android malware.

• XushengWang’s method: MFDroid: A Stacking Ensemble Learning Framework for
Android Malware Detection [13]. It uses seven feature selection algorithms to select
permissions, API calls and opcodes, then merges the results of each feature selection
algorithm to obtain a new feature set, and subsequently uses logistic regression to
obtain classification results.

• Mahindru’s method: HybriDroid: an empirical analysis on efective malware detection
model developed using ensemble methods [12]. It applies five distinct machine
learning algorithms and non-linear ensemble decision tree forest to detect malware in
Android applications.

• Ahmed’s method: Mitigating adversarial evasion attacks of ransomware using en-
semble learning [25]. It proposes an hybrid analysis approach to detect Android
malware by monitoring memory usage, system call logs and CPU usage, statically
and dynamically checking permissions, text and network-based functions.

• Ruitao’s method: A Performance-Sensitive Malware Detection System Using Deep
Learning on Mobile Devices [5]. It proposes a fast malware detection method by ex-
tracting manifest properties and API calls directly from the binary code of an Android
application and vectorizing them, and finally using a quantized neural network.

The performance of the model is shown in Table 1, and the best results are bolded in
the table. Considering the metrics of AUC, ACC, F1-Score, and average time consumption,
our method achieves a better trade-off in accuracy and speed than several other methods.
The time consumption of methods using dynamic or hybrid analysis is not included in
the table.
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Table 1. Comparison of test results of different methods on PC.

Method AUC ACC F1-Score Average Time Consumption on PC

Meenu’s [41] 95.36% 93.67% 94.53% 0.64 s
XushengXiao’s [42] 94.34% 93.00% 94.02% 0.22 s

XushengWang’s [13] 97.66% 96.35% 96.10% 0.21 s
Muhammad’s [43] 98.82% 99.92% 98.35% 0.35 s

David’s [44] 99.06% 98.42% 98.20% -
Mahindru’s [12] 98.95% 98.53% 96.72% 0.15 s

Ahmed’s [25] 99.38% 98.77% 98.12% -

Ruitao’s [5] 97.06% 96.75% 96.91% 0.19 s
MSFDroid 99.52% 97.26% 97.89% 0.14 s

One of them, Ruitao’s method, has similar goals as our method to build lightweight
detection methods that can run with Android devices, so we delved into the gap in time
efficiency between our method and Ruitao’s. We tested on different devices while record-
ing the average detection time of the detected samples, and the statistics are shown in
Table 2. Our method achieves more accurate detection results with faster detection speed
on multiple test platforms compared to Ruitao’s.

Table 2. Comparison of our method with Ruitao’s in terms of time efficiency.

Device
CPU Time Consumption

Model Performance MSFDroid Ruitao’s [5]

Galaxy J7 Pro Exynos 7870 Octa 448 2.33 s 3.96 s
Nexux 6P Qualcomm Snapdragon 810 514 1.57 s 2.20 s
Oppo F3 Mediatek MT6750 668 1.36 s 1.76 s

OnePlus 3 Qualcomm Snapdragon 820 759 1.05 s 1.65 s
OnePlus 5T Qualcomm Snapdragon 835 1627 0.81 s 1.03 s
Huawei P30 HiSilicon Kirin 980 2419 0.37 s 0.46 s

OnePlus 8Pro Qualcomm Snapdragon 865 3045 0.28 s 0.38 s

The total time consumption includes the extraction and prediction times. The extrac-
tion time is the time consumption for decompressing the APK, calculating the structural
entropy of the Dalvik binary, calculating the maximum entropy-power spectral density,
decoding the Android manifest file, and calculating the Bag of word model. The prediction
time includes the calculation time of the base model and the calculation time of the soft
voting ensemble model as described above. We selected seven devices for testing, includ-
ing five real Android devices based on ARMv8 architecture with different generations of
releases, and used two x86_64 architecture computers for comparison.

Our research found that time consumption is mainly related to CPU performance.
It is difficult to measure CPU performance by design parameters due to inconsistencies
in the CPU process, architecture design, base clock speed, and turbo boost clock speed.
Therefore, we used GeekBench5 to measure CPU performance and plotted Figure 9, which
includes the CPUs used in our method and Ruitao’s. It reflects the single-core and multi-
core performance differences of different CPUs. The results of Table 3 and Figure 9 together
reflect that the multi-core performance of CPUs mainly influences the time consumption of
our method.
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Figure 9. CPU benchmarks

Table 3. Efficiency of running on different devices.

Device CPU Arch Extraction Time Prediction Time Total Time

Galaxy J7 Pro Exynos 7870 Octa ARMv8 476.85 s 1758.161 s 2.232 s
Nexus 6P QCOM Snapdragon 710 ARMv8 392.412 s 1183.588 ms 1.575 s
Oppo F3 Mediatek MT6750 ARMv8 375.939 ms 987.057 ms 1.363 s

OnePlus 3 QCOM Snapdragon 820 ARMv8 257.021 ms 793.548 ms 1.051 s
OnePlus 5T QCOM Snapdragon 835 ARMv8 211.628 ms 699.563 ms 0.911 s
Huawei P30 HiSilicon Kirin 980 ARMv8 176.942 ms 195.222 ms 0.372 s

OnePlus 8Pro QCOM Snapdragon 865 ARMv8 96.501 ms 182.123 ms 0.279 s
x64 Server Intel Xeon Silver 4210 x86_64 67.515 ms 89.088 ms 0.157 s

x64 PC AMD Ryzen7 5800X x86_64 58.019 ms 46.429 ms 0.104 s

Table 2 and Figure 10 shows the time consumption of our method and Ruitao’s on
devices with different CPU performances. CPU performance is referenced to GeekBench5’s
multi-core score results, time consumption is calculated in seconds, and the data are fitted
using a power function. To reduce the impact on Android malware detection, we repeat the
detection five times for each APK file. Figure 10 reflects that the predicted time consumption
of our method is generally lower than Ruitao’s on different devices.
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Figure 10. The relationship between processor performance and time consumption.
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Meanwhile, we compare the number of model size and accuracy of our method and
Ruitao’s as shown in Figure 11. We use different base models for ensemble learning. Under
the condition of achieving the same or better performance, the number of parameters of our
model is much smaller than the number of parameters of several models given by Ruitao’s
and even better than the quantized results of Ruitao’s.
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Figure 11. Comparison of model size.

Since we use multiple base models and different features, to reduce the complexity of
the representation, we define the abbreviations of models and features as follows. AdaSV
is adaptive soft voting, ASCNN is adaptive shrinkage convolutional neural network, and
MLP is multilayer perceptron. H is Dex head feature, M is power spectral density feature
of entropy sequence of Dex file, I is permission and intent feature, and C is the combined
features of Dex head features and power spectral density features of entropy sequences of
Dex files.

In summary, our method has a more significant advantage in terms of performance,
time efficiency, and space efficiency by comparing several dimensions.

4.4. Comparison with Anti-Virus Softwares

Compared with other methods in the literature, our method shows competitiveness
in terms of performance and efficiency. However, it should eventually be compared with
anti-virus products commonly used in the industry to show its practical value.

We selected five free antivirus software on the market and used the 5217 malware
samples for testing. The experimental results are shown in Table 4.

Table 4. Comparison with anti-virus softwares.

Anti-Virus Software Detection Rate Average Time Consumption per Sample

Huorong 86.4% 0.07 s
Norton 93.7% 0.06 s
McAfee 93.8% 0.05 s

Kaspersky 94.3% 0.07 s
Avast 96.7% 0.05 s

MSFDroid 98.6% 0.14 s

In this study, we observed a large difference in the detection effectiveness of these five
anti-virus software, which we believe is mainly due to their different virus libraries, which
are not specifically designed to detect Android malware. The detection rate of Avast, which
is the best detection, is 96.7%, and our method MSFDroid achieves a detection rate of 98.6%.
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This proves that our method is more effective with the fingerprint database used by many
anti-virus software.

4.5. Analysis of Experimental Results

This section compares and analyzes the performance of different base models, adaptive
shrinkage convolution neural network, and adaptive soft voting.

4.5.1. A Study on the Performance of Adaptive Shrinkage Convolution

The adaptive shrinkage convolutional neural network improves performance com-
pared to the conventional convolutional network using the same number of convolutional
layers. This result in Table 5 shows that the attention mechanism is used to dynamically
adjust the convolutional kernel’s weights and the activation function’s threshold according
to the noise level. Although the introduced attention mechanism increases the size and
complexity of the convolutional kernel generating function and activation function and
increases the computational effort, the additional computational step can be neglected
compared to the convolutional computation because the convolutional kernel parameters
and the activation function threshold are only computed once. Therefore, the traditional
convolutional neural network achieves higher performance with fewer convolutional layers
and reduces the overall network computation.

Table 5. Performance comparison of adaptive shrinkage convolution neural network and conven-
tional convolutional network.

Model AUC ACC F1-Score

3-layer convolutional neural network 97.26% 92.57% 94.76%
6-layer convolutional neural network 98.74% 95.15% 95.61%

3-layer adaptive shrinkage convolution neural network 99.23% 95.28% 96.29%

4.5.2. A Study on the Performance of Adaptive Soft Voting Method

As shown in Table 6, by comparing the performance of different base models and
adaptive soft voting assembled with multiple base models, a single base model has a
limited performance on malware detection. Still, as shown in Table 7, by assembling with
the adaptive soft voting method, we achieve a maximum improvement of +5%, +13%, +16%
by reaching 99.52%, 96.97%, 97.89% in three performance evaluation metrics. The adaptive
soft voting method assembles multiple base models. It achieves significant performance
improvements, while the performance of adaptive soft voting improves more with the
increase of the number of integrated base models.

Table 6. Performance between different base models and ensemble learning models.

Integration of Base Models AUC ACC F1-Score

MLP(H) 95.73% 83.54% 81.07%
MLP(M) 96.12% 88.98% 91.76%

ASCNN(I) 98.06% 88.97% 88.75%
MLP(H) + MLP(M) 97.66% 94.30% 95.94%

ASCNN(I) + ASCNN(C) 99.23% 95.69% 96.76%
MLP(H) + MLP(M) + ASCNN(I) 99.39% 96.83% 97.20%

MLP(H) + MLP(M) + ASCNN(I) + ASCNN(C) 99.52% 97.26% 97.89%

We use different ensembles of base models to compare the performance of adaptive
soft voting with static weighted soft voting, respectively. Under the condition of the
dynamic weighted soft voting weight parameter µ = 0.5, the ensembles using different
base models improves in three performance metrics, including a maximum improvement
of 3.49% in ACC, 2.58% in F1-Score, and 0.43% in AUC.



Appl. Sci. 2022, 12, 5394 21 of 25

Table 7. Comparison of adaptive soft voting and static weighted soft voting.

Integration of Base Models Ensemble Model AUC ACC F1-
Score

MLP(H)+MLP(M) Adaptive Soft Voting (µ = 0.6) 97.66% 94.30% 95.94%
Static Weighted Soft Voting 97.14% 93.12% 95.13%

ASCNN(I)+MLP(M) Adaptive Soft Voting (µ = 0.6) 99.23% 95.28% 96.29%
Static Weighted Soft Voting 99.13% 93.86% 95.37%

MLP(H)+MLP(M)+MLP(I) Adaptive Soft Voting (µ = 0.6) 99.39% 96.83% 97.20%
Static Weighted Soft Voting 99.15% 94.06% 95.79%

MLP(H)+MLP(M)+ASCNN(I)+
ASCNN(C)

Adaptive Soft Voting (µ = 0.5) 99.52% 97.26% 97.89%
Static Weighted Soft Voting 99.09% 93.49% 95.42%

To investigate the reason for the performance difference between adaptive soft voting
and soft voting methods with static weights, we use the ensemble of two base models,
MLP(I), a multilayer perceptron with Intent & Permission features as input, and MLP(M),
a multilayer perceptron with MEM-PSD features as input, and their AUC, Loss, and soft
voting weights during the training process is shown in the Figures 12 and 13. It can be seen
from the figures that MLP(I) has more jitter during the training process, MLP(M) has less
jitter but the final performance is lower than MLP(I). In the traditional soft voting method,
which cannot adjust the weight of each base model, we can see from the training curve in
the Figure 12, the model with more jitter even becomes noise, which leads to a negative
impact on the decision making of the voting algorithm, making its AUC curve less flat and
underperforming than adaptive soft voting during the training process.

Our proposed adaptive soft voting method continuously adjusts the weights according
to the performance of each base model during the training process, effectively avoiding the
jitter problem caused by some base models and the noise generated by the poor performance
of some base models, making the adaptive soft voting method effectively adapt to different
base models and significantly improving the performance of soft voting.
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Figure 12. Static weighted Soft Voting.
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Figure 13. Adaptive Soft Voting (µ = 0.6).

4.5.3. A Study of Weighting Parameter in Adaptive Soft Voting Loss Functions

The model’s accuracy is obtained by adjusting the weight parameter µ of adaptive
soft voting, conducting several experiments, and plotting the scatter plot as in Figure 14.
As µ increases continuously, the accuracy peaks around µ = 0.8 and decreases. When
µ = 0, the loss function cannot penalise the weights with large values, thus making the
weights almost completely concentrated in the base model with the best effect, as shown
in Figure 15. This makes the soft voting fall into a local optimum and makes the overall
performance of integrated learning drop significantly.
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Figure 14. Relationship between adaptive soft voting weights and performance.
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Figure 15. Adaptive Soft Voting (µ = 0).

5. Conclusions and Future Work

In this paper, we propose a fast Android malware detection method. We propose a
multidimensional feature engineering of Android application packages combining infor-
mation entropy, file headers, and manifest files, propose adaptive shrinkage convolution
to improve the convolution unit and propose a adaptive soft voting ensemble learning
method, which enables efficient and accurate Android malware detection and provides
a new idea for static Android malware detection. With the increasing camouflage and
obfuscation techniques, our future research will further improve the detection accuracy
and discrimination against unknown malware by combining dynamic analysis techniques.

We analyzed the performance indexes of our proposed several feature selection and ex-
traction methods and base models by the above experimental results, and the performance
index of our method is higher than that of single feature selection and extraction algorithm,
which indirectly proves that single feature selection and extraction algorithm will miss
some features, and in our future work, we will continue to find more expressive and less
computational feature extraction schemes, and also strengthen the denoising capability of
our model to achieve more efficient and accurate Android malware detection.
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Abbreviations
The following abbreviations are used in this manuscript:

MEM-PSD Power spectral density calculated by maximum entropy method
AdaSV Adaptive soft voting
ASCNN Adaptive shrinkage convolutional neural network
MLP Multilayer perceptron
H Dex head feature
M Power spectral density feature of entropy sequence of the Dex file
I APK’s permission and intent feature

C
Combined features of Dex head features and power spectral density features of
entropy sequences of Dex files
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