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Abstract: Natural genetic material may shed light on gene expression mechanisms and aid in the
detection of genetic disorders. Single Nucleotide Polymorphism (SNP), small insertions and deletions
(indels), and major chromosomal anomalies are all chromosomal abnormality-related disorders.
As a result, several methods have been applied to analyze DNA sequences, which constitutes one
of the most critical aspects of biological research. Thus, numerous mathematical and algorithmic
contributions have been made to DNA analysis and computing. Cost minimization, deployment,
and sensitivity analysis to many factors are all components of sequencing platforms built on a
quantitative framework and their operating mechanisms. This study aims to investigate the role of
DNA sequencing and its representation in the form of graphs in the analysis of different diseases by
means of DNA sequencing.
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1. Introduction

DNA is a molecule that transfers genetic info to all living creatures. It is composed of
two long polynucleotide chains that are bonded together to form a double helix structure.
Each of these chains has a backbone made of a five-carbon sugar known as deoxyribose,
which is attached to phosphate groups and a nitrogen-containing base. The nitrogenous
base might be either adenine (A), thymine (T), guanine (G), or cytosine (C). A always
pairs with T, and G with C. Genomic DNA has a significant role in the determination
of individuals and species in most cases, making DNA sequence study important for
understanding cell structures and activities and unlocking biological mysteries [1].

DNA sequencing technology might be useful for biologists and health care practition-
ers for various applications, including molecular cloning, breeding, diagnosing diseases
and genetic disorders, and comparative and evolutionary research. Therefore, DNA se-
quencing technology should ideally be quick, accurate, simple to use, and inexpensive.
DNA sequencing methods and applications have advanced tremendously in the last thirty
years, and they now serve as an engine for genome age, which is defined by large amounts
of genomic data. As a result, there is a diverse variety of study topics and applications.
Studying the history of sequencing technology development is very important for evalu-
ating next-generation sequencing systems (NGS), such as pyrosequencing (454), genome
analyzer and high-throughput sequencing, and SOLiD sequencing. In addition, it helps for
comparing the advantages and disadvantages of the technology and explaining the variety
of applications. Moreover, the importance of the history of sequencing development also
lies in the ability to evaluate the personal genome machines (PGM) and third-generation
technologies and their applications. The majority of the information and conclusions come
from independent users with considerable first-hand experience with BGI’s (the Beijing
Genomics Institute’s) standard NGS equipment.
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Prior to entering into NGS systems, let us take a look at the brief history of DNA se-
quencing. Frederick Sanger invented DNA sequencing in 1977 using the chain-termination
approach (often referred to as Sanger sequencing). In contrast, Walter Gilbert developed
another method in 1978 using a DNA chemical modification and subsequent cleavage at
certain bases. Due to its low radioactive nature and great efficiency, Sanger sequencing
was selected as the dominant approach in the “first generation” of commercial and labora-
tory sequencing applications [2]. DNA sequencing was time intensive and required the
use of radioactive materials at the time [3]. In 1987, Applied Biosystems introduced the
world’s first automated sequencing machine (the AB370), which accelerated and improved
sequencing accuracy via the use of capillary electrophoresis. The AB370 was competent in
concurrently detecting 96 bases at a 500 K basis rate every day and 600 bases per reading.
Since 1995, the latest model, AB3730 xl, has been able to generate 2.88 million bases per day
and read lengths of up to 900 bases. Automatic sequencing devices and Sanger sequenc-
ing technology and related software based on capillary sequencing machines, which first
appeared in 1998, became the primary instrument for completing the “Human Genome
Project” [HGP] in the year 2001 [4]. This effort aided in the creation of a powerful new
sequencing apparatus that was able to increase accuracy and speed while lowering costs
and decreasing labor. Not only that, but the X-prize has strengthened next-generation
sequencing (NGS) technology [5]. In terms of lower cost, massively parallel analysis, and
high throughput, NGS technologies differ from the Sanger approach. Despite the fact that
NGS makes genome sequences more accessible, the biological explanations and subsequent
data analysis remain a bottleneck in comprehending genomes.

Recently, Rusinova and Stroganov [6] discussed the topic of formalizing graph data
models for genomic information representation. The model outlined by them is intended for
use in a graph database for comparative genomics applications. There are many different
ways of comparing genomes, and the theory-based graph model is intended to reflect both
the probabilistically and the definitive parts of the process.

Karunasena and Wijesiri [7] developed theories on modeling weighted directed graphs,
generating their adjacency matrixes, and translating them to their representative vector. Dis-
tance metrics such as Euclidean, Cosine, and Correlation were used to establish how similar
these vectors were. To determine whether this method applies to any DNA fragments
in the considered genomes, they employed molecular similarity coefficients as distance
measurements and kept this method as the underlying method. The representative vector
and graph spectrum findings are compared. The mitochondrial DNA of humans, gorillas,
and orangutans was used to test the improved approach. Even with more nucleotides in
DNA fragments, the outcome was still the same.

In this review article, the graph-theoretic approach of DNA sequencing is studied.
Additionally, studies are carried out to analyze the diseases due to sequencing problems of
DNA. This study will direct researchers to identify the ambiguity of existing sequencing
techniques and to identify the deficiency of patterns of DNA sequencing. The history of
DNA sequencing is shown in Figure 1.
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2. DNA Library

A DNA library may be thought of as a collection of DNA sequences. A DNA library,
like a book or any other type of data library, may be used to store and distribute information.
A DNA chain serves as the data carrier in a similar type of library. Typically, these chains
reflect natural genetic data derived from biochemical investigations. DNA can provide
information about gene expression events or aid in the detection of genetic illnesses.
However, some applications necessitate DNA chains with special characteristics that are
seldom seen in natural DNA molecules. DNA computing, which was developed in 1994 by
Adleman [1], is an example of such an application. Graph vertices are encoded as randomly
produced DNA chains of length l, while arcs are encoded as a concatenation of two chains:
one supplementary to the last 1/2 nucleotides of the preceding vertex and one additional
to the first 1/2 nucleotides of the succeeding vertex, the Hamiltonian path problem was
solved. In a perfect scenario, vertices and arcs would hybridize; nevertheless, random
chain creation might result in hybridization between arcs and vertices non-existent in that
graph. The research provides an approach for building DNA libraries composed of chains
with a low proclivity for hybridization. As a result, this kind of library may later be utilized
for encoding a collection of vertices. This approach is significant from a mathematical
standpoint. As a result, a generalized de Bruijn sequence [2] lacks complementarity. The
algorithm’s first draught, on the basis of de Bruijn graphs, was published in [8], and
it was modified further in [9]. The approach relies on graph theory, more precisely on
lexical graphs, which are de Bruijn graphs that have been expanded. In [10], lexical graphs
were introduced, and independently similar ideas were found in [11,12]. In [13], they
were named word graphs; in [12], they were referred to as alphabet overlap digraphs.
Each Eulerian cycle in a de Bruijn graph correlates to a de Bruijn sequence [2]. Every
Eulerian cycle in a lexical graph corresponds to a lexical sequence, which is a de Bruijn
sequence that has been expanded. De Bruijn sequences with several shifts were presented
in [9] and independently in [14], where they are referred to as lexical sequences. Ref. [14]
developed de Bruijn sequences with multiple shifts to solve the Frobenius problem in a
free monoid [15]. Labeled graphs are subgraphs of de Bruijn graphs that relate to the DNA
and labeled graphs described in [4]. Induced subgraphs of lexical graphs are analogically
base labeled graphs [16]. DNA graphs are employed in DNA sequencing, for example [4,9]
(see Figure 2). All types of graphs discussed above have the attribute of having labels
given to their vertices [12,15]. These labels are words with a fixed measurement that is
determined by an alphabet. Any DNA chain may be regarded as a sequence using the
letters A, C, T, and G. The DNA chains being directed, they contain two separate endpoints,
one designated 3′ and the other 5′ (for example, 5′-ACTG-3′ or, equivalently, 3′-GTCA-5′).
Because the direction of the DNA chain is critical for the algorithm, we shall assume one
fixed orientation, such as 5′ to 3′ (thus, ACTG will always imply 5′-ACTG-3′). In DNA,
hybridization happens only between chains that run in reverse directions; hence, chain
AATCCG is complementary to chain CGGATT. The main aim of this study is to analyze the
visualization of DNA sequencing using graph theoretic approaches.
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3. DNA Graphs

Studying DNA sequences has been a subject of supreme importance in biological re-
search, and there have been many contributions regarding computing from an algorithmic
and mathematical point of view and DNA analysis [19,20]. A sequencing platform built
on a mathematical framework and its underlying mechanism provides several benefits,
including cost optimization, implementation, and sensitivity analysis to various circum-
stances [17,21,22]. The read process was modeled using profile vectors and the DNA
storage channel. They provided novel asymmetric coding techniques to resist sequencing
noise and synthesis and an asymptotic study of the quantity of profile vectors. Finally,
two code families for this channel model were created. A customized compressor design
was devised to successfully store FASTQ data generated by large DNA sequences. The
equation of motion linked cluster trick was used to determine the ionization capability
with single and double excitations, and VIEs were calculated using density functional
theory with dispersion adjusted omega B97x-D [11]. An investigation into how to construct
independent spanning trees on hypercubes and use them to predict mitochondrial DNA
sequence sections using hypercube routes [8]. Depending on the graph theory principles
and genetic codes, an alignment-free technique for DNA sequence resemblance investi-
gation was developed (see Figure 3). A novel method for testing DNA sequences was
developed [2,8]. The electron propagator hypothesis [23] was used to study transverse
electron transportation via all four N2 bases.
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4. DNA Graphs for DNA Sequencing

The DNA graphs, which were generated using the approaches presented in Lysov
et al., belong to the class of labeled digraphs. The fact that the labeled digraphs are directed



Appl. Sci. 2022, 12, 5414 5 of 8

line graphs is one of their features; hence, the Hamiltonian route problem can be solved
polynomially for them. This is performed by transforming a directed line graph into its
original graph and then searching for a Eulerian route in the original graph. The following
rules apply to a directed line graph G and its initial (directed) graph H: vertices of G
correspond to arcs of H, and an arc (x, y) exists in G if and only if the terminal endpoint of
arc x in H is also the beginning endpoint of arc y in H. A Eulerian route in H is a necessary
and sufficient condition for a Hamiltonian track in G (not valid for undirected graphs). A
Pevzner graph for the same spectrum is the original graph for a DNA graph. De Bruijn
graphs [27,28] are labeled digraphs that are formed with all probable labels of a certain
measurement across a particular alphabet. In the context of the next section’s subject,
they are especially important. A de Bruijn graph (see Figure 4) has k vertices, each of
which is labeled with a unique word from the letters of the alphabet, given an alphabet
of length k and size a. If the predecessor’s suffix transcends the successor’s prefix by a
length of k 1, an arc links two vertices). DNA graphs are vortex-induced subgraphs of de
Bruijn graphs with a = 4. DNA graphs and other de Bruijn graphs with vertex-induced
subgraphs are not Pevsner graphs. They are de Bruijn graph subgraphs because they
are subgraphs of DNA graphs. Those are not labeled/DNA graphs in general since the
existence of arcs and the overlaps of vertex labels do not equate. See, for example, a series
of publications on this issue that looked into the properties of labeled graphs in further
depth [29–31]. On the other hand, there have been studies conducted on the links between
different digraph classes and directed line graphs and a polynomial-time remedy to the
Hamiltonian cycle/path problem [24,25,32]. The systematization depicted in Figure 2 may
pique the reader’s curiosity. The connection encompasses the graphs stated above and other
classes outside the scope of this work. Directed line graphs are formed at the intersection
of adjoints [2] and partially directed line graphs (PDLG, see [1]). (DLG). Apart from the
scheme, quasi adjoints graphs [4] are a subclass of graphs that simulate the difficulty of
isothermic DNA sequencing by hybridization (the graphs stated in [26], the issue presented
in [33]). Non-directed adjoints, and directed line graphs are all instances of the latter. There
is, however, always one directed graph, that is, a digraph with no multiple arcs connecting
any two vertices.
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5. Overlap Graphs

Overlap graphs are a modified model of the Lysov version that has been adjusted to
NGS data requirements. Like the original model, a vertex of directed graph G represents
each read and arcs connected overlapping sequences showing the overlapping direction.
One of the most significant distinctions is how individual read overlaps are determined.
The overlying regions often only consider a small percentage of the genome, because the
reads are substantially longer than SBH. Furthermore, the overlapping areas do not have to
match completely due to the misreading. As a result, certain arcs are surer of themselves
than others. As a result, they are frequently weighted, with the weight correlating, for
example, with alignment score and length (the arrangement of two sequences in which
related areas are joined together; for a comprehensive description). Furthermore, because
reads start from both strands of the DNA double helix, each vertex often includes a double
vertex corresponding to the read’s opposite complement form. This would not be required
if an algorithm could determine the original strand for each read. In practice, this is more
difficult to do. Consequently, most traversal algorithms employ the dual vertex approach,
which indicates that both vertices have been visited when one of them has been reached.
Likewise, in the original model, identifying a Hamiltonian route might theoretically be
utilized to produce a result in a defined graph G. Due to the weighting of the graph at this
point, the route should ideally satisfy the criterion of greatest profit or least cost, which
is a variant of the Traveling Salesman Problem. However, this method presents a variety
of practical difficulties. First, because of data inaccuracies and changes in the amount of
coverage, there is no certainty that a Hamiltonian route exists. For example, Graph G may
be unconnected due to genome sequencing gaps. In this example, each linked component
of graph G may be scanned for a Hamiltonian route, yielding a collection of disconnected
contigs or continuous regions of a genome. However, the second challenge is the graph
structure’s vastness, which precludes the adoption of any exponential technique. As a
result, only heuristic algorithms that use somewhat long pathways to cover the network
topology are considered in practice. McPherson et al. [35] disclose an intriguing exception
in which the authors offer a plan to resolve the Minimum Path Covering Problem in human
genome, which is NP-hard in general, but straightforward for acyclic digraphs [5]. The
central challenge was to develop a heuristic technique for converting the overlap graph (see
Figure 5) to an acyclic one. However, most overlap graphs are not acyclic, which presents a
significant challenge with this technique. The recent developments of DNA sequencing
based on graph theory is shown in Table 1.
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Table 1. Graphs and recent developments in DNA sequencing.

Year Contributions Authors

2022 • Improved One-Time Pad DNA Structure
• Used Graph Labeling Techniques

B. Deepa, and V. Maheswari [34]

2022 • Analysis of Graph Neural Networks
• Prediction model of DNA Double-Strand Breakage

XU Wang et al. [36]

2021 • Effective Dynamic de Bruijn Graphs
• Made Possible by Buffering Updates

J Alanko et al. [37]

2019 • DNA Rearrangement Polynomials
• Discussion on related Graphs

Robert Brijder et al. [38]

2018
• Graph algorithms for DNA sequencing
• Studied on existing models, and predicted a model

using graphs
Jacek Blazewicz et al. [39]

6. Conclusions and Future Research Directions

In this study, the topics of DNA Library, DNA Graphs, de-Bruijn graphs, and Overlap
graphs in DNA sequencing were analyzed. Further, different DNA sequencing techniques
were described in connection with different diseases. Different graphing techniques are
useful for visualizing deficiencies in DNA sequencing, as well. In the modeling of DNA
graphs, most cases occur randomly and uncertainly. De-Bruijn graphs have some ambiguity
in terms of overlapping or repeating areas. Thus, the fuzziness involved in DNA sequencing
will help analyze the characteristics properly. The fuzzy and uncertain sites regarding
diseases due to DNA patterns can be targeted based on this study. This area will be covered
in our next articles.
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