
Citation: Cicirello, V.A. Cycle

Mutation: Evolving Permutations via

Cycle Induction. Appl. Sci. 2022, 12,

5506. https://doi.org/10.3390/

app12115506

Academic Editor: Giancarlo Mauri

Received: 6 May 2022

Accepted: 27 May 2022

Published: 29 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Cycle Mutation: Evolving Permutations via Cycle Induction
Vincent A. Cicirello

Computer Science, Stockton University, 101 Vera King Farris Dr, Galloway, NJ 08205, USA; cicirelv@stockton.edu

Abstract: Evolutionary algorithms solve problems by simulating the evolution of a population of
candidate solutions. We focus on evolving permutations for ordering problems such as the traveling
salesperson problem (TSP), as well as assignment problems such as the quadratic assignment problem
(QAP) and largest common subgraph (LCS). We propose cycle mutation, a new mutation operator
whose inspiration is the well-known cycle crossover operator, and the concept of a permutation cycle.
We use fitness landscape analysis to explore the problem characteristics for which cycle mutation
works best. As a prerequisite, we develop new permutation distance measures: cycle distance, k-cycle
distance, and cycle edit distance. The fitness landscape analysis predicts that cycle mutation is better
suited for assignment and mapping problems than it is for ordering problems. We experimentally
validate these findings showing cycle mutation’s strengths on problems such as QAP and LCS, and
its limitations on problems such as the TSP, while also showing that it is less prone to local optima
than commonly used alternatives. We integrate cycle mutation into the open source Chips-n-Salsa
library, and the new distance metrics into the open source JavaPermutationTools library.

Keywords: combinatorial optimization; evolutionary algorithms; fitness distance correlation; fitness
landscape analysis; genetic algorithms; mutation; permutation cycles; permutation distance

PACS: 02.70.-c; 07.05.Mh; 89.20.Ff

MSC: 05A05; 05C60; 68T05; 68T20; 68W20; 68W50; 90C27; 90C59

1. Introduction

In an evolutionary algorithm (EA), a problem is solved through the simulated evo-
lution of a population that evolves over many generations. There are many types of EA
that mostly differ in the types of problems they solve and in how solutions are represented.
For example, a genetic algorithm (GA) [1], the original EA, usually represents a candidate
solution to an optimization problem with a vector of bits. Evolution strategies (ESs) [2]
focus specifically on real-valued function optimization, utilizing a vector of floating-point
values to represent each candidate solution. Genetic programming [3] is an approach to
automatic inductive programming, and evolves a population of programs, each of which is
typically represented with a tree structure.

This paper focuses on EAs that encode solutions with permutations, often referred to
as a permutation-based GA [4–7], while others prefer the more general term EA [8,9] to
avoid confusion with a binary-encoded GA. Solutions to some problems are more naturally
represented with a permutation than with another representation. The classic example is
the traveling salesperson problem (TSP), where a solution is a tour of the cities, and thus
can be represented in a straightforward way as a permutation of indexes into a list of cities.

One challenge with designing a permutation EA is deciding which genetic operators
to use. This is less of an issue with the classic bit-vector GA or a real-valued ES because
it is possible to mutate bits independently of the rest of a bit-vector in a GA, and real-
valued alleles in an ES can likewise be mutated independently from the vector as a whole,
such as with Gaussian mutation [10] or Cauchy mutation [11]. Within a permutation-
based EA, mutation cannot change individual elements independent of the rest of the

Appl. Sci. 2022, 12, 5506. https://doi.org/10.3390/app12115506 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115506
https://doi.org/10.3390/app12115506
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1072-8559
https://doi.org/10.3390/app12115506
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115506?type=check_update&version=2

Appl. Sci. 2022, 12, 5506 2 of 26

permutation. For example, in the permutation [2, 4, 0, 3, 1] of the first five integers, we
cannot mutate one value in isolation or it leads to an invalid permutation. Crossover cannot
naively exchange parts of parents. For example, if one parent is as above, and the other is
[4, 2, 1, 0, 3], exchanging the second and third elements between the parents leads to two
invalid permutations, [2, 2, 1, 3, 1] and [4, 4, 0, 0, 3]. Thus, for permutations, mutation and
crossover must consider the overall structure to ensure a valid encoding.

As a consequence, many mutation and crossover operators exist for permutations.
The suitability of each depends upon the characteristics of the permutation that most
significantly impacts solution fitness for the problem at hand, such as absolute element
positions, relative element positions, or element precedences [12,13]. Only relative positions
matter to fitness of a TSP solution. For example, if cities i and j are adjacent in the
permutation, then the solution includes the edge (i, j) regardless of where the pair of
cities appears. The absolute element positions are most important for other problems,
such as the largest common subgraph (LCS). The LCS is an NP-hard [14] optimization
problem involving finding a one-to-one mapping between the vertex sets of a pair of
graphs to maximize the number of edges of the common subgraph implied by the mapping.
As a permutation problem, one holds the vertexes of one graph in a fixed order, and a
permutation of the vertexes of the other graph represents a mapping. The absolute index
of a vertex in the permutation therefore corresponds to the vertex it is mapped to in the
other graph.

Mutation for permutations is most often one of swap mutation, insertion mutation,
reversal mutation, or scramble mutation [15]. There are many permutation crossover
operators that focus on maintaining different characteristics of the parents, including order
crossover [16], non-wrapping order crossover [17], uniform order-based crossover [18],
partially matched crossover [19], uniform partially matched crossover [20], precedence
preservative crossover [21], edge assembly crossover [22,23], and cycle crossover (CX) [24].

The central aim of this paper is development of a mutation operator for permutations
that (a) is characterized by small random perturbations on average, (b) has a large neigh-
borhood size, and (c) is tunable. These properties enable focused search with improved
handling of local optima. No such mutation operators currently exist for permutations.
For bit-vectors, the standard bit-flip mutation satisfies all of these properties. For example,
the bit-flip mutation rate M is usually set to a low value for a small average number of
bits flipped, but can be tuned for problems where greater mutation is beneficial, and as
long as M is non-zero, the neighborhood includes all other bit-vectors. Similarly, Gaussian
mutation in an ES satisfies all of these properties, with a tunable parameter, the stan-
dard deviation of the Gaussian. All existing permutation mutation operators have a fixed
neighborhood size, which in most cases is small, that depends only on permutation length.

To achieve this aim, we present a new mutation operator called cycle mutation, which
relies on the concept of a permutation cycle and is inspired by CX. Rather than operating on
two parents as CX does, cycle mutation instead mutates a single member of the population.
Thus, it is also applicable to non-population metaheuristics such as simulated annealing
(SA) [25–27]. We develop two variations of cycle mutation, Cycle(kmax) and Cycle(α),
offering two ways of addressing locally optimal solutions.

To formally demonstrate that cycle mutation achieves the target properties of large
neighborhood but small average changes, we conduct a fitness landscape analysis of
cycle mutation, and other permutation mutation operators for three NP-hard optimization
problems [14], the TSP, the LCS, and the quadratic assignment problem (QAP). The fitness
landscape analysis predicts that cycle mutation likely performs well for assignment and
mapping problems, such as LCS and QAP, where absolute positions directly affect fitness,
but that it may be less well-suited to relative ordering problems such as the TSP. We
use fitness distance correlation (FDC) [28], which requires a measure of distance between
solutions that corresponds to the operator under analysis. Appropriate measures of distance
exist for the operators to which we compare. However, no existing permutation distance

Appl. Sci. 2022, 12, 5506 3 of 26

functions are suitable for the new cycle mutation. Therefore, we introduce three new
permutation distance measures: cycle distance, k-cycle distance, and cycle edit distance.

To validate the new cycle mutation, we experiment with the LCS, QAP, and TSP,
comparing cycle mutation with commonly used permutation mutation operators within a
(1+ 1)-EA as well as within SA. The results support the predictions of the fitness landscape
analysis, demonstrating the efficacy of cycle mutation for assignment problems such as LCS
and QAP, while also showing that cycle mutation is inferior to alternatives for the TSP where
relative element positions are more important than absolute locations. The experiments
also show that the Cycle(α) variation is especially effective at escaping local optima.

A secondary aim of this research is to enable reproducibility [29], as well as to advance
the state of practice. Therefore, we integrate our Java implementation of cycle mutation
into the open source Chips-n-Salsa library [30], and cycle distance, k-cycle distance, and
cycle edit distance into the open source JavaPermutationTools library [31]. Chips-n-Salsa
is a library for stochastic and adaptive local search as well as EAs. JavaPermutationTools
is a library for computation on permutations and sequences, with a focus on measures
of distance. We also disseminate the source code for the fitness landscape analysis and
experiments, as well as the raw and processed experiment data, on GitHub (https://github.
com/cicirello/cycle-mutation-experiments, accessed on 26 May 2022).

We begin by introducing necessary background in Section 2. We proceed with our
methods in Section 3, including deriving the new cycle mutation and distance metrics,
as well as performing the fitness landscape analysis. Results are presented in Section 4. We
wrap up with a discussion and conclusions in Section 5 including discussing insights into
the situations where the new cycle mutation is likely to excel.

2. Background

This section provides background on common mutation operators for permutations
(Section 2.1); permutation cycles (Section 2.2), which is the theoretical basis for the new
cycle mutation; the CX operator (Section 2.3) on which the new cycle mutation is based;
and NP-hard combinatorial optimization problems (Section 2.4) used later in this article.

2.1. Permutation Mutation Operators

We later compare cycle mutation to the most common permutation mutation operators,
including the following. Swap picks two different elements uniformly at random and
exchanges their locations within the permutation. All other elements remain in their
current positions. Insertion picks an element uniformly at random, removes it from the
permutation, and reinserts it at a different position chosen uniformly at random. This has
the effect of shifting all elements between the removal and insertion points. Reversal (also
known as inversion) reverses the order of a subsequence of the permutation, where the end
points are chosen uniformly at random. Scramble (also known as shuffle) randomizes the
order of a subsequence of the permutation, where the end points of the subsequence are
chosen uniformly at random. Scramble is the most disruptive of these operators.

Prior fitness landscape analyses (e.g., [32]) show that swap strongly dominates when
absolute positions are most important to fitness; reversal is best for relative positions with
undirected edges, followed by insertion and swap, but reversal performs poorly with
directed edges; and insertion is best when element precedences most greatly affect fitness.

2.2. Permutation Cycles

Cycle mutation relies upon the concept of a permutation cycle [33]. Align two permu-
tations such that corresponding positions are vertically adjacent, such as

p1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

p2 = [2, 3, 0, 5, 6, 7, 8, 9, 4, 1].
(1)

https://github.com/cicirello/cycle-mutation-experiments
https://github.com/cicirello/cycle-mutation-experiments

Appl. Sci. 2022, 12, 5506 4 of 26

Consider a directed graph with one vertex for each element. In this example, the hypo-
thetical graph has 10 vertexes. Corresponding positions define directed edges. For example,
p1 and p2 have 0 and 2 at the beginning, respectively, which implies an edge from vertex 0
to vertex 2. Thus, the directed edges of the graph induced by p1 and p2 are

{(0, 2), (1, 3), (2, 0), (3, 5), (4, 6), (5, 7), (6, 8), (7, 9), (8, 4), (9, 1)}. (2)

A permutation cycle is a cycle in this graph. Thus, in this example, there are three
permutation cycles, consisting of the following sets of vertexes:

{0, 2}, {1, 3, 5, 7, 9}, {4, 6, 8}. (3)

2.3. Cycle Crossover (CX)

The CX [24] operator creates two children from two parents as follows. It first selects
an index into one parent uniformly at random. It computes the permutation cycle for
the pair of parents that includes the chosen element. Child c1 receives the positions of
the elements that are in the cycle from p2 and the positions of the other elements from
p1. Likewise, child c2 receives the positions of the elements that are in the cycle from p1
and the positions of the others from p2. The runtime to apply CX is Θ(n), where n is the
permutation length.

Consider an example where the parents are the permutations of Equation (1), which
consist of three permutation cycles (see Equation (3)). The result of CX depends upon the
random starting element. If element 0 or 2 begins the cycle, then the children are:

c1 = [2, 1, 0, 3, 4, 5, 6, 7, 8, 9]

c2 = [0, 3, 2, 5, 6, 7, 8, 9, 4, 1].
(4)

If one of the elements {1, 3, 5, 7, 9} begins the cycle, then the children are:

c1 = [0, 3, 2, 5, 4, 7, 6, 9, 8, 1]

c2 = [2, 1, 0, 3, 6, 5, 8, 7, 4, 9].
(5)

Otherwise, if one of the elements {4, 6, 8} begins the cycle, then the children are:

c1 = [0, 1, 2, 3, 6, 5, 8, 7, 4, 9]

c2 = [2, 3, 0, 5, 4, 7, 6, 9, 8, 1].
(6)

Since the starting element is chosen uniformly at random, larger cycles are chosen
with greater probability. In this example, the probability of generating the first pair of
children above is 0.2, while the probability of generating the second pair of children is 0.5,
and the probability of generating the last pair of children is 0.3.

One characteristic of CX is that every element of each child has its absolute position
within the permutation from one or the other of the two parents. In this way, it is particularly
well suited to permutation problems where absolute position has greatest effect on fitness,
since the children are inheriting absolute element position from the parents.

2.4. Test Problems

We now provide background on the TSP, QAP, and LCS, which are NP-hard combina-
torial optimization problems used in the fitness landscape analysis and experiments.

2.4.1. TSP

In the TSP, a salesperson must complete a tour of n cities to minimize total cost, usually
distance traveled. The cities are vertexes of a completely connected graph. A tour is a
simple cycle that includes all n vertexes. The NP-complete decision variant of the TSP
asks whether a tour exists with cost at most C; and the NP-hard optimization problem

Appl. Sci. 2022, 12, 5506 5 of 26

seeks the minimum cost tour [14]. The TSP is widely studied and is perhaps the most
common combinatorial optimization problem in experimental studies. It has been used in
machine learning [34,35], ant colony optimization [36,37], GA [19,24,38,39], other forms of
EA [22,23,40], and other metaheuristics [41–45]. There are variations of the problem, such
as the asymmetric TSP (ATSP), where the cost of using an edge differs depending upon
the direction of travel along the edge [46,47]. Some variations include problem domain
characteristics, such as in delivery route planning [43] and wireless sensor networks [48].

2.4.2. QAP

The formal definition of the QAP is as follows. We are given an n by n cost matrix
C, and an m by m distance matrix D, such that m ≥ n. The NP-complete decision version
of the problem [14] asks the question, for a given bound B: Does there exist a one-to-one
function f : {0, 1, . . . , n− 1} → {0, 1, . . . , m− 1}, such that:

n−1

∑
i=0

n−1

∑
j=0
j 6=i

Ci,jD f (i), f (j) ≤ B? (7)

The NP-hard optimization version of the QAP is to find the one-to-one function
f : {0, 1, . . . , n− 1} → {0, 1, . . . , m− 1} that minimizes

n−1

∑
i=0

n−1

∑
j=0
j 6=i

Ci,jD f (i), f (j). (8)

Most authors consider the case when n = m. This problem is naturally represented
with permutations. When n = m, a solution (i.e., the one-to-one function f) is simply
represented as a permutation of the integers {0, 1, . . . , n− 1}. In the more general case,
a solution is the first n integers in a permutation of the integers {0, 1, . . . , m− 1}. The QAP
is an especially challenging NP-hard optimization problem, where you most often find
experimental studies utilizing what seems to be rather small instances (e.g., n < 50).
A wide variety of EA, metaheuristics, and heuristic approaches have been proposed for the
QAP [49–55].

2.4.3. LCS

The LCS problem [14] is closely related to the subgraph isomorphism problem. In the
LCS problem, we are given graphs G1 = (V1, E1) and G2 = (V2, E2), with vertex sets V1
and V2, and edge sets E1 and E2. In the optimization variant of the problem, we must
find the graph G3 = (V3, E3), such that G3 is isomorphic to a subgraph of G1 and G3 is
isomorphic to a subgraph of G2, and such that the cardinality of edge set |E3| is maximized.
This problem is NP-hard. The NP-complete decision variant of the problem asks whether
there exists such a graph G3 such that |E3| ≥ K for some threshold K.

If |V1| = |V2|, then a solution is represented by a permutation of {0, 1, . . . , |V1| − 1},
and more generally the solution is represented by the first min(|V1|, |V2|) integers of a
permutation of {0, 1, . . . , max(|V1|, |V2|) − 1}. Without loss of generality, assume that
|V1| ≤ |V2|. For permutation p of integers {0, 1, . . . , |V2| − 1}, the number of edges |E3| in
the common subgraph implied by such a permutation is then computed as

|E3| = ∑
(u,v)∈E1

{
1 if (p(u), p(v)) ∈ E2

0 if (p(u), p(v)) /∈ E2,
(9)

where p(u) means the element in position u of permutation p. This is most efficiently
implemented if the smaller graph, G1, is represented with adjacency lists or by a simple list
of ordered pairs as the edge set; and if the larger graph G2 is represented with an adjacency
matrix to enable constant time checks for existence of edges.

Appl. Sci. 2022, 12, 5506 6 of 26

Prior approaches to the LCS problem include GA [20], hill-climbing [56], and heuristic
approaches [57–59]. There are applications of the LCS problem in computer-aided engineer-
ing [56], software engineering [59], protein molecule comparisons [58], integrated circuit
design [57,60], natural language processing [61], and cybersecurity [62], among others.

3. Methods

To achieve the objective of a tunable mutation operator with a large neighborhood but
small average changes, we derive two forms of the new cycle mutation in Section 3.1.

To gain an understanding of the topology of fitness landscapes associated with cycle
mutation, we use a variety of fitness landscape analysis tools. This requires measures of
permutation distance corresponding to the mutation operators. Ideally, these should be
edit distances where the mutation operator is the edit operation. Edit distance is defined
as the minimum cost of the edit operations necessary to transform one structure into
the other, and originated within the context of string distance [63,64]. There are many
permutation distance measures available in the literature [12,13,31,65–68], including several
edit distances. However, none of these are suitable for characterizing the distance between
permutations within the context of cycle mutation. Therefore, in Section 3.2, we derive new
measures of permutation distance: cycle distance, cycle edit distance, and k-cycle distance.

We then proceed with the fitness landscape analysis in Section 3.3. We derive the
diameter of the fitness landscapes for both forms of cycle mutation, as well as for other
common permutation mutation operators. The diameter of a fitness landscape is the
distance between the two furthest points, where distance is the minimum number of
applications of the operators to transform one point to the other. Thus, diameter directly
relates to neighborhood size, where larger neighborhood corresponds to smaller diameter,
providing a means to quantify our objective of a mutation with large neighborhood. The
fitness landscape analysis then utilizes FDC, which is the Pearson correlation coefficient
between the fitness of solutions, and the distance to the nearest optimal solution [28].
The FDC analysis uses the TSP, LCS, and QAP problems, so that we can explore the behavior
of the cycle mutation operator on a variety of permutation problems. To directly address
the objective of mutation with small average changes, the fitness landscape analysis also
uses search landscape calculus [32], which examines the average local rate of fitness change.

3.1. Cycle Mutation

We present two variations of cycle mutation. Both forms mutate permutation p by
inducing a permutation cycle of length k. The primary difference between the two versions
is in how k is chosen. We provide notation and operations shared by the two variations in
Section 3.1.1, followed by the presentations of the two versions, Cycle(kmax) in Section 3.1.2
and Cycle(α) in Section 3.1.3, and finally a comparison of the asymptotic runtime of the
new cycle mutation with commonly used mutation operators in Section 3.1.4.

3.1.1. Shared Notation and Operations

Let p be a permutation of length n, such that p(i) is the element at index i. Assume
that indexes into p are 0-based (i.e., valid indexes are {0, 1, . . . , n− 1}), as are array indexes.
Algorithm 1 shows pseudocode for the core operation of both variations of cycle mutation.
Namely, it induces a cycle in the given permutation p from an array of indexes into p.

Algorithm 1 CreateCycle(p, indexes)

1: temp← p(indexes[0])
2: for i = 1 to n− 1 do
3: p(indexes[i− 1])← p(indexes[i])
4: p(indexes[n− 1])← temp

Appl. Sci. 2022, 12, 5506 7 of 26

As an example of its behavior, consider the following permutation:

p = [2, 6, 0, 5, 3, 8, 7, 9, 4, 1]. (10)

Now consider the following array of indexes into p:

indexes = [3, 7, 1, 4]. (11)

Executing CreateCycle(p, indexes)will produce the permutation p′ such that p′(3) = p(7),
p′(7) = p(1), p′(1) = p(4), andp′(4) = p(3), resulting in the following:

p′ = [2, 3, 0, 9, 5, 8, 7, 6, 4, 1]. (12)

The runtime of CreateCycle is linear in the induced cycle length.
One of the steps of cycle mutation requires sampling k random indexes into permuta-

tion p without replacement. Algorithm 2 shows our sampling approach, which uses one of
three algorithms depending on the value of k relative to the permutation length n.

Algorithm 2 Sample(n, k)

1: if k ≥ n
2 then

2: return ReservoirSample(n, k)
3: else if k ≥

√
n then

4: return PoolSample(n, k)
5: else
6: return InsertionSample(n, k)

When k ≥ n
2 , we use Vitter’s reservoir sampling algorithm [69] (line 2 of Algorithm 2),

which has a runtime of O(n) and utilizes O(n− k) random numbers. When
√

n ≤ k < n
2 ,

we use Ernvall and Nevalainen’s sampling algorithm [70], which we refer to as PoolSample
in line 4 of Algorithm 2, and which also has a runtime of O(n), but requires O(k) random
numbers. Asymptotic runtime of both of these options is O(n), but since random number
generation is a costly operation with very significant impact on the runtime of an EA [71],
our approach chooses the sampling algorithm that requires fewer random numbers.

When k <
√

n, we use what we believe is a brand new sampling algorithm: insertion
sampling (Algorithm 2, line 6). Insertion sampling’s runtime is O(k2), and requires O(k)
random numbers. Since runtime increases quadratically in k, insertion sampling is only
a good choice when k is very small relative to n. Pseudocode for insertion sampling is
in Algorithm 3. To ensure a duplicate-free result, it maintains a sorted list of the integers
selected thus far, and inserts into that list in a way similar to insertion sort. The Rand(a, b)
in Algorithm 3 is a uniform random variable over the interval [a, b], inclusive.

Algorithm 3 InsertionSample(n, k)

1: result← a new array of length k
2: for i = 0 to k− 1 do
3: v← Rand(0, n− i− 1)
4: j← k− i
5: while j < k and v ≥ result[j] do
6: v← v + 1
7: result[j− 1]← result[j]
8: j← j + 1
9: result[j− 1]← v

10: return result

The composite sampling algorithm of Algorithm 2 runs in O(min(n, k2)) time and
requires O(min(k, n− k)) random numbers. We integrated this composite sampling algo-

Appl. Sci. 2022, 12, 5506 8 of 26

rithm, the new insertion sampling algorithm, as well as our implementations of reservoir
sampling and pool sampling into an open source Java library ρµ (https://github.com/
cicirello/rho-mu, accessed on 26 May 2022), independent of the application to EA of
this article.

3.1.2. Cycle(kmax)

In the first version of cycle mutation (Algorithm 4), called Cycle(kmax), the induced
cycle length k is uniformly random from the interval [2, kmax], such that kmax ≥ 2.

Algorithm 4 CycleMutation(p, kmax)

1: k← Rand(2, kmax)
2: indexes← Sample(n, k)
3: Shuffle(indexes)
4: CreateCycle(p, indexes)

It first selects the cycle length k in O(1) time. Next, k indexes are sampled uniformly
at random without replacement (line 2) with a call to Sample(n, k) of Algorithm 2. Since
k ≤ kmax, the worst-case runtime of that step is O(min(n, kmax2)). This array of indexes
is randomized (line 3), with a worst-case cost of O(kmax). Finally, a cycle is induced
from the randomized list of k indexes with a call to the CreateCycle of Algorithm 1 in
line 4, which also costs O(kmax) time in the worst case. Thus, the worst-case runtime is
O(min(n, kmax2)), since the most costly step is sampling the indexes. The average case is
also O(min(n, kmax2)) since the average cycle length k̄ = kmax+2

2 is proportional to kmax.
Cycle(kmax) limits the induced permutation cycle to a predetermined maximum

length, with all cycle lengths up to kmax equally likely. This enables tuning the size of the
local neighborhood, with lower kmax leading to a smaller neighborhood and higher kmax
creating a larger neighborhood. Thus, increasing kmax may lead to fewer local optima in
the fitness landscape, but would also lead to a more disruptive and less focused search.

3.1.3. Cycle(α)

The second version of cycle mutation, called Cycle(α), maximizes the size of the local
neighborhood while retaining the local focus of a small cycle length. Cycle(α) allows any
possible cycle length k ∈ [2, n], but chooses a smaller cycle length with higher probability
than a greater cycle length. Specifically, the probability of choosing cycle length k is
proportional to αk−2. Thus, the probability P(k) of choosing cycle length k is

P(k) =
αk−2

∑n
i=2 αi−2 =

αk−2(1− α)

1− αn−1 . (13)

The α is a parameter of the operator such that 0 < α < 1. The nearer α is to 0, the more
probabilistic weight is placed upon lower values of k relative to higher values.

From this, we can derive a mathematical transformation from uniform random number
U ∈ [0.0, 1.0) to corresponding cycle length k. Choose k according to the following:

k =

{
2 if 0 ≤ U < P(2)
j if ∑

j−1
i=2 P(i) ≤ U < ∑

j
i=2 P(i).

(14)

This is equivalent to

k = argmin
j∈[2,n]

{
j

∑
i=2

P(i)

}
subject to

{
j

∑
i=2

P(i) > U

}
. (15)

https://github.com/cicirello/rho-mu
https://github.com/cicirello/rho-mu

Appl. Sci. 2022, 12, 5506 9 of 26

Substituting Equation (13) into the constraint and simplifying arrives at

k = argmin
j∈[2,n]

{
j

∑
i=2

P(i)

}
subject to

{
1− αj−1

1− αn−1 > U
}

. (16)

Solve the constraint for j to derive

k = argmin
j∈[2,n]

{
j

∑
i=2

P(i)

}
subject to

{
j >

log(1− (1− αn−1)U)

log(α)
+ 1
}

. (17)

Since the summation inside the argmin increases as j increases, this is equivalent to

k = min
j∈[2,n]

{j} subject to
{

j >
log(1− (1− αn−1)U)

log(α)
+ 1
}

. (18)

Finally, we compute k from U via

k = 2 +
[

log(1− (1− αn−1)U)

log(α)

]
. (19)

Since α is a parameter that does not change during the run, and since the permutation
length n is likewise fixed based on the problem instance we are solving, the (1− αn−1) and
the log(α) are constants that can be computed a single time at the start of the run.

Algorithm 5 shows pseudocode of Cycle(α). The worst-case runtime is O(n), which
occurs when the random k equals n, leading lines 3–4 to cost O(n). The worst case is a
rare occurrence. Since mutation is applied a very large number of times during an EA, it is
more meaningful to examine the average runtime of mutation. To determine the average
runtime, we must first compute the expected cycle length E[k] as follows:

E[k] =
n

∑
k=2

kP(k)

=
(1− α)

1− αn−1

n

∑
k=2

kαk−2

=
2− α + nαn − nαn−1 − αn−1

(1− α)(1− αn−1)

≤ lim
n→∞

2− α + nαn − nαn−1 − αn−1

(1− α)(1− αn−1)

=
2− α

1− α
.

(20)

The expected cycle lengths for Cycle(0.25), Cycle(0.5), and Cycle(0.75) are E[k] ≤ 2 1
3 ,

E[k] ≤ 3, and E[k] ≤ 5, respectively. The average runtime of Cycle(α) is therefore
O(min(n, (2−α

1−α)
2)) due to the call to Sample(n, k) in line 2 of Algorithm 5.

Algorithm 5 CycleMutation(p, α)

1: k← 2 +
[

log(1−(1−αn−1)U)
log(α)

]
2: indexes← Sample(n, k)
3: Shuffle(indexes)
4: CreateCycle(p, indexes)

Appl. Sci. 2022, 12, 5506 10 of 26

3.1.4. Asymptotic Runtime Summary

Table 1 summarizes the asymptotic runtime of cycle mutation and common mutation
operators. Swap mutation is a constant time operation, while the worst -case runtime of
insertion, reversal, scramble, and Cycle(α) is linear in the permutation length n. The worst
case for Cycle(kmax) is between these extremes, depending upon kmax.

Since mutation is computed a very large number of times during an EA, average
runtime is more meaningful. The average runtime of insertion, reversal, and scramble is
O(n). The average runtime of Cycle(α) depends upon α. However, other than values of α
very near 1.0, the average runtime is essentially a constant. Although the runtime of swap
is constant, and that of cycle mutation is very nearly constant depending on α or kmax,
they are not strictly superior to the linear time operators for all problems. Some problem
characteristics may lead to superior performance with fewer applications of one of the
linear time mutation operators than if the constant time swap was instead used.

Table 1. Asymptotic runtime of cycle mutation and common permutation mutation operators.

Mutation Operator Worst Case Average Case

Cycle(kmax) O(min(n, kmax2)) O(min(n, kmax2))
Cycle(α) O(n) O(min(n, (2−α

1−α)
2))

Swap O(1) O(1)
Insertion O(n) O(n)
Reversal O(n) O(n)
Scramble O(n) O(n)

3.2. New Measures of Permutation Distance

We now present three new measures of permutation distance: cycle distance (Section 3.2.1),
cycle edit distance (Section 3.2.2), and k-cycle distance (Section 3.2.3).

3.2.1. Cycle Distance

As a first step toward a distance measure appropriate for use in analyzing fitness
landscapes associated with the Cycle(α) form of cycle mutation, we present cycle distance.
Cycle(α) mutates a permutation by inducing a cycle whose length is only limited by the
permutation length itself. Therefore, cycle distance is the count of the number of non-
singleton cycles. We can define the cycle distance between permutations p1 and p2 as

δ(p1, p2) = CycleCount(p1, p2)− FixedPointCount(p1, p2), (21)

where CycleCount is the number of permutation cycles, and FixedPointCount is the num-
ber of singleton cycles or fixed points, which is a cycle of length one (i.e., a point where
both permutations contain the same element). We compute cycle distance in O(n) time.

Cycle distance is a semi-metric, since it satisfies all of the metric properties except for
the triangle inequality. First, it obviously satisfies non-negativity since δ(p1, p2) clearly
cannot be negative since there cannot be a negative number of non-singleton permutation
cycles. Second, it is obvious that δ(p1, p2) = δ(p2, p1), and is thus symmetric. Third, it
satisfies the identity of indiscernibles as follows. When p1 = p2 = p, we have

δ(p, p) = CycleCount(p, p)− FixedPointCount(p, p) = n− n = 0, (22)

since the cycle count is n (i.e., n singleton cycles), and thus the number of fixed points is
also n. In the other direction, we have

δ(p1, p2) = 0 =⇒ CycleCount(p1, p2) = FixedPointCount(p1, p2) =⇒ p1 = p2, (23)

since the only way that every cycle is a fixed point is if p1 and p2 are identical.

Appl. Sci. 2022, 12, 5506 11 of 26

To demonstrate the violation of the triangle inequality, consider the permutations:

p1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

p2 = [1, 0, 3, 2, 5, 4, 7, 6, 9, 8]

p3 = [0, 3, 2, 5, 4, 7, 6, 9, 8, 1].

(24)

Observe δ(p1, p2) = 5 since every consecutive pair of elements in p1 is swapped in p2,
creating five cycles of length two. All even-numbered elements are fixed points for p1 and
p3, and all odd-numbered elements form a single cycle. That is, keep the even elements
fixed and cycle the odd elements to the left within p1 to obtain p3. Thus, δ(p1, p3) = 1.
Finally, inspect p3 and p2 to note that if we cycle all of the elements of p3 one position to the
right, we obtain p2. Therefore, δ(p3, p2) = 1. Thus, since δ(p1, p2) > δ(p1, p3) + δ(p3, p2),
cycle distance does not satisfy the triangle inequality, and is only a semi-metric.

The diameter of the space of permutations Sn of length n given a measure of distance
δ is the maximal distance between points in that space. Define the diameter D(n, δ) as

D(n, δ) = max
p1,p2∈Sn

{δ(p1, p2)}. (25)

Since each non-singleton cycle contributes one to cycle distance, independent of cycle
length, the maximum case is when the number of non-singleton cycles is maximized.
The smallest non-singleton cycle is length two. The maximum cycle distance therefore
occurs when there are [n/2] cycles of length two, leading to a diameter of

D(n, δ) =
[n

2

]
. (26)

3.2.2. Cycle Edit Distance

Although cycle distance relates to the Cycle(α) operator, it is not actually an edit
distance with Cycle(α) as the edit operation. However, we can utilize it to define such an
edit distance. To define cycle edit distance as the minimum number of induced permutation
cycles necessary to transform p1 into p2, we can formally define cycle edit distance as

δe(p1, p2) =

0 if p1 = p2

1 if δ(p1, p2) = 1
2 if δ(p1, p2) > 1,

(27)

where δ(p1, p2) is cycle distance (Equation (21)). If there is exactly one non-singleton cycle,
we can trivially transform it to all fixed points by cycling the elements of that cycle. If there
are two or more non-singleton cycles, there exists a cycle of the union of the elements of
those cycles that will merge all of them into a single larger cycle, possibly producing some
fixed points. See Equation (24) for an example. Thus, one cycle edit operation merges all
non-singleton cycles, and a second cycle edit transforms it into all fixed points. We can
compute cycle edit distance in O(n) time since we can compute cycle distance in O(n) time.

Cycle edit distance satisfies all of the metric properties as follows. From Equation (27), it is
trivial to confirm non-negativity, symmetry, and the identity of indiscernibles. Without loss
of generality, assume that p1, p2, and p3 are all different. Thus, δe(p1, p3) + δe(p3, p2) ≥
1 + 1 ≥ 2, implying δe(p1, p2) ≤ δe(p1, p3) + δe(p3, p2) since δe(p1, p2) ≤ 2 by definition.
Thus, cycle edit distance satisfies the triangle inequality, and it is therefore a metric.

Multiple non-singleton cycles can only exist if permutation length n ≥ 4, and permu-
tations of length one must be identical. Thus, the diameter of cycle edit distance is

D(n, δe) =

0 if n ≤ 1
1 if 1 < n ≤ 3
2 if 3 < n.

(28)

Appl. Sci. 2022, 12, 5506 12 of 26

3.2.3. K-Cycle Distance

Cycle distance and cycle edit distance assume that arbitrary length cycles can be
induced in a single operation, which is needed for Cycle(α) since it does not restrict the
induced cycle length. However, this is not suitable when characterizing fitness landscapes
for the Cycle(kmax) mutation operator, which does limit the cycle length to kmax.

We now define k-cycle distance, which limits operations to inducing cycles of lengths
{2, 3, . . . , k}. The k-cycle distance is not an edit distance. Instead, it is a weighted sum
over the cycles of the pair of permutations, where the weight of each cycle is the minimum
number of induced cycles of length at most k necessary to transform the cycle to all fixed
points. That is, k-cycle distance does not consider operations that span multiple cycles.

A cycle of length c ≤ k can be transformed to c fixed points by inducing a cycle of
length c. If the cycle length c > k, a sequence of cycles can derive c fixed points. For k-cycle
distance, iteratively induce cycles of length k until the remaining cycle length is at most
k, completing the transformation with one final cycle operation. Each intermediate cycle
creates k− 1 fixed points. Consider the following example beginning with permutations:

p1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

p2 = [2, 3, 1, 5, 6, 7, 8, 9, 4, 0].
(29)

There are two non-singleton permutation cycles in this example with element sets:

{1, 3, 5, 7, 9, 0, 2}, {4, 6, 8}. (30)

If we are computing 3-cycle distance, then we consider cycle mutations of lengths 2
and 3. The cycle with elements {4, 6, 8} can thus be transformed into all fixed points with a
single cycle mutation since its length is less than or equal to 3 to obtain

p1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

p2 = [2, 3, 1, 5, 4, 7, 6, 9, 8, 0].
(31)

The longer cycle {1, 3, 5, 7, 9, 0, 2} requires a sequence of three operations. The first two
produce k− 1 = 2 fixed points each with one final cycle mutation for the remaining three
elements. First, cycle elements 3, 5, and 7, resulting in fixed points for elements 3 and 5:

p1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

p2 = [2, 7, 1, 3, 4, 5, 6, 9, 8, 0].
(32)

A cycle of {1, 7, 9, 0, 2} remains. Cycle elements 7, 9, and 0, creating fixed points 7 and 9:

p1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

p2 = [2, 0, 1, 3, 4, 5, 6, 7, 8, 9].
(33)

A cycle of {1, 0, 2} remains, which transforms into fixed points with one final cycle mutation:

p1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

p2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].
(34)

With this example in mind, we now derive the k-cycle distance, assuming k ≥ 2. First,
given a cycle of length c, the fewest cycle edits of length at most k necessary to transform it
to c fixed points is [(c− 1)/(k− 1)]. To compute k-cycle distance, sum this over all cycles,
CycleSet(p1, p2), of the permutations p1 and p2. Therefore, define k-cycle distance by

δk(p1, p2) = ∑
cycle∈CycleSet(p1,p2)

c=|cycle|

[
c− 1
k− 1

]
. (35)

Appl. Sci. 2022, 12, 5506 13 of 26

The k-cycle distance can be computed in O(n) time. It is a metric when k ≤ 4, but it is
only a semi-metric for k ≥ 5. Independent of k, it trivially satisfies non-negativity since the
expression within the sum of Equation (35) is never negative; and since CycleSet(p1, p2)
computes the same set of cycles as CycleSet(p2, p1), it is also trivially symmetric. It satisfies
the identity of indiscernibles as follows. If p1 = p2 = p, then there are n singleton cycles,
and since the expression within the sum of Equation (35) is 0 when c = 1, we have
δk(p, p) = 0. In the other direction, if δk(p1, p2) = 0, then all elements in the summation
must be 0, and that only occurs with fixed points. Thus, δk(p1, p2) = 0 =⇒ p1 = p2.

The triangle inequality is violated if k ≥ 5. Consider this case with k = 6:

p1 = [0, 1, 2, 3, 4, 5]

p2 = [1, 0, 3, 2, 5, 4]

p3 = [0, 3, 2, 5, 4, 1].

(36)

The 6-cycle distance allows cycle operations of length up to six. Note that δ6(p1, p2) = 3
since there are three cycles of length two; δ6(p1, p3) = 1 since the even-numbered elements
are fixed points, and the odd-numbered elements form a single cycle of length three; and
δ6(p3, p2) = 1, with a single cycle of length six (i.e., cycle the elements of p3 one position
to the right to obtain p2). Thus, δ6(p1, p3) + δ6(p3, p2) = 1 + 1 = 2 < δ6(p1, p2). Therefore,
6-cycle distance is only a semi-metric, as is k-cycle distance for any other k ≥ 6.

We can produce a similar example for the case of k = 5 as follows:

p1 = [0, 1, 2, 3, 4, 5]

p2 = [1, 0, 3, 2, 5, 4]

p3 = [0, 3, 2, 5, 1, 4].

(37)

As in the previous example, δ5(p1, p2) = 3. Note that δ5(p1, p3) = 1 since {0, 2} are
fixed points, and there is a single cycle of the elements {1, 3, 5, 4}; and δ5(p3, p2) = 1, with a
fixed point for element 4, and a single cycle of the remaining five elements. In this example,
δ5(p1, p3) + δ5(p3, p2) < δ5(p1, p2). Thus, 5-cycle distance is also only a semi-metric.

In general, as many as k non-singleton cycles can be merged into a single larger cycle
by cycling k elements, where the cycle edit includes at least one element of each of the
merged cycles. This is also true when k < 5, but for k < 5 the resulting merged cycle is
larger than k, requiring multiple cycle edits to transform into all fixed points.

When k ≤ 4, the k-cycle distance satisfies the triangle inequality, and is a metric; but
when k ≥ 5, it is only a semi-metric. Indeed, when k ≤ 4, the k-cycle distance is equivalent
to an edit distance with cycles of length up to k as the edit operations. For example, 2-cycle
distance is equivalent to an existing distance metric known as interchange distance, which
is an edit distance with swap as its edit operation, which is a metric.

The diameter of the space of permutations for k-cycle distance depends upon the
permutation length n in relation to k. When k is high, distance is maximized by maximizing
the number of permutation cycles, which occurs when there are [n/2] cycles of length 2.
When k is low, distance is maximized when there is a single cycle of length n, which requires
[(n− 1)/(k− 1)] cycle operations to transform to n fixed points. Thus, the diameter is

D(n, δk) = max
{[

n
2

]
,
[

n− 1
k− 1

]}
. (38)

3.3. Fitness Landscape Analysis

The fitness landscape analysis includes calculation of landscape diameters in Section 3.3.1,
FDC analysis in Section 3.3.2, and an analysis of the search landscape calculus in Section 3.3.3.
We synthesize the fitness landscape analysis findings in Section 3.3.4.

Appl. Sci. 2022, 12, 5506 14 of 26

When an edit distance is required, such as to compute FDC and the diameter, we use
cycle edit distance for Cycle(α), and k-cycle distance for Cycle(kmax). Swap’s edit distance
is interchange distance, the minimum number of swaps to transform p1 into p2:

δi(p1, p2) = n−CycleCount(p1, p2), (39)

where CycleCount(p1, p2) is the number of permutation cycles. The edit distance for
insertion mutation is known as reinsertion distance, the minimum number of insertion
mutations needed to transform p1 into p2. It is efficiently computed as [32]:

δr(p1, p2) = n− |LongestCommonSubsequence(p1, p2)|, (40)

where LongestCommonSubsequence(p1, p2) is the longest common subsequence. It is not
feasible to utilize an edit distance to analyze reversal mutation landscapes, because comput-
ing reversal edit distance is NP-hard [72]. Instead we utilize cyclic edge distance [68], which
interprets a permutation as a cyclic sequence of edges (e.g., 1 following 2 is treated as an
edge between 1 and 2) and counts the edges in p1 that are not in p2. For scramble mutation,
a trivial edit distance from a permutation to itself is 0, and to any other permutation is 1,
since any permutation is reachable by some shuffling of any other.

3.3.1. Fitness Landscape Diameter

Table 2 compares the diameters of fitness landscapes for the various mutation opera-
tors. Except where noted, we use the metrics identified above. The diameter of both swap
and insertion landscapes is n− 1. The maximum distance for swap occurs for a single n
element cycle. The maximum case for insertion occurs when one permutation is the reverse
of the other. For reversal mutation, we use the exact diameter for a reversal edit distance
rather than relying on the surrogate distance measure identified earlier. The diameter of a
reversal landscape is n− 1, proven by Bafna and Pevzner [73], the proof of which is well
beyond the scope of this article. The diameter of a scramble landscape is simply 1 since
every permutation is reachable from any other via a single scramble operation.

Table 2. Fitness landscape diameter for cycle mutation and common permutation mutation operators.

Mutation Operator Diameter

Cycle(kmax), kmax ≥ 5 ≈ 2n/kmax
Cycle(kmax), kmax ≤ 4 max{[n/2], [(n− 1)/(kmax− 1)]}

Cycle(α) 2
Swap n− 1

Insertion n− 1
Reversal n− 1
Scramble 1

The diameter of a Cycle(α) landscape is 2, which is the diameter of the space of
permutations for cycle edit distance (Section 3.2.2). When kmax ≤ 4, the diameter of
Cycle(kmax) is max{[n/2], [(n− 1)/(kmax− 1)]}, which is the maximum k-cycle distance
(Section 3.2.3).

We previously saw that k-cycle distance does not satisfy the triangle inequality if
kmax ≥ 5. Although computing a Cycle(kmax) edit distance for kmax ≥ 5 is too costly for
our purpose, it is straightforward to compute its diameter. Recall the examples illustrating
that k-cycle distance violates the triangle inequality, and specifically that two cycle edits of
length k can transform a set of cycles with a total of k elements into k fixed points. Thus,
the maximum case of [n/2] cycles of length 2 can be transformed to n fixed points with
approximately 2n/kmax applications of the Cycle(kmax) operator when kmax ≥ 5.

Appl. Sci. 2022, 12, 5506 15 of 26

3.3.2. Fitness Distance Correlation

We now compute FDC for small instances of the TSP, LCS, and QAP. To compute FDC
for a problem instance, you need all optimal solutions to that instance. This necessitates
utilizing an instance small enough to feasibly and reliably determine all optimal solutions.
The FDC calculations in this section use a permutation length n = 10 for this reason, which
means a 10-city TSP, an LCS with graphs of 10 vertexes, and a QAP with 10 by 10 cost and
distance matrices. The EA experiments later in the paper use larger problem instances to
experimentally compare the performance of the different mutation operators.

We use a TSP instance with 10 cities arranged equidistantly around a circle of radius
10, and Euclidean distance for the edge costs. In this way, the optimal solutions are known
a priori. There are 20 optimal permutations, all representing the same TSP tour following
the cities around the circle, including ten possible starting cities and two travel directions.

We generate a QAP instance such that a random permutation p of length 10 is the
known optimal solution. Let A = [(1, 90), (2, 89), . . . , (90, 1)]. Shuffle this array of ordered
pairs. The 90 non-diagonal elements of the 10 by 10 cost matrix C are populated row by
row using the first element of the tuples in A. Let (u, v) be one of these tuples. If C[i][j] is
set to u, then D[p(i)][p(j)] in the distance matrix D is set to v.

We generate an LCS instance consisting of a pair of isomorphic graphs. In this way, we
know that the LCS is either of those graphs or any of the other automorphisms of the graph.
We use a strongly regular graph in the analysis. Strongly regular graphs are especially
challenging for algorithms for the LCS and other related problems. Specifically, we use
the Petersen graph [74], shown in Figure 1, which has 120 automorphisms, and thus 120
optimal vertex mappings. Such instances are hard because many vertexes of a strongly
regular graph look the same locally to a solver, which can be simultaneously attracted
toward different distinct solutions in a space plagued by complex local optima.

Figure 1. The Petersen graph, a strongly regular graph.

Although guidance on interpreting FDC varies, an r ≤ −0.15 is commonly considered
an easier fitness landscape since it implies that fitness increases as distance to an optimal
solution decreases, while r ≥ 0.15 is likely a deceptive landscape since fitness increases as
you move away from optimal solutions, and −0.15 < r < 0.15 is considered difficult since
there is very little correlation between fitness and distance to an optimal solution [28].

For each combination of problem and mutation operator, we compute FDC exactly,
calculating Pearson correlation over all n! = 3,628,800 permutations of length n = 10.
Table 3 summarizes the results. Without loss of generality, for TSP and QAP we compute
FDC from the cost function (to minimize) rather than a fitness function (to maximize),
flipping the sign of the FDC with positive FDC, implying more straightforward problem
solving. Since LCS is a maximization problem, the sign of the FDC is interpreted normally.

Appl. Sci. 2022, 12, 5506 16 of 26

Table 3. FDC for combinations of mutation operator and problem.

Mutation Operator TSP QAP LCS

Cycle(α) −0.0569 0.0213 −0.0278
Cycle(5) 0.1801 0.1339 −0.5342
Cycle(4) 0.1667 0.1737 −0.3984
Cycle(3) 0.2482 0.2210 −0.6180

Swap 0.3318 0.2245 −0.6355
Insertion 0.5277 0.0305 −0.3547
Reversal 0.8459 0.0189 −0.0350
Scramble 0.0117 0.0048 −0.0340

For the TSP, there is very strong FDC for reversal mutation, and lesser but still strong
FDC for insertion mutation. The FDC analysis predicts that these will perform better than
the others. Swap has the next-highest FDC. Although not as high, all cases of Cycle(kmax)
exhibit r > 0.15. Given the correlation strength of reversal and insertion landscapes, we
expect them to dominate the others, but swap and Cycle(kmax) may also perform well.

The strength of the correlations are not nearly as high for the QAP, and only three of
the mutation operators have an r ≥ 0.15, including swap mutation and Cycle(kmax) with a
kmax of either 3 or 4. This may be a problem where cycle mutation is better suited.

Because LCS is a maximization problem, FDC should be interpreted in the ordinary
sense with FDC computed from fitness where higher fitness implies better solutions. Thus,
negative FDC implies easier problem solving. In this case, there is very strong FDC for
swap mutation, Cycle(3) mutation, and Cycle(5) mutation. Both Cycle(4) and insertion
mutation also have r ≤ −0.15, so should also progressively lead toward the solution.

The FDC for scramble mutation is very near 0 for all three problems. Scramble is thus
unlikely to perform well. The FDC for Cycle(α) is also very near 0 for all three problems.
However, we will see that FDC misses an important behavioral property of this operator.

3.3.3. Search Landscape Calculus

Let η(p) be the neighbors of p (i.e., solutions reachable with one mutation) and f (p) is
fitness. Search landscape calculus [32] defines the average local rate of fitness change:

∆[f](p) =
1

|η(p)| ∑
p′∈η(p)

∣∣ f (p)− f (p′)
∣∣. (41)

Search landscape calculus then defines ∆[f] as the average of ∆[f](p) over all p. It
is infeasible to directly compute ∆[f] for the true fitness function f . Therefore, the search
landscape calculus focuses on topological properties that influence fitness, such as absolute
positions, relative positions, and element precedences for permutation problems, replacing
f by a distance function δ relevant to the context of a problem feature. Thus, define ∆[δ](p):

∆[δ](p) =
1

|η(p)| ∑
p′∈η(p)

δ(p, p′), (42)

and from this derive ∆[δ] as the average of ∆[δ](p) over all points p. The distance δ
must correspond to the topological property under analysis, and its maximum must be
proportional to the permutation length n (i.e., max{δ(p1, p2)} ∈ Θ(n)).

We focus on two topological features, absolute element positions and edges, and thus
require corresponding distance functions. We use exact match distance [67] (denoted as
δem), which is the count of the number of positions containing different elements, as a
measure of how different two permutations are within the context of absolute positioning;
and we use cyclic edge distance [68] (denoted as δce) as a measure of how different two
permutations are within the context of relative positions. Both meet the requirement that
the maximum distance is proportional to n. It is exactly n in both cases.

Appl. Sci. 2022, 12, 5506 17 of 26

Table 4 summarizes ∆[δem] and ∆[δce] for both forms of cycle mutation, and the other
mutation operators considered. The rates of change of the topological properties of swap,
insertion, reversal, and scramble were determined elsewhere [32]. The ∆[δem] is the average
number of elements whose absolute positions are changed by a single application of the
operator. For cycle mutation, this is the average length of the induced cycle, determined
earlier in the article—Cycle(α) in Section 3.1.3 and Cycle(kmax) in Section 3.1.2. To compute
∆[δce] we need the average number of edges changed by the operator. For cycle mutation,
this depends upon the cycle length, and it also depends upon whether any cycle elements
are adjacent. As the permutation length n increases, the probability of adjacent cycle
elements decreases. For sufficiently large n, the probability of adjacent cycle elements
approaches 0, in which case the number of edges replaced by cycle mutation is, on average,
twice the length of the cycle. Thus, ∆[δce] = 2∆[δem] for both forms of cycle mutation.

Table 4. Average rates of change of fitness landscape topological properties.

Mutation Operator ∆[δem] ∆[δce]

Cycle(α) (2− α)/(1− α) (4− 2α)/(1− α)
Cycle(kmax) (kmax + 2)/2 kmax + 2

Swap 2 4
Insertion (n + 4)/3 3
Reversal [(n + 1)/3, (n + 4)/3] 2
Scramble (n + 1)/3 (n + 1)/3

In the search landscape calculus, when limn→∞ ∆[δ] = ∞, the fitness landscape exhibits
very large local changes in fitness, often due to many deep local optima that are difficult
to escape. Thus, we expect poor performance from insertion, reversal, and scramble
on absolute-positioning problems since ∆[δem] grows with n, as is the case for scramble
when relative positions are more important. When limn→∞ ∆[δ] = C, for a non-zero
finite constant C, the search landscape calculus suggests that the landscape is smooth
locally. Due to constant ∆[δem], swap and cycle mutation should perform better than the
others for problems such as LCS and QAP where absolute positions more greatly impact
fitness. All operators except for scramble have constant ∆[δce], and are thus potentially
relevant to problems such as the TSP where edges influence fitness more than absolute
element positions.

For cycle mutation, it should be noted that its topological characteristics depend upon
the specific parameter settings. For example, higher values of kmax likely lead to the same
sort of disruption inherent in scramble mutation, as would values of α very near 1.0.

Previously, we saw that FDC suggested that Cycle(α) would likely perform poorly for
all three problems due to FDC very near 0; whereas the search landscape calculus suggests
that it may be relevant for all three problems. We now reconcile the discrepancy between
these two fitness landscape analysis tools. The number of permutations within one step
of a given permutation with respect to Cycle(α) is enormous, leading to extremely low
variation in distance and then subsequently to near 0 FDC. However, a large proportion
of the Cycle(α) neighbors are very low probability events. Thus, most of the time it
behaves more similar to Cycle(kmax) with a very low kmax, but with the ability to make
larger jumps.

3.3.4. Summary of Fitness Landscape Analysis Findings

Due to strong FDC, we expect reversal mutation to dominate the others for the TSP,
finding lower-cost solutions with the same or fewer evaluations. Insertion should likely be
the next best since it also has strong FDC, and a low constant rate of fitness change for edge-
focused problems. Swap and cycle mutation, if configured to emphasize smaller cycles,
may also be relevant for such problems. Due to strong FDC for QAP and LCS, and low
constant rates of change of exact match distance, we anticipate swap and both forms of
cycle mutation will find lower cost solutions for absolute-positioning focused problems.

Appl. Sci. 2022, 12, 5506 18 of 26

4. Results

We experimentally compare the two forms of cycle mutation with commonly encoun-
tered permutation mutation operators. Our experiments are implemented in Java. Our test
machine is a Windows 10 PC, with an AMD A10-5700 3.4 GHz CPU, and 8 GB memory.
The code is compiled with OpenJDK 17.0.2 for a Java 11 target, and runs on an OpenJDK
64-bit Server VM Temurin-17.0.2+8. The code is open source, licensed via the GPL 3.0,
and available on GitHub at https://github.com/cicirello/cycle-mutation-experiments
(accessed on 26 May 2022), and includes the code to analyze the experiment data and to
generate the figures.

In the experiments, we apply each of the mutation operators within both a (1 + 1)-EA
as well as in an SA. In a (µ + λ)-EA [15], the population size is µ, λ offspring are created in
each generation, and the best µ individuals from the combination of parents and offspring
survive into the next generation. The (1+ 1)-EA is commonly used in experimental studies.
We employ it here since it removes the impact of choice of selection operator and crossover
operator, and also eliminates many parameters such as population size, mutation rate, etc.
Additionally, it supports a more direct comparison with the non-population approach of
SA. For the SA, we use the parameter-free Self-Tuning Lam Annealing [75] that adaptively
adjusts the temperature parameter based on problem-solving feedback.

We consider three cases of Cycle(kmax) mutation, including Cycle(3), Cycle(4), and
Cycle(5); and three cases of Cycle(α) mutation, including Cycle(0.25), Cycle(0.5), and
Cycle(0.75). All results are 50 run averages. We use run lengths {102, 103, 104, 105, 106, 107} in
number of evaluations. We test significance with the Wilcoxon rank sum test. The results on
the TSP, QAP, and LCS are presented in Section 4.1, Section 4.2 and Section 4.3, respectively.

4.1. TSP Results

Each of the 50 TSP instances consists of 100 cities. An instance is defined by a random
distance matrix, such that the distance between cities is a uniformly random integer from
the interval [1, 1000]. The results are shown in Figure 2 with number of evaluations on the
horizontal axis at log scale, and average solution cost over 50 runs on the vertical axis.

Consistent with the extremely strong FDC that we earlier observed for reversal mu-
tation for the TSP, we find that reversal is clearly dominant on the 100-city TSP instances
within both the EA (Figure 2a) and SA (Figure 2b), finding lower-cost solutions with fewer
evaluations. All comparisons to reversal mutation are extremely statistically significant
(e.g., Wilcoxon rank sum test p-values very near 0) except for the shortest 100 evaluation
runs. For SA, the second-best mutation operator is insertion (results also statistically sig-
nificant). We earlier saw that insertion had the second strongest FDC for the TSP. Swap
and the various cases of cycle mutation all find solutions of approximately equivalent cost
within the SA, especially for very long run lengths.

The EA comparison (Figure 2a) is a bit more interesting. Although for mid-length runs,
insertion is second-best at statistically significant levels, the various cases of cycle mutation
surpass insertion mutation for the longest runs. Insertion mutation exhibits a premature
convergence effect, converging to a significantly suboptimal solution 105 evaluations into
the EA runs, as does swap. However, cycle mutation continues to find lower-cost solutions,
overtaking insertion mutation. The convergence effect in the EA is due to the smaller
neighborhoods of swap and insertion, leading to greater impact of local optima. Cycle
mutation has a larger neighborhood so better avoids this, continuing to show progress.
In fact, even though we saw near-zero FDC for Cycle(α), all cases of Cycle(α) continue to
make progress, although converging at a slower rate than reversal.

https://github.com/cicirello/cycle-mutation-experiments

Appl. Sci. 2022, 12, 5506 19 of 26

102 103 104 105 106 107

number of evaluations (log scale)

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

a
ve
ra
g
e
so
lu
ti
o
n
co
st

Cycle(0.75)

Cycle(0.5)

Cycle(0.25)

Cycle(5)

Cycle(4)

Cycle(3)

Swap

Insertion

Reversal

Scramble

102 103 104 105 106 107

number of evaluations (log scale)

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

a
ve
ra
g
e
so
lu
ti
o
n
co
st

Cycle(0.75)

Cycle(0.5)

Cycle(0.25)

Cycle(5)

Cycle(4)

Cycle(3)

Swap

Insertion

Reversal

Scramble

(a) (b)

Figure 2. Results on the TSP for (a) (1 + 1)-EA, and (b) SA.

4.2. QAP Results

Each of the 50 QAP instances consists of a 50 by 50 cost matrix and a 50 by 50 distance
matrix, with integer costs and distances generated uniformly at random from [1, 50].

The results are visualized in Figure 3. We earlier saw that FDC suggested that swap,
Cycle(3), and Cycle(4) would likely perform better than the others, while the search
landscape calculus suggested that swap and all forms of cycle mutation are appropriate for
the QAP. Consistent with the fitness landscape analysis, scramble, reversal, and insertion
all perform poorly for QAP within both the EA and SA. For the longest SA runs (Figure 3b),
there is little difference in solution cost among swap and the various cases of cycle mutation.
For runs of 104 to 105 SA evaluations, swap and Cycle(0.25) find solutions with lower
values of the cost function than the others at statistically significant levels.

The EA results are especially interesting (Figure 3a). Swap suffers from a premature
convergence effect at 104 evaluations, while all cycle mutation cases continue to make sub-
stantial progress, minimizing the cost function. Furthermore, Cycle(0.25) and Cycle(3)’s
rates of convergence are equivalent to swap up to that point. The superior convergence ef-
fect is attributed to cycle mutation’s larger neighborhood, especially in the case of Cycle(α).
We do not see the same behavior with SA (Figure 3b) because SA has a built-in way of
handling local optima, allowing swap to continue to improve solution quality despite
swap’s much smaller local neighborhood.

Appl. Sci. 2022, 12, 5506 20 of 26

102 103 104 105 106 107

number of evaluations (log scale)

1.46

1.48

1.50

1.52

1.54

1.56

a
ve
ra
g
e
so
lu
ti
o
n
co
st

×106

Cycle(0.75)

Cycle(0.5)

Cycle(0.25)

Cycle(5)

Cycle(4)

Cycle(3)

Swap

Insertion

Reversal

Scramble

102 103 104 105 106 107

number of evaluations (log scale)

1.44

1.46

1.48

1.50

1.52

1.54

1.56

a
ve
ra
g
e
so
lu
ti
o
n
co
st

×106

Cycle(0.75)

Cycle(0.5)

Cycle(0.25)

Cycle(5)

Cycle(4)

Cycle(3)

Swap

Insertion

Reversal

Scramble

(a) (b)

Figure 3. Results on the QAP for (a) (1 + 1)-EA, and (b) SA.

4.3. LCS Results

Consider two sets of experiments with the LCS problem, one with random graphs and
the other with strongly regular graphs. In the random graph case, we have 50 instances,
each consisting of a pair of randomly generated isomorphic graphs. We use pairs of
isomorphic graphs so that each problem instance has a known optimal solution. That
is, the largest common subgraph is simply the graph itself. Each graph has 50 vertexes
and edge density 0.5, which means that the probability of each possible edge is 0.5. Thus,
each graph has 50 vertexes, and the expected number of edges is 0.5× 50× 49/2 = 612.5.
The second graph for each instance is formed by relabeling the vertexes randomly.

We use generalized Petersen graph G(25, 2) for the strongly regular case. General-
ized Petersen graph [76] G(n, k) has 2n vertexes V = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1},
and 3n edges E = {(ui, vi) | 0 ≤ i < n}⋃{(ui, ui+1 mod n) | 0 ≤ i < n}⋃{(vi, vi+k mod n) |
0 ≤ i < n}. The original Petersen graph (Figure 1) is G(5, 2). Figure 4 shows a generalized
Petersen graph G(25, 2) that has 50 vertexes and 75 edges. We again average over 50 runs,
but in this case, each instance consists of graph G(25, 2) and a second graph isomorphic to
it that is formed by randomly relabeling the vertexes.

LCS is a maximization problem; however, for consistency we transform it to a min-
imization problem. Since each instance is a pair of isomorphic graphs, the LCS has |E|
edges, where E is the edge set. Thus, redefine LCS to minimize the cost of permutation p:
C(p) = |E| − |E′|, where E′ is the edge set of the subgraph implied by vertex mapping p.

The results are in Figure 5 (random graphs) and Figure 6 (strongly regular graphs).
For SA and random graphs (Figure 5b), scramble, insertion, and reversal all perform very
poorly compared with the others. Cycle(5) and Cycle(0.75) are inferior to the other cy-
cle mutation cases for the longest runs at statistically significant levels. Within an EA
for random graphs (Figure 5a), the behavior is similar to that of the QAP. Swap exhibits
a premature convergence effect, while cycle mutation finds increasingly lower cost so-
lutions. Cycle(3) also prematurely converges at 106 evaluations, while cycle mutation
configured with a larger neighborhood continues to improve solution cost beyond that
point. Cycle(0.25) is best at statistically significant levels for the 107 evaluation runs.

Appl. Sci. 2022, 12, 5506 21 of 26

Figure 4. The generalized Petersen graph, G(25, 2), a strongly regular graph.

These results are consistent with the fitness landscape analysis. First, FDC suggested
that swap, Cycle(3), and Cycle(5) were best suited to the problem, followed by Cycle(4)
and insertion. The FDC analysis was likely misled with respect to insertion mutation due to
the small size of the instance used in the FDC analysis, which is likely why we find insertion
performing poorly on the larger instance. This is consistent with the search landscape
calculus analysis which suggests that swap and cycle mutation are both well suited to the
problem, and that the other operators, including insertion, are not. The Cycle(0.25) is most
effective within longer runs of the EA due to the combination of small average change
(average cycle length of 2.33) and very large neighborhood size. Within SA, cycle mutation
is neither better nor worse than swap, converging at the same rate.

102 103 104 105 106 107

number of evaluations (log scale)

180

200

220

240

260

280

a
ve
ra
g
e
so
lu
ti
o
n
co
st

Cycle(0.75)

Cycle(0.5)

Cycle(0.25)

Cycle(5)

Cycle(4)

Cycle(3)

Swap

Insertion

Reversal

Scramble

102 103 104 105 106 107

number of evaluations (log scale)

0

50

100

150

200

250

a
ve
ra
g
e
so
lu
ti
o
n
co
st

Cycle(0.75)

Cycle(0.5)

Cycle(0.25)

Cycle(5)

Cycle(4)

Cycle(3)

Swap

Insertion

Reversal

Scramble

(a) (b)

Figure 5. Results on the LCS problem with random graphs for (a) (1 + 1)-EA, and (b) SA.

Observe that the strongly regular graph results (Figure 6) are similar to those of random
graphs, but are more pronounced. For example, in an EA (Figure 6a), swap and Cycle(3)
prematurely converge, while Cycle(4) and Cycle(5) exhibit superior convergence effect,

Appl. Sci. 2022, 12, 5506 22 of 26

outperforming all others at statistically significant levels from 104 evaluations onward,
but differences between them are not significant.

102 103 104 105 106 107

number of evaluations (log scale)

25

30

35

40

45

50

55

60

a
ve
ra
g
e
so
lu
ti
o
n
co
st

Cycle(0.75)

Cycle(0.5)

Cycle(0.25)

Cycle(5)

Cycle(4)

Cycle(3)

Swap

Insertion

Reversal

Scramble

102 103 104 105 106 107

number of evaluations (log scale)

10

20

30

40

50

60

a
ve
ra
g
e
so
lu
ti
o
n
co
st

Cycle(0.75)

Cycle(0.5)

Cycle(0.25)

Cycle(5)

Cycle(4)

Cycle(3)

Swap

Insertion

Reversal

Scramble

(a) (b)

Figure 6. Results on the LCS problem with strongly regular graphs for (a) (1 + 1)-EA, and (b) SA.

5. Discussion and Conclusions

In this paper, we proposed a new mutation operator for use by EA and other related
algorithms, such as SA, when evolving permutations. This new operator is called cycle
mutation, and includes two variations: Cycle(α) and Cycle(kmax). Cycle mutation induces
a random permutation cycle. The difference between the two operators is in how the cycle
length is chosen. The Cycle(kmax) operator has a small maximum cycle length, while
Cycle(α) does not impose any maximum cycle length. Thus, Cycle(α) has a significantly
larger neighborhood size, while retaining a low average cycle length.

The runtime of cycle mutation in the worst case is linear, similar to insertion, reversal,
and scramble mutation; but unlike those operators, cycle mutation’s average runtime is
constant. Therefore, the computational time to use cycle mutation within an EA is little
more than that of the constant time swap. Helping to achieve this efficient runtime, cycle
mutation relies on a new algorithm for sampling k elements from an n element set, called
insertion sampling, which is faster than existing alternatives for low k.

The fitness landscape analysis showed that cycle mutation is well suited to permu-
tation problems such as the QAP and LCS, where absolute positions more greatly impact
fitness than relative ordering. The fitness landscape analysis also showed that cycle muta-
tion may be relevant to relative ordering problems such as the TSP, provided cycle length
is kept low. While undertaking the fitness landscape analysis, we developed three new
measures of permutation distance: cycle distance, k-cycle distance, and cycle edit distance.

Validating the fitness landscape analysis, cycle mutation experimentally outperformed
the others for QAP and LCS within an EA, especially for long runs, finding lower-cost
solutions with fewer evaluations. Furthermore, while swap suffers from a premature con-
vergence effect due to small neighborhood, cycle mutation continues to make optimization
progress even for the longest runs; and the Cycle(α) form of cycle mutation is especially
good at managing local optima, due to its very large neighborhood size enabling it to make
large jumps when necessary. Thus, Cycle(α) exhibits superior convergence effect.

Appl. Sci. 2022, 12, 5506 23 of 26

Cycle mutation does have limitations. Cycle mutation does not show any advantage
within SA, although its rate of convergence is similar to that of swap in SA so it may
be worth considering for SA nonetheless. Additionally, within an EA, Cycle(kmax) may
exhibit a premature convergence effect for some problems if kmax is set too low, such as
what we saw with Cycle(3) for the LCS. However, Cycle(α) overcomes this limitation.

Our Java implementations of cycle mutation are integrated into an open source library,
Chips-n-Salsa [30], and our Java implementations of cycle distance, k-cycle distance, and cy-
cle edit distance are integrated into the open source JavaPermutationTools [31] library.
By disseminating the implementations in open source libraries, we hope to contribute not
only to the research literature, but also to the state of practice. Additionally, all of the code
to reproduce the experiments, and to analyze the results, is available in a GitHub repository,
https://github.com/cicirello/cycle-mutation-experiments (accessed on 26 May 2022).

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All experiment data (raw and post-processed) are available on GitHub:
https://github.com/cicirello/cycle-mutation-experiments (accessed on 26 May 2022), which also
includes all source code of our experiments, as well as instructions for compiling and running the
experiments.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CX Cycle crossover
EA Evolutionary algorithm
ES Evolution strategies
FDC Fitness distance correlation
GA Genetic algorithm
LCS Largest common subgraph
QAP Quadratic assignment problem
SA Simulated annealing
TSP Traveling salesperson problem

References
1. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998.
2. Beyer, H. The Theory of Evolution Strategies; Natural Computing Series; Springer: Berlin/Heidelberg, Germany, 2013.
3. Langdon, W.; Poli, R. Foundations of Genetic Programming; Springer: Berlin/Heidelberg, Germany, 2013.
4. Cuéllar, M.; Gómez-Torrecillas, J.; Lobillo, F.; Navarro, G. Genetic algorithms with permutation-based representation for

computing the distance of linear codes. Swarm Evol. Comput. 2021, 60, 100797. [CrossRef]
5. Koohestani, B. A crossover operator for improving the efficiency of permutation-based genetic algorithms. Expert Syst. Appl.

2020, 151, 113381. [CrossRef]
6. Shabash, B.; Wiese, K.C. PEvoSAT: A Novel Permutation Based Genetic Algorithm for Solving the Boolean Satisfiability Problem.

In Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The Netherlands, 6–10
July 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 861–868. [CrossRef]

7. Kalita, Z.; Datta, D.; Palubeckis, G. Bi-objective corridor allocation problem using a permutation-based genetic algorithm
hybridized with a local search technique. Soft Comput. 2019, 23, 961–986. [CrossRef]

8. Shakya, S.; Lee, B.S.; Di Cairano-Gilfedder, C.; Owusu, G. Spares parts optimization for legacy telecom networks using a
permutation-based evolutionary algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Donostia,
Spain, 5–8 June 2017; pp. 1742–1748. [CrossRef]

9. Mironovich, V.; Buzdalov, M.; Vyatkin, V. Evaluation of Permutation-Based Mutation Operators on the Problem of Automatic
Connection Matching in Closed-Loop Control System. In Recent Advances in Soft Computing and Cybernetics; Matoušek, R.,
Kůdela, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 41–51. [CrossRef]

https://github.com/cicirello/cycle-mutation-experiments
https://github.com/cicirello/cycle-mutation-experiments
http://doi.org/10.1016/j.swevo.2020.100797
http://dx.doi.org/10.1016/j.eswa.2020.113381
http://dx.doi.org/10.1145/2463372.2463479
http://dx.doi.org/10.1007/s00500-017-2807-0
http://dx.doi.org/10.1109/CEC.2017.7969512
http://dx.doi.org/10.1007/978-3-030-61659-5_4

Appl. Sci. 2022, 12, 5506 24 of 26

10. Hinterding, R. Gaussian mutation and self-adaption for numeric genetic algorithms. In Proceedings of the IEEE International
Conference on Evolutionary Computation, Perth, WA, Australia, 29 November–1 December 1995; Volume 1, pp. 384–389.
[CrossRef]

11. Szu, H.; Hartley, R. Nonconvex optimization by fast simulated annealing. Proc. IEEE 1987, 75, 1538–1540. [CrossRef]
12. Campos, V.; Laguna, M.; Marti, R. Context-Independent Scatter and Tabu Search for Permutation Problems. INFORMS J. Comput.

2005, 17, 111–122. [CrossRef]
13. Cicirello, V.A. Classification of Permutation Distance Metrics for Fitness Landscape Analysis. In Proceedings of the 11th

International Conference on Bio-Inspired Information and Communication Technologies, Pittsburgh, PA, USA, 13–14 March 2019;
Springer: New York, NY, USA, 2019; pp. 81–97._7. [CrossRef]

14. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,
NY, USA, 1979.

15. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015.
16. Davis, L. Applying Adaptive Algorithms to Epistatic Domains. In Proceedings of the International Joint Conference on Artificial

Intelligence, San Francisco, CA, USA, 18–23 August 1985; pp. 162–164.
17. Cicirello, V.A. Non-Wrapping Order Crossover: An Order Preserving Crossover Operator that Respects Absolute Position. In

Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 8–12 July 2006; ACM Press: New York,
NY, USA, 2006; Volume 2, pp. 1125–1131. [CrossRef]

18. Syswerda, G. Schedule Optimization using Genetic Algorithms. In Handbook of Genetic Algorithms; Davis, L., Ed.; Van Nostrand
Reinhold: New York, NY, USA, 1991.

19. Goldberg, D.E.; Lingle, R. Alleles, Loci, and the Traveling Salesman Problem. In Proceedings of the 1st International Conference
on Genetic Algorithms, Sheffield, UK, 12–14 September 1995; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1985;
pp. 154–159.

20. Cicirello, V.A.; Smith, S.F. Modeling GA Performance for Control Parameter Optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2000; pp. 235–242.

21. Bierwirth, C.; Mattfeld, D.; Kopfer, H. On permutation representations for scheduling problems. In Proceedings of the International
Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 1996; pp. 310–318.

22. Nagata, Y.; Kobayashi, S. Edge Assembly Crossover: A High-Power Genetic Algorithm for the Travelling Salesman Problem. In
Proceedings of the International Conference on Genetic Algorithms, East Lansing, MI, USA, 19–23 July 1997; pp. 450–457.

23. Watson, J.P.; Ross, C.; Eisele, V.; Denton, J.; Bins, J.; Guerra, C.; Whitley, L.D.; Howe, A.E. The Traveling Salesrep Problem,
Edge Assembly Crossover, and 2-opt. In Proceedings of the International Conference on Parallel Problem Solving from Nature,
Amsterdam, The Netherlands, 27–30 September 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 823–834.

24. Oliver, I.M.; Smith, D.J.; Holland, J.R.C. A study of permutation crossover operators on the traveling salesman problem. In
Proceedings of the 2nd International Conference on Genetic Algorithms, Cambridge, MA, USA, 1 July 1987; Lawrence Erlbaum
Associates, Inc.: Mahwah, NJ, USA, 1987; pp. 224–230.

25. Delahaye, D.; Chaimatanan, S.; Mongeau, M. Simulated Annealing: From Basics to Applications. In Handbook of Metaheuristics;
Gendreau, M., Potvin, J.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–35._1. [CrossRef]

26. Laarhoven, P.J.M.; Aarts, E.H.L. Simulated Annealing: Theory and Applications; Kluwer Academic Publishers: Norwell, MA,
USA, 1987.

27. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
28. Jones, T.; Forrest, S. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In Proceedings of

the 6th International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 15–19 July 1995; Morgan Kaufmann: San Francisco,
CA, USA, 1995; pp. 184–192.

29. National Academies of Sciences, Engineering, and Medicine. Reproducibility and Replicability in Science; The National Academies
Press: Washington, DC, USA, 2019. [CrossRef]

30. Cicirello, V.A. Chips-n-Salsa: A Java Library of Customizable, Hybridizable, Iterative, Parallel, Stochastic, and Self-Adaptive
Local Search Algorithms. J. Open Source Softw. 2020, 5, 2448. [CrossRef]

31. Cicirello, V.A. JavaPermutationTools: A Java Library of Permutation Distance Metrics. J. Open Source Softw. 2018, 3, 950.
[CrossRef]

32. Cicirello, V.A. The Permutation in a Haystack Problem and the Calculus of Search Landscapes. IEEE Trans. Evol. Comput. 2016,
20, 434–446. [CrossRef]

33. Knuth, D.E. The Art of Computer Programming, Volume 1, Fundamental Algorithms, 3rd ed.; Addison Wesley: Boston, MA, USA, 1997.
34. Junior Mele, U.; Maria Gambardella, L.; Montemanni, R. Machine Learning Approaches for the Traveling Salesman Problem: A

Survey. In Proceedings of the 8th International Conference on Industrial Engineering and Applications, Barcelona, Spain, 8–11
January 2021; ACM: New York, NY, USA, 2021; pp. 182–186. [CrossRef]

35. Mele, U.J.; Chou, X.; Gambardella, L.M.; Montemanni, R. Reinforcement Learning and Additional Rewards for the Traveling
Salesman Problem. In Proceedings of the 8th International Conference on Industrial Engineering and Applications, Barcelona,
Spain, 8–11 January 2021; ACM: New York, NY, USA, 2021; pp. 198–204. [CrossRef]

http://dx.doi.org/10.1109/ICEC.1995.489178
http://dx.doi.org/10.1109/PROC.1987.13916
http://dx.doi.org/10.1287/ijoc.1030.0057
http://dx.doi.org/10.1007/978-3-030-24202-2_7
http://dx.doi.org/10.1145/1143997.1144177
http://dx.doi.org/10.1007/978-3-319-91086-4_1
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.17226/25303
http://dx.doi.org/10.21105/joss.02448
http://dx.doi.org/10.21105/joss.00950
http://dx.doi.org/10.1109/TEVC.2015.2477284
http://dx.doi.org/10.1145/3463858.3463869
http://dx.doi.org/10.1145/3463858.3463885

Appl. Sci. 2022, 12, 5506 25 of 26

36. Wang, R.L.; Gao, S. A Co-Evolutionary Hybrid ACO for Solving Traveling Salesman Problem. In Proceedings of the 5th
International Conference on Computer Science and Application Engineering, Virtual Conference, Sanya, China, 19–21 October
2021; ACM: New York, NY, USA, 2021; pp. 1–4.

37. Dinh, Q.T.; Do, D.D.; Hà, M.H. Ants Can Solve the Parallel Drone Scheduling Traveling Salesman Problem. In Proceedings of the
Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July 2021; ACM: New York, NY, USA, 2021; pp. 14–21.
[CrossRef]

38. Varadarajan, S.; Whitley, D. A Parallel Ensemble Genetic Algorithm for the Traveling Salesman Problem. In Proceedings of the
Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July 2021; ACM: New York, NY, USA, 2021; pp. 636–643.
[CrossRef]

39. Nagata, Y. High-Order Entropy-Based Population Diversity Measures in the Traveling Salesman Problem. Evol. Comput. 2020,
28, 595–619. [CrossRef]

40. Ibada, A.J.; Tuu-Szabo, B.; Koczy, L.T. A New Efficient Tour Construction Heuristic for the Traveling Salesman Problem. In
Proceedings of the 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Victoria, Seychelles,
10–11 April 2021; ACM: New York, NY, USA, 2021; pp. 71–76. [CrossRef]

41. Dell’Amico, M.; Montemanni, R.; Novellani, S. A Random Restart Local Search Matheuristic for the Flying Sidekick Traveling
Salesman Problem. In Proceedings of the 8th International Conference on Industrial Engineering and Applications, Barcelona,
Spain, 8–11 January 2021; ACM: New York, NY, USA, 2021; pp. 205–209. [CrossRef]

42. Gao, Y.; Shen, Y.; Yang, Z.; Chen, D.; Yuan, M. Immune Optimization Algorithm for Traveling Salesman Problem Based on
Clustering Analysis and Self-Circulation. In Proceedings of the 3rd International Conference on Advanced Information Science
and System, Sanya, China, 26–28 November 2021; ACM: New York, NY, USA, 2021. [CrossRef]

43. Tong, B.; Wang, J.; Wang, X.; Zhou, F.; Mao, X.; Zheng, W. Optimal Route Planning for Truck–Drone Delivery Using Variable
Neighborhood Tabu Search Algorithm. Appl. Sci. 2022, 12, 529. [CrossRef]

44. Qamar, M.S.; Tu, S.; Ali, F.; Armghan, A.; Munir, M.F.; Alenezi, F.; Muhammad, F.; Ali, A.; Alnaim, N. Improvement of Traveling
Salesman Problem Solution Using Hybrid Algorithm Based on Best-Worst Ant System and Particle Swarm Optimization. Appl.
Sci. 2021, 11, 4780. [CrossRef]

45. Rico-Garcia, H.; Sanchez-Romero, J.L.; Jimeno-Morenilla, A.; Migallon-Gomis, H. A Parallel Meta-Heuristic Approach to Reduce
Vehicle Travel Time in Smart Cities. Appl. Sci. 2021, 11, 818. [CrossRef]

46. An, H.C.; Kleinberg, R.; Shmoys, D.B. Approximation Algorithms for the Bottleneck Asymmetric Traveling Salesman Problem.
ACM Trans. Algorithms 2021, 17, 1–12. [CrossRef]

47. Svensson, O.; Tarnawski, J.; Végh, L.A. A Constant-Factor Approximation Algorithm for the Asymmetric Traveling Salesman
Problem. J. ACM 2020, 67, 1–53. [CrossRef]

48. Tsilomitrou, O.; Tzes, A. Mobile Data-Mule Optimal Path Planning for Wireless Sensor Networks. Appl. Sci. 2022, 12, 247.
[CrossRef]

49. He, L.; Liu, Z.Y.; Liu, M.; Yang, X.; Zhang, F.Y. Quadratic Assignment Problem via a Convex and Concave Relaxations Procedure.
In Proceedings of the 3rd International Conference on Robotics, Control and Automation, Chengdu, China, 11–13 August 2018;
ACM: New York, NY, USA, 2018; pp. 147–153. [CrossRef]

50. Beham, A.; Affenzeller, M.; Wagner, S. Instance-Based Algorithm Selection on Quadratic Assignment Problem Landscapes. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, Berlin, Germany, 15–19 July 2017; ACM:
New York, NY, USA, 2017; pp. 1471–1478. [CrossRef]

51. Benavides, X.; Ceberio, J.; Hernando, L. On the Symmetry of the Quadratic Assignment Problem through Elementary Landscape
Decomposition. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Lille, France, 10–14 July
2021; ACM: New York, NY, USA, 2021; pp. 1414–1422. [CrossRef]

52. Baioletti, M.; Milani, A.; Santucci, V.; Tomassini, M. Search Moves in the Local Optima Networks of Permutation Spaces: The
QAP Case. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17
July 2019; ACM: New York, NY, USA, 2019; pp. 1535–1542. [CrossRef]

53. Novaes, G.A.S.; Moreira, L.C.; Chau, W.J. Exploring Tabu Search Based Algorithms for Mapping and Placement in NoC-Based
Reconfigurable Systems. In Proceedings of the 32nd Symposium on Integrated Circuits and Systems Design, Sao Paulo, Brazil,
26–30 August 2019; ACM: New York, NY, USA, 2019. [CrossRef]

54. Thomson, S.L.; Ochoa, G.; Daolio, F.; Veerapen, N. The Effect of Landscape Funnels in QAPLIB Instances. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, Berlin, Germany, 15–19 July 2017; ACM: New York, NY, USA,
2017; pp. 1495–1500. [CrossRef]

55. Irurozki, E.; Ceberio, J.; Santamaria, J.; Santana, R.; Mendiburu, A. Algorithm 989: Perm_mateda: A Matlab Toolbox of Estimation
of Distribution Algorithms for Permutation-Based Combinatorial Optimization Problems. ACM Trans. Math. Softw. 2018, 44, 47.
[CrossRef]

56. Cicirello, V.A.; Regli, W.C. An Approach to a Feature-based Comparison of Solid Models of Machined Parts. Artif. Intell. Eng.
Des. Anal. Manuf. 2002, 16, 385–399. [CrossRef]

57. Chen, J.; Zaman, M.; Makris, Y.; Blanton, R.D.S.; Mitra, S.; Schafer, B.C. DECOY: Deflection-Driven HLS-Based Computation
Partitioning for Obfuscating Intellectual Property. In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference,
Virtual Conference, 20–24 July 2020; IEEE Press: Piscataway, NJ, USA, 2020; pp. 1–6.

http://dx.doi.org/10.1145/3449639.3459342
http://dx.doi.org/10.1145/3449639.3459281
http://dx.doi.org/10.1162/evco_a_00268
http://dx.doi.org/10.1145/3461598.3461610
http://dx.doi.org/10.1145/3463858.3463866
http://dx.doi.org/10.1145/3503047.3503056
http://dx.doi.org/10.3390/app12010529
http://dx.doi.org/10.3390/app11114780
http://dx.doi.org/10.3390/app11020818
http://dx.doi.org/10.1145/3478537
http://dx.doi.org/10.1145/3424306
http://dx.doi.org/10.3390/app12010247
http://dx.doi.org/10.1145/3265639.3265665
http://dx.doi.org/10.1145/3067695.3082513
http://dx.doi.org/10.1145/3449726.3463191
http://dx.doi.org/10.1145/3319619.3326849
http://dx.doi.org/10.1145/3338852.3339843
http://dx.doi.org/10.1145/3067695.3082512
http://dx.doi.org/10.1145/3206429
http://dx.doi.org/10.1017/S0890060402165048

Appl. Sci. 2022, 12, 5506 26 of 26

58. Stoichev, S.; Petrova, D. An Application of an Algorithm for Common Subgraph Detection for Comparison of Protein Molecules.
In Proceedings of the International Conference on Computer Systems and Technologies and Workshop for PhD Students in
Computing, Ruse, Bulgaria, 18–19 June 2009; ACM: New York, NY, USA, 2009; pp. 1–6. [CrossRef]

59. Zeller, A. Isolating Cause-Effect Chains from Computer Programs. In Proceedings of the 10th ACM SIGSOFT Symposium on
Foundations of Software Engineering, Charleston, SC, USA, 18–22 November 2002; ACM: New York, NY, USA, 2002; pp. 1–10.
[CrossRef]

60. Wong, J.L.; Kourshanfar, F.; Potkonjak, M. Flexible ASIC: Shared Masking for Multiple Media Processors. In Proceedings of the
42nd Annual Design Automation Conference, Anaheim, CA, USA, 3–17 June 2005; ACM: New York, NY, USA, 2005; pp. 909–914.
[CrossRef]

61. Jordan, P.W.; Makatchev, M.; Pappuswamy, U. Understanding Complex Natural Language Explanations in Tutorial Applications.
In Proceedings of the Third Workshop on Scalable Natural Language Understanding, Stroudsburg, PA, USA, 8 June 2006;
Association for Computational Linguistics: Stroudsburg, PE, USA, 2006; pp. 17–24.

62. Puodzius, C.; Zendra, O.; Heuser, A.; Noureddine, L. Accurate and Robust Malware Analysis through Similarity of External
Calls Dependency Graphs. In Proceedings of the 16th International Conference on Availability, Reliability and Security, Vienna,
Austria, 17–20 August 2021; ACM: New York, NY, USA, 2021; pp. 1–12. [CrossRef]

63. Wagner, R.A.; Fischer, M.J. The String-to-String Correction Problem. J. ACM 1974, 21, 168–173. [CrossRef]
64. Levenshtein, V.I. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Sov. Phys. Dokl. 1966, 10, 707–710.
65. Sörensen, K. Distance measures based on the edit distance for permutation-type representations. J. Heuristics 2007, 13, 35–47.

[CrossRef]
66. Schiavinotto, T.; Stützle, T. A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 2007,

34, 3143–3153. [CrossRef]
67. Ronald, S. More Distance Functions for Order-based Encodings. In Proceedings of the IEEE Congress on Evolutionary

Computation, Anchorage, AK, USA, 4–9 May 1998; pp. 558–563.
68. Ronald, S. Distance Functions for Order-based Encodings. In Proceedings of the IEEE Congress on Evolutionary Computation,

Indianapolis, IN, USA, 13–16 April 1997; pp. 49–54.
69. Vitter, J.S. Random Sampling with a Reservoir. ACM Trans. Math. Softw. 1985, 11, 37–57. [CrossRef]
70. Ernvall, J.; Nevalainen, O. An Algorithm for Unbiased Random Sampling. Comput. J. 1982, 25, 45–47. [CrossRef]
71. Cicirello, V.A. Impact of Random Number Generation on Parallel Genetic Algorithms. In Proceedings of the Thirty-First

International Florida Artificial Intelligence Research Society Conference, Melbourne, FL, USA, 21–23 May 2018; AAAI Press:
Palo Alto, CA, USA, 2018; pp. 2–7.

72. Caprara, A. Sorting by Reversals is Difficult. In Proceedings of the International Conference on Computational Molecular Biology,
Santa Fe, NM, USA, 20–23 January 1997; pp. 75–83.

73. Bafna, V.; Pevzner, P.A. Genome Rearrangements and Sorting by Reversals. SIAM J. Comput. 1996, 25, 272–289. [CrossRef]
74. Harary, F. Graph Theory; Addison-Wesley: Boston, MA, USA, 1967.
75. Cicirello, V.A. Self-Tuning Lam Annealing: Learning Hyperparameters While Problem Solving. Appl. Sci. 2021, 11, 9828.

[CrossRef]
76. Watkins, M.E. A theorem on tait colorings with an application to the generalized Petersen graphs. J. Comb. Theory 1969, 6, 152–164.

[CrossRef]

http://dx.doi.org/10.1145/1731740.1731806
http://dx.doi.org/10.1145/587051.587053
http://dx.doi.org/10.1145/1065579.1065818
http://dx.doi.org/10.1145/3465481.3470115
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1007/s10732-006-9001-3
http://dx.doi.org/10.1016/j.cor.2005.11.022
http://dx.doi.org/10.1145/3147.3165
http://dx.doi.org/10.1093/comjnl/25.1.45
http://dx.doi.org/10.1137/S0097539793250627
http://dx.doi.org/10.3390/app11219828
http://dx.doi.org/10.1016/S0021-9800(69)80116-X

	Introduction
	Background
	Permutation Mutation Operators
	Permutation Cycles
	Cycle Crossover (CX)
	Test Problems
	TSP
	QAP
	LCS

	Methods
	Cycle Mutation
	Shared Notation and Operations
	Cycle(kmax)
	Cycle()
	Asymptotic Runtime Summary

	New Measures of Permutation Distance
	Cycle Distance
	Cycle Edit Distance
	K-Cycle Distance

	Fitness Landscape Analysis
	Fitness Landscape Diameter
	Fitness Distance Correlation
	Search Landscape Calculus
	Summary of Fitness Landscape Analysis Findings

	Results
	TSP Results
	QAP Results
	LCS Results

	Discussion and Conclusions
	References

