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Abstract: The motivations for deploying energy and spectral-efficient network architectures are
the high energy consumption and the need for more spectral resources in modern cellular networks.
The key method to solve the energy efficiency (EE) maximization problem of the downlink non-
orthogonal multiple access (NOMA)-based massive MIMO system is to decouple it into user pairing
and efficient power allocation problems. This work studies the performance of three main pairing
methods in NOMA-based networks: Hungarian, Gale–Shapley, and correlation-based approaches.
Firstly, we provide a mathematical analysis for EE of downlink NOMA in a massive MIMO system
for the non-line of sight (NLoS) channel model with perfect successive interference cancellation (SIC).
Finally, the sequential convex programming (SCP) approach is used to tackle the power allocation
problem. Simulation results show that the Hungarian algorithm for pairing plus SCP for power
allocation (Hungarian algorithm-SCP) achieves the highest energy efficiency among all the three
pairing algorithms with an identical performance to joint user and resource block association with
power allocation (joint user-RB PA) algorithm but with much lower computational complexity and
outperforms the NOMA SCP greedy algorithm (NOMA-SCP-GA).

Keywords: user pairing; NOMA; massive MIMO; Hungarian; Gale–Shapley; 5G

1. Introduction

The most important challenge for 5G networks is to face the huge increase in mobile
data traffic. One of the promising technologies to improve spectral efficiency (SE) is the use
of non-orthogonal multiple access (NOMA) [1,2]. NOMA techniques are able to support
the incorporation of billions of Internet of Things (IOT) devices with a more efficient use
of spectrum [3]. In power domain NOMA, users with poor channel gains are assigned
more power than users with better channel gains [4]. Users with poor channels deal with
interference as noise, whereas users with higher channels depend on SIC to eliminate
the interference. One of the main challenges for applying SIC is the need to have perfect
channel state information (CSI), which necessitates the use of downlink pilot signaling.
Additionally, computational complexity is another obstacle in the execution of SIC [5].
Moreover, NOMA has multiple challenges, e.g., dynamic user pairing algorithms, receivers
utilizing low complexity SIC, and optimal resource allocation schemes [6–11]. One of
the crucial NOMA schemes is the sparse code multiple access (SCMA) scheme, where
the bits are mapped to sparse codewords by the SCMA encoder after multi-dimensional
modulation and low density spreading [12]. The major advantage of the SCMA scheme
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is the provided shaping gain. Another important NOMA scheme is the non-orthogonal
pattern division multiple access (PDMA) scheme proposed in [13]. Data symbols of users
are guaranteed to be of adequate diversity disparity and power disparity by careful design
of the patterns of different users. This improves the performance by allowing the use of low-
complexity SIC-based multi-user detection. On a parallel theme, massive MIMO technology
has been proposed to improve the SE of 5G communication networks [14] and enhance
system capacity [15]. In massive MIMO, the base station (BS) communicates simultaneously
with multiple mobile stations (MSs) on the same time–frequency resources. Massive MIMO
systems can support hundreds or even thousands of antenna channels in the array [16].
The possibility of applying large antenna arrays faces many challenges, e.g., high complexity
and power consumption [17,18]. The integration of massive MIMO and NOMA offers
a great opportunity to improve the SE in 5G and beyond. EE is now an important demand
in designing wireless communication networks. Typically, EE is defined as the number of
reliably transmitted bits per one joule [19]. It shows the cost paid in power consumption to
afford a certain throughput as a service quality metric. The considered energy efficiency
optimization problem is a joint user pairing and power allocation problem. The problem is
decoupled into two subproblems for less complexity. The user pairing subproblem is solved
by applying three different pairing methods: Hungarian, Gale–Shapley, and correlation.
The second sub-problem of power allocation is formulated as a fair energy efficiency
maximization problem and solved by applying sequential convex optimization.

1.1. Background

An algorithm of low computational complexity is proposed in [20] to solve the user
scheduling, link selection, and power allocation problems for D2D cellular networks with
NOMA technology. The proposed algorithm achieves high data rates and converges
in a limited number of iterations. NOMA and OMA are compared for a large number of BS
antennas in [21]. Karush–Kuhn–Tucker (KKT) conditions are used to derive closed-form so-
lution for maximizing the sum rate of downlink NOMA system [22]. Moreover, the pairing
of two users of different channel conditions is accomplished using the Hungarian algorithm.
The work in [23] studies the joint power allocation and user association for EE maximiza-
tion in multi-cell multi-carrier NOMA (MCMC-NOMA) networks. A new binary variable
matrix for the association is introduced in [24] to allow dynamic pairing for NOMA-assisted
downlink networks. The work in [25] applies a clustering strategy of low complexity and
introduces KKT optimality conditions to obtain a closed-form result of power allocation
for EE maximization in downlink NOMA systems. The stochastic algorithm, two-stage
greedy randomized adaptive search (GRASP), and two-stage stochastic sample greedy
(SSD) are three heuristic solutions proposed in [26] to optimize the problem of efficient
dynamic power and channel allocation (DPCA) for users in the downlink multi-channel
NOMA (MC-NOMA) systems. An efficient joint multi-resource-block optimization scheme
is proposed in [27] to achieve an optimal weighted achievable rate (WAR) for NOMA-
based maritime communications. A NOMA-assisted ambient backscatter communication
(AmBC) system is proposed in [28] to increase the achievable sum rate. The work in [29]
decomposes the multi-dimensional resource allocation problem for MIMO-NOMA systems
into beamforming, user clustering, and power allocation. At first, a fractional transmitting
power control (FTPC) is applied. Then, optimal user clustering is considered. Finally,
power allocation is introduced as a difference of convex (DC) programming problem to be
solved by successive convex approximation (SCA). Hybrid spatial division multiple access
(SDMA) and NOMA are combined in [30] for optimal power allocation in sectored cells for
sum-throughput maximization. Integer linear programming is adopted in [31] for user pair-
ing, and particle swarm optimization is used for power allocation in NOMA systems in 5G
networks. The work in [32] classifies users according to their status into cell-center users,
high-rate edge users, and low-rate edge users to participate in many-to-many subchan-
nel–user matching problems to form joint transmission coordinated multi-point (JT-CoMP)
subchannels and dynamic point selection CoMP (DPS-CoMP) subchannels. The work
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in [33–36] introduced the power allocation solution for maximizing the EE in power do-
main NOMA. Dynamic power allocation and four different pairing methods for NOMA
in heterogeneous networks were introduced in [37].

The EE maximization for an uplink NOMA-assisted mmWave mMIMO system was
considered in [38], and a hybrid analog-digital beamforming scheme was proposed to
reduce the number of radio frequency chains at the BS. In [39], EE maximization of an uplink
hybrid system with NOMA integrated with OMA (HMA) was achieved, and a minimum
required rate is pre-defined for each user to guarantee the quality of service. The problem
is decoupled into the user-resource block association subproblem, and the power allocation
subproblem and (joint user-RB PA) algorithm is proposed. User clustering, sub-channel
allocation, and power allocation are jointly considered in the EE optimization problem for
the uplink multi carrier-NOMA network in [40]. A user pairing algorithm that ensures
the cluster fairness in terms of the sum rate gain is proposed in [41], and a comparison
between MIMO-NOMA and MIMO-OMA when users have pre-defined quality of service
(QoS) requirements is also conducted. In [42], EE is maximized through a user-pairing
approach, utilizing the greedy algorithm and power allocation utilizing SCP. The NOMA-
SCP-GA algorithm is proposed to solve the problem.

1.2. Contributions

In this work, we solve the EE maximization problem for the downlink NOMA-based
massive MIMO system; for short, it is named the NOMA-based scheme, through decou-
pling into the user pairing subproblem and fair power allocation subproblem to reduce
complexity. Firstly, we study the energy efficient user pairing for zero forcing (ZF) beam-
forming. Then, we mathematically formulate the max-min EE into a non-convex fractional
programming problem, which is transformed into a sequence of subtractive form, followed
by the SCP approach to obtain the optimal solution. Different from [22], we study the per-
formance of a massive MIMO system and its effect on power consumption calculations
and power allocation solution. Additionally, we consider the max-min utility function for
EE in the power allocation solution. Additionally, Ref. [23] introduced a matching-based
framework to accomplish user association and subcarriers’ assignment. The Gale–Shapley
algorithm used in our work is a matching-based framework and is outperformed by
the Hungarian algorithm, as is obvious from the results. The work in [24] gave two solu-
tions for the fairness rate maximization problem. The first is based on relaxation and inner
approximation and does not guarantee a globally optimal solution, whereas the second
solution uses the channel correlation as the weights of edges on the bipartite graph for user
pairing. Both of them are of high computational complexity, which leads to high power
consumption. The main contributions in this paper are listed as follows:

• We consider the evaluation of three different user-pairing approaches. Results are
compared to obtain the optimal user pairing approach to maximize EE for downlink
NOMA. We show how the pairing decisions affect the performance of the NOMA-
based scheme.

• Propose a novel power allocation scheme based on the sequential convex program-
ming (SCP) to iteratively update the power assignment vector that will eventually
optimize EE.

For comparison, the proposed algorithms are compared with the joint user-RB PA
algorithm and NOMA-SCP-GA in terms of SE and EE. The remaining part of this paper is
described as follows: In Section 2, the system model is described. In Section 3, the power
consumption model for the downlink NOMA-based scheme is introduced. In Section 4,
the different pairing approaches are discussed. Section 5 presents the proposed power
allocation scheme. In Section 6, the complexity analysis is introduced. The simulation
results are discussed in Section 7. Finally, the paper is concluded in Section 8.
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2. System Model

Consider a single-cell system, where the set of single-antenna users is represented
as {1, . . . , U}. Users are served by an A-antenna BS with A � U. The served users are
divided into two equal groups, where the first group contains the cell-center users uc ∈ Uc
and Uc = {1, . . . , U/2}. The second group contains the cell-edge users ue ∈ Ue and
Ue = {U/2 + 1, . . . , U}.

The downlink channel vector for user u is described as

gu =
√

βuhu u = 1, . . . , U. (1)

where βu is the large scale fading coefficient, which represents the path-loss factor only, and
the effect of shadowing is neglected. The system is in the time division duplex (TDD) mode,
which provides the advantage of channel reciprocity that permits using the uplink pilots
in estimating the downlink channels. For the NLoS channels, we use coherence intervals,
where the channels are constant and frequency flat. The channel of user u is hu, which
follows independent Rayleigh fading distribution as the small scale fading realization
hu ∼ CN(0, IA), and IA represents the identity matrix. The NOMA-based scheme system
model is presented in Figure 1, where each NOMA group contains one cell-center user
paired with a cell-edge user.

Figure 1. NOMA-based scheme network model.

3. Energy Efficiency

Considering the energy efficiency as the performance metric of interest, defined as
the ratio between throughput in (bit/s/cell) and the total power consumption in (W/cell)
as follows [19]:

EE =
Throughput(bit/s/cell)

power consumption(W/cell)
=

R
γ

. (2)

The power consumption γ for a downlink NOMA-based scheme consists of the effec-
tive transmitted power ETpower and the circuit power consumption Cpower. The ETpower
takes the efficiency of power amplifier ξ into consideration, such that

γ = ETpower + Cpower, (3)

ETpower =
1
ξ

U

∑
u=1

qu. (4)

where qu is the BS transmitted power to user u. The circuit power consumption Cpower
is the sum of different components according to [19]. Additionally, Cpower represents the
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power consumed by encoding and decoding Pcod/dec, power consumed by the signaling of
backhaul Pbh, and power consumed by digital signal processing Psp.

Cpower=Pf ix+Ptc+Pce+Pcod/dec+Pbh+Psp. (5)

where Pf ix stands for the load independent power of infrastructure and power of control
signaling, and Ptc represents the power consumed by transceiver chains, which is calculated
according to the following equation:

Ptc = APBS + Plo + UPUE. (6)

where PBS is the power required to operate the circuit components of the BS, e.g., analog-to-
digital converters, I/Q mixers, and modulators/demodulators. Plo is the power consumed
by the local oscillator. PUE is the power consumed by circuit components in the user equip-
ment. For the downlink, Pcod is the power in watt/bit/s required to encode throughput R
in bit/s at BS, and Pdec is the power required to decode R at the user equipment.

Pcod/dec = (Pcod + Pdec)R. (7)

where Pbh is the power required by the load-dependent backhaul as follows:

Pbh = Pbt.R. (8)

where Pbt is the power of the backhaul traffic in watt/bit/s. Additionally, Pce stands for the
power consumed in channel estimation:

Pce =
3B

MLbs
(U)

(
Aτ + A2

)
. (9)

We have B/M coherence blocks/s, where B is the communication bandwidth and M
is the number of samples per coherence block. Lbs is the computational efficiency of BS
measured in flops/s. The power consumed by digital signal processing Psp is computed as

Psp = Psp−t + PDL
sp−c + PDL

sp−pairing. (10)

Psp−t stands for the power consumed in the downlink transmission.

Psp−t =
3B

MLbs
AUτd. (11)

where τd = (1− U/M) is the part used for downlink data in each coherence interval
since uplink data are not considered here. PDL

sp−c is the power required for computing the
beamforming vector.

PDL
sp−c =

4B
MLbs

A
(

U
2

)
. (12)

For the NOMA-based scheme, only U
2 beamforming vectors are computed. The power

consumed in applying the Gale–Shapley algorithm for pairing, which is executed every co-

herence block, which means B
M times/s. The factor

(
U
2

)2
is according to the computational

complexity calculations.

PDL
sp−pairing =

3B
MLbs

(
U
2

)2
. (13)

4. Proposed User Pairing Solutions

Users are divided into two main groups. The first group represents cell-center users of
high channel gains, and the second group represents cell-edge users of low channel gains.
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The pairing algorithm selects one cell-center user with one cell-edge user to form a NOMA
group that guarantees maximum EE in NOMA based scheme.

4.1. Gale–Shapley Algorithm

The user pairing problem is formulated as follows:

Maximize
U/2

∑
uc=1

U

∑
ue=U/2+1

Fuc ,ue EE. (14)

where

Fuc ,ue =

{
1 ; if the uc is already paired with ue

0 ; if the uc is not paired with ue

The Gale–Shapley algorithm considers the stable marriage criteria to obtain pairs.
Every user in the first group forms its own preference list of the other group members [37].
The preferences of each member of the first group are arranged in descending order to
guarantee that they propose to the most preferred users of the second group. Members of
the second group have the right to accept the proposal if they are free or decline if they
prefer their current partners. Members of the second group have the right to choose between
their current partners and the new proposals. For users of the first group who did not
get partners in the first round of proposals, they propose again according to the sequence
of their preference list. The values of the preference list are computed according to (14).
The output of the pairing process is stable if there is no user from the first group and a user
from the second group who are not paired to each other, but both prefer each other over their
current partners. For the Gale–Shapley algorithm, the output is stable for the group that
offers the proposals. The Gale–Shapley algorithm is presented in Algorithm 1. An example
of the preference list for six users is introduced in Table 1.

Algorithm 1 The GS algorithm.
Step 1:
Each cell-center user forms a list of its preferences in cell-edge users in descending order
according to EE calculations.
Step 2:
(a) Each unpaired cell-center user gives a pairing request to the cell-edge user he prefers
most.
(b) Each cell-edge user replies “yes” to the cell-center user he most prefers and “no” to
all other cell-center users. The cell-edge user is then provisionally “paired” to the cell-
center user he most prefers so far, and that cell-center user is temporarily “paired” to that
cell-edge user.
Step 3:
(a) Each unpaired cell-center user gives a pairing request to the most-preferred cell-edge
user to whom he has not yet given a pairing request (regardless of whether that cell-edge
user is already paired)
(b) Each cell-edge user replies “yes” if he is currently not paired or if he prefers this cell-
center user over his current temporary partner (in this case, the cell-edge user rejects his
current temporary partner who becomes unpaired).
Step 4:
This process is repeated until everyone is paired.

Table 1. The preference list of the cell-center users.

First Group Preferences

uc1 ue1 ue3 ue2

uc2 ue3 ue1 ue2

uc3 ue1 ue3 ue2
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4.2. Hungarian Algorithm

The Hungarian algorithm is used for solving single agent to single task assignment
problem [22]. It is initially designed to solve minimization problems, so we generate
an objective optimization matrix of EE calculations between cell-center users and cell-edge
users as shown in Table 2. The target now is to pick the pairs that maximize EE. To convert
the optimization problem to a minimization problem, the optimization objective matrix
is modified and converted to the cost matrix δcost. The modification process starts with
finding the maximum of each column, then all column elements are subtracted from their
corresponding maximum value as shown in Table 3. The resultant matrix is the cost matrix
to be minimized. Minimization of the cost matrix is a maximization of the optimization
objective matrix. The Hungarian algorithm is summarized in Algorithm 2. The optimization
problem is now formulated as follows:

Minimize
U/2

∑
uc=1

U

∑
ue=U/2+1

Fuc ,ue δcost (15)

Fuc ,ue =

{
1 ; if the uc is already paired with ue

0 ; if the uc is not paired with ue

Algorithm 2 The Hungarian algorithm.
Step 1: Create a cost matrix.
Step 2: Find the smallest element in each row and subtract it from every element of that
row. Repeat this process for each column.
Step 3: Tag all zeros as starred or primed, where the starred zeros represent an independent
set of zeros and primed zeros represent the possible candidates.

Step 4: Cover each column containing a starred zero. If
U
2

columns are covered. Go to
done, otherwise go to step 5.
Step 5: Prime an uncovered zero. If there is no starred zero in the row containing the primed
zero, go to step 6. Otherwise, cover this row and uncover the column containing starred
zero. Continue in this manner until there are no uncovered zeros left. Save the smallest
uncovered value and go to step 7.
Step 6: Continue generating a series of alternating primed and starred zeros until this
series ends at a primed zero that has no starred zero in its column. Unstar each starred
zero, star each primed zero, erase all primes, and uncover every line. Return to step 4.
Step 7: Subtract the value found in step 5 from every element of each uncovered column
and add it to every element of each covered row. Return to step 5 without altering any
primes, stars, or covered lines.
Step 8: The position of starred zeros in the cost matrix indicates the paired users that
maximize EE.

Table 2. An example of the optimization objective matrix for the Hungarian algorithm.

ue1 ue2 ue3

uc1 8 G bit/joule 10 G bit/joule 14 G bit/joule

uc2 8 G bit/joule 8 G bit/joule 16 G bit/joule

uc3 12 G bit/joule 13 G bit/joule 4 G bit/joule
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Table 3. The cost matrix δcost to be minimized.

ue1 ue2 ue3

uc1 4 3 2

uc2 4 5 0

uc3 0 0 12

4.3. Correlation-Based Pairing

Here, the pairing is based on the similarities between channels of cell-center users and
cell-edge users [21]. After the estimation of channel vectors, the BS forms NOMA groups
based on correlation between the channels estimates. The high correlation value indicates
that the beamforming vector will match both users in the NOMA pair. The correlation
between the channel of cell-center user uc and cell-edge user ue is given as

ρuc ,ue =
|ĥuc ĥ

H
ue |

‖ĥuc‖‖ĥue‖
. (16)

5. Power Allocation Solution

In this work, the fairness between cell-center users and cell-edge users is guaranteed
by formulating the objective function as a max-min energy efficiency problem. This opti-
mization problem is expressed mathematically as

max
q≥0

min EE

Subject to C1 :
U
∑

u=1
qu ≤ qmax

C2 : Ru > Rmin ∀u ∈ Uc

C3 : Ru > eRmin ∀u ∈ Ue.

(17)

where Rmin is the minimum data rate for cell-center users. The factor e is inserted to ensure
that cell-edge users are targeting smaller rate eRmin, where 0 < e < 1. The formulated
problem is a fractional problem and it is transformed into a series of parametric subtractive-
form subproblems as follows:

max
q≥0

min R− EE γ

Subject to C1, C2, C3.
(18)

The objective function in (18) is a non-convex problem and it needs to be reformulated.

R− EEγ = X(q)− Z(q), (19)

where,

X(q) = B log2


βuc

U
∑

i 6=uc
i 6=uce

qi|hT
uc wi|2 + quc βuc |hT

uc wuc |2 + 1


(

βue

U
∑

i 6=ue

qi|hT
ue wi|2 + que βue |hT

ue wue |2 + 1

)]
− EEγ,

(20)
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Z(q) = B log2


βuc

U

∑
i 6=uc
i 6=uce

qi|hT
uc wi|2 + 1


(

βue

U

∑
i 6=ue

qi|hT
ue wi|2 + 1

). (21)

where wu is the ZF beamforming vector for user u. The non-convex constraints C2 and
C3 are reformulated into a convex form after some mathematical manipulations. The new
constraints Cnew

2 and Cnew
3 are given by

Cnew
2 : quc βuc |hT

uc wuc |2 +
(

1− 2Rmin/B
)βuc

U

∑
i 6=uc
i 6=uce

qi|hT
uc wi|2 + 1

 > 0. (22)

Cnew
3 : que βue |hT

ue wue |2 +
(

1− 2eRmin/B
)(

βue

U

∑
i 6=ue

qi|hT
ue wi|2 + 1

)
> 0. (23)

Reformulate (18) as
max
q≥0

min X(q)− Z(q)

Subject to C1, Cnew
2 , Cnew

3 .
(24)

Both functions X(q) and Z(q) are concave. Thus, the objective X(q)− Z(q) is a dif-
ference of two concave functions. Using the first-order Taylor expansion,

Z(q) ≈ Z
(

q(k−1)
)
+5ZT

(
q(k−1)

)(
q− q(k−1)

)
. (25)

where 5Z(q) is the gradient of Z(q) at q and is formulated in (26). qk is obtained as
an optimal solution at the k-th iteration. The vector gradient of Z at q is given by

5 Z(q) =
1βuc

U
∑

i 6=uc
i 6=uce

qi|hT
uc wi|2 + 1


f1 +

1(
βue

U
∑

i 6=ue

qi|hT
ue wi|2 + 1

) f2, (26)

where f1(uc), f1(uce), and f2(ue) equal zero

f1(i) =
Bβuc |hT

uc wi|2

ln2
i 6= uc and i 6= uce, (27)

f2(i) =
Bβue |hT

ue wi|2

ln2
i 6= ue. (28)

A new variable ð is introduced to smooth the optimization function. Then, we formu-
late the ð optimization problem for the NOMA-based scheme as follows:

maximize
q≥0

ð

Subject to C1, Cnew
2 , Cnew

3

C4 : X(q)− Z
(

q(k−1)
)
−5ZT

(
q(k−1)

)(
q− q(k−1)

)
> ð.

(29)

The final objective function in (29) can be effectively solved to obtain the objective
sub-optimal power allocation solution. To obtain the optimal ðoptimum that gives the optimal
power allocation, we apply the bisection-based iterative algorithm shown in Algorithm 3,
where the search domain is halved in each iteration to guarantee fast convergence.
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Algorithm 3 Bisection algorithm for solving the max-min fairness power allocation prob-
lem.
1: Input: qmax, tolerance ε > 0
2: output: qu for u = 1,. . . ,U.
3: Initialization: set ðlower = 0 and ðupper = min

(
R
γ

)
.

4: Calculate: ð = ðupper+ðlower

2 .
5: Solve: (29) using the sequential convex approximation for ð and evaluate qu.
6: If feasible: then ðlower ← ð and qu = qoptimum for u = 1,. . . ,U.
7: Else ðupper ← ð
8: while: ðupper − ðlower > ε

The procedures of finding the iterative power allocation using convex software pack-
ages for a given ð is given in Algorithm 4.

Algorithm 4 Iterative SCP power allocation for obtaining q.

1: Initialize: k = 0 and q(0)

2: Repeat:
3: Solve: the feasibility problem in (29)
Subject to C1, Cnew

2 , Cnew
3 , C4

4: Set: k = k + 1.
5: Until: q(k) converges.

6. Complexity Analysis

By considering that the number of users in the scenario is U, the computational
complexity of the Gale–Shapley algorithm depends on the number of iterations until con-

vergence. It is computed as O
((

U
2

)2
)

. The complexity of the Hungarian algorithm is

calculated as the number of iterations needed to find the optimal pairs, which is O
((

U
2

)3
)

.

The complexity of correlation calculations for the NLoS scenario is O
(
U2 A

)
since the

numerator requires (A) complex multiplications and the denominator has neglected com-
putational complexity for norm calculations and single values multiplication. The process
is repeated (U2) times. The power solution is solved based on the SCP approach, using
Algorithm 2, which converges in (J2) iterations. The transformation process performed
in Algorithm 1, namely the bisection method, requires (J1) iterations. Since our model
contains (U) users, the computational complexity of power solution using algorithm-1 and
algorithm-2 is O (J1 J2U ). Hence, the computational complexity of our solution is

Complexity o f (correlation− SCP) = O
(

U2 A + J1 J2U
)

(30)

Complexity o f (GSalgorithm− SCP) = O

((
U
2

)2
+ J1 J2U

)
(31)

Complexity o f (Hungarianalgorithm− SCP) = O

((
U
2

)3
+ J1 J2U

)
(32)

compared to the computational complexity of NOMA-SCP-GA after applying in our problem

Complexity o f (NOMA− SCP− GA) = O

((
U
2

)2
+ J3 J4U

)
(33)
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where J3 and J4 are numbers of iterations till convergence according to [42]. The computa-
tional complexity of joint user-RB PA utilized to solve our problem in our network model
is given as

Complexity o f (Joint user− RB PA) = O

((
U
2

)3
+ J5 J6 J7U2

)
(34)

where J5, J6, and J7 are numbers of iterations till convergence according to [39].

7. Results
Performance Evaluation

In our simulation, the importance of having a correlation between channels must
be considered in channel generation. The high correlation helps eliminate interference
from other pairs, which improves the weak user’s rate. Thus, the correlation between
users’ channels helps weak users in different pairs have an obvious impact on the system
performance metric and highlights the effect of the user pairing process. The simulation
parameters applied are introduced in Table 4.

Table 4. Simulation parameters.

Parameter Value

Path and penetration loss at distance d (km) 130 + 37.6 log10(d).

Cell edge length 350 m

Coherence interval length (in symbols) 100

Fixed power: Pf ix 5 W

Power of BS lo: Plo 0.1 W

Power per BS antennas: PBS 0.2 W

Power per UE: PUE 0.1 W

Power for data encoding: Pcod 0.01 W/(Gbit/s)

Power for data decoding: Pdec 0.08 W/(Gbit/s)

BS computational efficiency: Lbs 750 Gflops/W

Power for backhaul traffic: Pbt 0.025 W/(Gbit/s)

Figure 2 represents EE for the mMIMO-based scheme presented in [21], compared
to EE for NOMA-based scheme with fixed pairing, where users of each pair are specified.
Results show that the mMIMO-based scheme achieves higher EE for a lower number of
users, where the A >> U condition is satisfied. The superiority of mMIMO decreases as U
increases till reaching U = 21, where the NOMA-based scheme starts to lead. A >> U is
the condition for a system to be considered a massive MIMO system. When this condition
is not satisfied with the increasing number of users, the effect of integration of NOMA with
massive MIMO on EE improvement is vital.

Figure 3 shows EE in bit/joule for different user numbers at a fixed number of BS
antennas A = 36. The EE increases with increasing U. Results show that correlation-SCP,
Hungarian algorithm-SCP, and joint user-RB PA achieve the same EE performance, even
with different values of U. They outperform the GSalgorithm-SCP and NOMA-SCP-GA by
about 5 M bit/joule with U = 24.
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Figure 2. EE for mMIMO-based scheme versus NOMA-based scheme, with A = 36 BS antennas.
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Figure 3. EE versus number of users, with A = 36 BS antennas, ZF beamforming.

Figure 4 demonstrates the effect of the increase in the number of BS antennas on EE
calculations for different algorithms with U = 10 users. The overall performance shows
that the increase in A leads to an increase in EE for low A values till reaching a value
of A = 20. Then, the performance changes. EE decreases with increasing A because
the increase in power consumed in a large number of antennas reduces EE, even with
the increase in rate.
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Figure 4. EE versus number of BS antennas, with U = 10 users, ZF beamforming.
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Figure 5 demonstrates the effect of the increase in the number of BS antennas on SE
calculations for different algorithms with U = 10 users. The overall performance in the
results shows that the increase in A leads to an increase in spectral efficiency. Correlation-
SCP, Hungarian algorithm-SCP, and joint user-RB PA have the best performance. NOMA-
SCP-GA has the worst performance which means that NOMA groups formed by the greedy
algorithm and their allocated power led to the lowest SE results.

10 15 20 25 30 35 40 45 50 55 60

Number of base station antennas

15

20

25

30

35

40

S
p

ec
tr

al
 e

ff
ic

ie
n

cy

 (
b

it
/s

/H
z)

Correlation-SCP

GSalgorithm-SCP

Hungarian algorithm-SCP

NOMA-SCP-GA

Joint user-RB PA

Figure 5. The spectral efficiency versus number of BS antennas, with U = 10 users, ZF beamforming.

Figure 6 depicts the power consumed in user pairing algorithms. It shows the high
power consumption provided by the correlation-based pairing method as a result of
the high computational complexity followed by the swap algorithm used for pairing in (joint
user-RB PA) due to the swap process. The GS algorithm and GA algorithm in (NOMA-SCP-
GA) achieve the lowest power consumption due to their low computational complexity.
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Figure 6. Power consumed in user paring in dBm versus user number, with A = 36 BS antennas.

The complexity is calculated in Table 5 for the pairing approaches used in our work.
Complexity is computed for A = 36 BS antennas and U = 20 users. According to formulas
in the complexity analysis section, correlation-based pairing has the highest complexity
followed by the Hungarian algorithm, then the GS algorithm.
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Table 5. Complexity calculations for different pairing approaches.

Pairing Approach Complexity

GS algorithm 100

Hungarian algorithm 1000

Correlation 14,400

Figure 7 shows the effect of increasing the number of BS antennas on complexity.
The complexity of correlation-based pairing increases linearly with A while the complexities
of the Hungarian algorithm and GS algorithm are constant with respect to A.

Figure 7. Complexity versus number of BS antennas, with U = 20 users.

Figure 8 demonstrates the relation between the number of users and the complexity
at a specific number of BS antennas. The complexity of the three approaches is increasing
with the increase in the number of users. The highest complexity is for the correlation based
pairing, while the lowest is for the GS algorithm.

Figure 8. Complexity versus User number, with A = 64 BS antennas.

8. Conclusions

In this paper, the EE optimization problem for the downlink NOMA-based massive
MIMO system is investigated with the constraints of BS power transmission and minimum
user rate. The problem is decoupled into the user pairing subproblem and fair power
allocation subproblem to reduce complexity. For the user pairing subproblem, three differ-
ent pairing methods were employed for pairing cell-center users with cell-edge users to
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guarantee maximum EE for NOMA groups. For the power allocation subproblem, we math-
ematically formulated the max-min EE into a non-convex fractional programming problem,
which is transformed into a sequence of subtractive form, followed by the SCP approach to
obtain the optimal solution. A practical detailed power consumption model is introduced
for the downlink NOMA-based scheme. Simulation results show that the NOMA-based
scheme outperforms the mMIMO-based scheme for the large number of users. Moreover,
the increase in the number of BS antennas reduces the EE of NOMA-based scheme due to
increased power consumption. Additionally, the correlation pairing method has the highest
computational complexity compared to the other two pairing methods. The correlation-
SCP and Hungarian algorithm-SCP achieve identical EE results and outperform the GS
algorithm-SCP. The Hungarian algorithm-SCP gives the same superior performance of the
joint user-RB PA method but with lower computational complexity and outperforms the
NOMA-SCP-GA method. In the future, our work will investigate the design of a beam-
forming technique for the NOMA-based scheme that improves the performance of NOMA
groups and makes the results of different pairing algorithms more distinctive.
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Abbreviations

List of Acronyms
EE Energy Efficiency
NOMA Non-Orthogonal Multiple Access
SCMA Sparse Code Multiple Access
PDMA Pattern Division Multiple Access
MIMO Multiple Input Multiple Output
NLoS Non-Line of Sight
SIC Successive Interference Cancellation
SCP Sequential Convex Programming
SE Spectral Efficiency
IOT Internet of Things
CSI Channel State Information
5G Fifth Generation of Cellular Communications
BS Base Station
MS Mobile Station
D2D Device-to-Device
KKT Karush–Kuhn–Tucker
MCMC-NOMA Multi-Cell Multi-Carrier Non-Orthogonal Multiple Access
GRASP Greedy Randomized Adaptive Search
SSD Stochastic Sample Greedy
DPCA Dynamic Power and Channel Allocation
WAR Weighted Achievable Rate
AmBC Ambient Backscatter Communication
FTPC Fractional Transmitting Power Control
DC Difference of Convex
SCA Successive Convex Approximation
SDMA Spatial Division Multiple Access
JT-CoMP Joint Transmission Coordinated Multi-Point
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List of Symbols
DPS-CoMP Dynamic Point Selection Coordinated Multi-Point
QoS Quality of Service
ZF Zero Forcing
TDD Time Division Duplex
U Number of users
A Number of base station antennas
uc Cell-center user
Uc Number of cell-center users
ue Cell-edge user
Ue Number of cell-edge users
gu Downlink channel vector of user u
βu Large-scale fading coefficient
hu Channel response of user u
IA Identity matrix
R Throughput
γ Power consumption
ETpower Effective transmitted power
Cpower Circuit power consumption
ξ Efficiency of power amplifier
qu BS transmitted power to user u
Pcod/dec Power consumed by encoding, decoding
Pbh Power consumed by signaling of backhaul
Psp Power consumed by digital signal processing
Pf ix Load independent power of infrastructure and power of control signaling
Ptc Power consumed by transceiver chains
PBS Power required to operate the circuit components of BS
Plo Power consumed by local oscillator
PUE Power consumed by circuit components in user equipment
Pcod Power required to encode throughput at base station
Pdec Power required to decode throughput at the user equipment
Pbh Power required by load dependent backhaul
Pbt Power of backhaul traffic
Pce Power consumed in channel estimation
B Communication bandwidth
M Number of samples per coherence block
Lbs Computational efficiency of BS
Psp Power consumed by digital signal processing
Psp−t Power consumed in downlink transmission
PDL

sp−c Power required for computing beamforming vector
τd Downlink data in each coherence interval
δcost Cost matrix
ĥ Estimated channel response
ρuc ,ue Correlation between the channel of cell-center user uc and cell-edge user ue
Rmin Minimum data rate for cell-center user
wu ZF beamforming vector for user u
ð Smooth optimization function
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