
Citation: Söylemez, M.;

Tekinerdogan, B.; Kolukısa Tarhan, A.

Challenges and Solution Directions

of Microservice Architectures: A

Systematic Literature Review. Appl.

Sci. 2022, 12, 5507. https://doi.org/

10.3390/app12115507

Academic Editor: Vito Conforti

Received: 18 March 2022

Accepted: 24 May 2022

Published: 29 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Systematic Review

Challenges and Solution Directions of Microservice
Architectures: A Systematic Literature Review
Mehmet Söylemez 1 , Bedir Tekinerdogan 2,* and Ayça Kolukısa Tarhan 1

1 Department of Computer Engineering, Hacettepe University, 06800 Ankara, Turkey;
mehmetsoylemez@hacettepe.edu.tr (M.S.); atarhan@hacettepe.edu.tr (A.K.T.)

2 Information Technology Group, Wageningen University & Research, 6706 PB Wageningen, The Netherlands
* Correspondence: bedir.tekinerdogan@wur.nl

Abstract: Microservice architecture (MSA) is an architectural style for distributed software systems,
which promotes the use of fine-grained services with their own lifecycles. Several benefits of MSA
have been reported in the literature, including increased modularity, flexible configuration, easier
development, easier maintenance, and increased productivity. On the other hand, the adoption of
MSA for a specific software system is not trivial and a number of challenges have been reported in
the literature. These challenges should be evaluated carefully concerning project requirements before
successful MSA adoption. Unfortunately, there has been no attempt to systematically review and
categorize these challenges and the potential solution directions. This article aims at identifying the
state of the art of MSA and describing the challenges in applying MSA together with the identified
solution directions. A systematic literature review (SLR) is performed using the published literature
since the introduction of MSA in 2014. Overall, 3842 papers were discovered using a well-planned
review protocol, and 85 of them were selected as primary studies and analyzed regarding research
questions. Nine basic categories of challenges were identified and detailed into 40 sub-categories, for
which potential solution directions were explored. MSA seems feasible, but the identified challenges
could impede the expected benefits when not taken into account. This study identifies and synthesizes
the reported challenges and solution directions, but further research on these directions is needed to
leverage the successful MSA adoption.

Keywords: microservice architecture; distributed architecture; systematic literature review

1. Introduction

Distributed software systems have come to the fore in the last decade with increased
demand for Internet of Things applications and advancements in cloud infrastructure. As a
response to this demand and following the developments of service-oriented architecture
(SOA) [1], microservice architecture (MSA) has emerged as an architectural style by pro-
moting the use of fine-grained services and the cooperation of the nodes in the cloud. With
a set of principles and patterns that address many best practices such as service discovery,
API gateway, and circuit breaker, MSA is aimed especially at the problems of availability,
fault tolerance, scalability, and maintainability that are experienced in software applications
employing SOA or monolithic style.

With the MSA style, a distributed software application can be structured as a set of
small services that run in their own process and communicate using lightweight mech-
anisms [2]. These services are small, autonomous, and work together [3]. An impor-
tant aspect that emerged with MSA is the autonomy of the services. It is very critical
that the services are designed as fine-grained. At this point, domain-driven design
(DDD) [4,5] principles could be applied to decompose domains into subdomains and
identify bounded contexts.

Appl. Sci. 2022, 12, 5507. https://doi.org/10.3390/app12115507 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115507
https://doi.org/10.3390/app12115507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2826-5273
https://orcid.org/0000-0002-8538-7261
https://doi.org/10.3390/app12115507
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115507?type=check_update&version=2

Appl. Sci. 2022, 12, 5507 2 of 40

MSA promises software development firms increased agility because it is more open
to changing requirements and related use cases and technologies than monolithic applica-
tions [2]. Design, development, and infrastructure automation processes can be handled
successfully with MSA. Infrastructure automation decreases manual effort in building,
deploying, and operating microservices. On the other hand, decentralized governance and
data management allow services to be independent [6]. Thanks to important benefits, sev-
eral important vendors such as Amazon, Netflix, LinkedIn, and Spotify have implemented
their applications using MSA [2,6,7].

Despite these identified advantages, it is not straightforward neither for software teams
to use MSA in distributed projects nor for researchers to guide the teams in their successful
MSA adoption. One of the basic reasons for this difficulty is that the concept of MSA
is complex in terms of distributed service identification, management, and maintenance
and, therefore, requires considering a number of challenges together with the related
solutions. Successful adoption of MSA thus requires a clear insight into the challenges and
the corresponding solutions. Unfortunately, so far, no study has provided a systematic
review to categorize the MSA challenges and the potential solution directions.

This article aims to identify the state of the art of MSA and describe the challenges in
its application. In addition, solution directions for the identified challenges are investigated.
A systematic literature review (SLR) [8] has been chosen as the research method while
carrying out the literature analysis, and a multiphase study selection process has been
applied using the published studies since the introduction of MSA in 2014. Overall,
3842 papers discovered using a well-planned review protocol have been examined, and
85 of them have been identified as primary studies for further review concerning research
questions. The SLR has resulted in the identification of nine basic categories and forty
sub-categories of challenges and the corresponding solution directions that can be used to
depict the state-of-the-art in MSA and provide a vision for further research.

The article is organized as follows. Section 2 provides basic concepts about microser-
vice architecture. Section 3 describes the adopted research method. Section 4 provides an
overview of the selected studies. Section 5 presents the results and identified challenges
according to the research questions. Section 6 provides a discussion of the results. Section 7
presents the related studies. Finally, Section 8 concludes the paper.

2. Microservice Architecture

Microservices are autonomous services that are smaller and more convenient to work
with compared to other architectural styles [6]. The autonomy of the services refers to the
ability to change and be deployed independently. Microservices are structured around
business logic and can be developed, deployed, tested, and operated independently, are
often operated by independent teams. Furthermore, microservices can be written in
different programming languages and use different technologies [6].

MSA consists of crucial building blocks such as main business services, infrastructural
services, discovery mechanisms, and communication infrastructure [9]. Each block is
isolated from other blocks and communicates with them using a lightweight protocol.
Therefore, they are easy to evolve in time with respect to the needs of business or technology.

Microservices are to some extent considered a natural extension of SOA, which gives
importance to autonomous and lightweight services [10]. It extends some points in SOA
based on a few principles. First, microservices are organized around business capabilities
and this makes it easy to identify service and team boundaries. Second, infrastructure
automation plays a critical role for MSA. It is directly related to the continuous delivery
and continuous integration pipeline. Developers must always be convinced that the
application works properly so automated test and deployment processes must be defined
and implemented. Third, MSA allows the system to grow in a natural way. This is achieved
by applying iterative and incremental approaches to satisfy business requirements. Thus,
applications continuously change and optimize.

Appl. Sci. 2022, 12, 5507 3 of 40

Microservices change the way software is designed from start to finish. Therefore,
microservices conform to the evolutionary design in which the business predicts that certain
functions may fail in the future. Scalable business models need applications that can be
restructured and increased as scenarios evolve. Since every microservice is a small business
process and represents a small aspect of business functionality, it is easy to change the
workflow [11]. Accordingly, MSA development is the result of an evolutionary process. The
process begins with identifying and then implementing microservices. Then, it continues
with using DevOps practices and shaping the organization accordingly. The next step
is to have a self-service, on-demand, and elastic infrastructure. Following this step, it
is important to set up continuous integration and continuous deployment (CI and CD)
pipeline with automation. With such an infrastructure, advanced deployment techniques
can be set up and the firm becomes ready to use microservices [12].

MSA should be used in situations where its benefits outweigh its cost. While all
functionalities are put into a single process in monolithic applications, each functionality
set is placed in a separate service in the MSA. Hence, monolithic applications are scaled
by replicating themselves on multiple servers. However, microservices are scaled by
distributing across servers and replicating as needed. Microservices are not the best
solution in any case [13]. Use cases and conditions should be evaluated well, and decisions
should be made—this way, the greatest advantage is obtained from the microservices. In
addition, since autonomous services can be deployed independently and benefit from the
flexibility of the cloud and the rapid provision of resources, cloud-based platforms can be
easily used in MSA development [5,14].

3. Research Methodology

This article aims to identify the state of the art of MSA and describe the challenges
in applying MSA and the corresponding solution directions. To this end, a systematic
literature review (SLR) or systematic review was applied following the guidelines by
Kitchenham and Charters [8]. This is a well-known protocol for performing systematic
literature reviews in the software engineering community. The basic activities of the review
are shown in Figure 1. The SLR starts with defining the research questions followed by a
definition of the search strategy and the identification of the study selection and elimination
criteria. Subsequently, study quality assessment criteria are defined and the data extraction
form is developed. Once these steps are ready, the data synthesis method is developed.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 41

Microservices change the way software is designed from start to finish. Therefore,
microservices conform to the evolutionary design in which the business predicts that cer-
tain functions may fail in the future. Scalable business models need applications that can
be restructured and increased as scenarios evolve. Since every microservice is a small busi-
ness process and represents a small aspect of business functionality, it is easy to change
the workflow [11]. Accordingly, MSA development is the result of an evolutionary pro-
cess. The process begins with identifying and then implementing microservices. Then, it
continues with using DevOps practices and shaping the organization accordingly. The
next step is to have a self-service, on-demand, and elastic infrastructure. Following this
step, it is important to set up continuous integration and continuous deployment (CI and
CD) pipeline with automation. With such an infrastructure, advanced deployment tech-
niques can be set up and the firm becomes ready to use microservices [12].

MSA should be used in situations where its benefits outweigh its cost. While all func-
tionalities are put into a single process in monolithic applications, each functionality set is
placed in a separate service in the MSA. Hence, monolithic applications are scaled by rep-
licating themselves on multiple servers. However, microservices are scaled by distrib-
uting across servers and replicating as needed. Microservices are not the best solution in
any case [13]. Use cases and conditions should be evaluated well, and decisions should be
made—this way, the greatest advantage is obtained from the microservices. In addition,
since autonomous services can be deployed independently and benefit from the flexibility
of the cloud and the rapid provision of resources, cloud-based platforms can be easily
used in MSA development [5,14].

3. Research Methodology
This article aims to identify the state of the art of MSA and describe the challenges in

applying MSA and the corresponding solution directions. To this end, a systematic liter-
ature review (SLR) or systematic review was applied following the guidelines by Kitch-
enham and Charters [8]. This is a well-known protocol for performing systematic litera-
ture reviews in the software engineering community. The basic activities of the review are
shown in Figure 1. The SLR starts with defining the research questions followed by a def-
inition of the search strategy and the identification of the study selection and elimination
criteria. Subsequently, study quality assessment criteria are defined and the data extrac-
tion form is developed. Once these steps are ready, the data synthesis method is devel-
oped.

Figure 1. Activities under the review protocol. Figure 1. Activities under the review protocol.

The research questions (RQs) of this SLR are given below:

Appl. Sci. 2022, 12, 5507 4 of 40

RQ1. What are the identified challenges of microservice architectures?
RQ2. What are the proposed solution directions?

The studies published between January 2014 (which is the date when MSA was first
defined by Lewis and Fowler [2]) and February 2022 were included in the SLR due to the
fact that MSA was introduced in 2014. The electronic digital libraries included in the search
were (in alphabetical order): ACM Digital Library, IEEE Xplore, Science Direct, Springer,
and Wiley Inter-Science (see Table 1).

Table 1. Publication sources searched.

Source # Studies
Initially Retrieved

Studies
After Applying Exclusion/Quality Criteria

IEEE Xplore 233 48

ACM 755 12

Springer 1619 10

Science Direct 978 11

Wiley 174 4

Total 3842 85

Journal papers, conference papers, workshop papers, and books were considered
potential search items. We used both automatic and manual search. The automatic search
was performed by defining search strings using the APIs of the corresponding search
databases. This was complemented with a manual search in which we used snowballing
techniques. Hereby, the reference list of the selected primary studies is analyzed and the
relevant studies are selected as primary studies (forward snowballing). On the other hand,
we have looked at papers that cite the selected primary studies (backward snowballing).
For selecting the primary studies, the following query was used:

((“micro service” OR “microservice”) AND (“challenge” OR “obstacle” OR “difficulty”
OR “difficulties” OR “problem”))

We identified and used the exclusion criteria listed below to eliminate the studies that
were irrelevant for this SLR:

EC 1: Studies with abstracts/titles that do not discuss MSA.
EC 2: Studies with abstracts/titles that do not bring an approach to MSA.
EC 3: Studies without a full text.
EC 4: Duplicate studies retrieved from different digital libraries.
EC 5: Studies that are not in English.
EC 6: Studies that do not explicitly discuss the challenges of MSA.
EC 7: Studies that relate to MSA but are experience and survey papers.
EC 8: Studies that present the application of MSA and do not critically reflect on

MSA concepts.
The application of the exclusion and quality criteria eventually resulted in the selection

of 85 papers from the initial set of 3842 papers.
The subsequent step included the quality assessment of the resulting primary studies,

for which we used the quality checklists as defined in [15]. Accordingly, for the quality
assessment, we used the checklist in Table 2. For the assessment scale we adopted a
three-point scale, (i.e., yes = 1, somewhat = 0.5, no = 0). The scores for the assessment
of the primary studies are provided in Appendix B. The authors performed a quality
assessment. In case of conflicts, the results have been discussed, and a final conclusion has
been provided.

Appl. Sci. 2022, 12, 5507 5 of 40

Table 2. Quality assessment checklist.

No. Assessment Question

Q1 Is the aim of the study defined clearly?
Q2 Are the scope, context and experimental design of the study stated clearly?
Q3 Does the study report have implications for research and/or practice?
Q4 Are the variables used in the study evaluation vali and reliable?
Q5 Are the measures used in the study explicit and aligned with the research purpose?
Q6 Is the research process documented in an understandable manner?
Q7 Are the main findings of the study presented clearly in terms of validity and reliability?
Q8 Is there an explicit statement of the limitations of the study?

The SLR followed with the detailed analysis and data extraction of the full text of
the 85 primary studies. In this SLR, the quality assessment was considered as part of the
data analysis, and as such the review data was kept in the same form. To develop the data
extraction, several pilot primary studies were used and after a number of iterations, the
final data extraction form was provided based on the consensus of the three authors.

In the final step of the SLR, the data synthesis, a qualitative and quantitative analysis,
was independently performed on the data extracted from the primary studies. In addition,
we discussed and selected suitable visual representations to support the synthesis process.

4. Overview of Selected Studies

The list of primary studies identified by this SLR is given in Appendix A. In Figure 2,
we present the distribution of the primary studies by year. From the figure, we can observe
a growing interest in the studies since 2015, following the year that MSA was proposed.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 41

The subsequent step included the quality assessment of the resulting primary stud-
ies, for which we used the quality checklists as defined in [15]. Accordingly, for the quality
assessment, we used the checklist in Table 2. For the assessment scale we adopted a three-
point scale, (i.e., yes = 1, somewhat = 0.5, no = 0). The scores for the assessment of the
primary studies are provided in Appendix B. The authors performed a quality assessment.
In case of conflicts, the results have been discussed, and a final conclusion has been pro-
vided.

Table 2. Quality assessment checklist.

No. Assessment Question
Q1 Is the aim of the study defined clearly?
Q2 Are the scope, context and experimental design of the study stated clearly?
Q3 Does the study report have implications for research and/or practice?
Q4 Are the variables used in the study evaluation vali and reliable?
Q5 Are the measures used in the study explicit and aligned with the research purpose?
Q6 Is the research process documented in an understandable manner?
Q7 Are the main findings of the study presented clearly in terms of validity and reliability?
Q8 Is there an explicit statement of the limitations of the study?

The SLR followed with the detailed analysis and data extraction of the full text of the
85 primary studies. In this SLR, the quality assessment was considered as part of the data
analysis, and as such the review data was kept in the same form. To develop the data
extraction, several pilot primary studies were used and after a number of iterations, the
final data extraction form was provided based on the consensus of the three authors.

In the final step of the SLR, the data synthesis, a qualitative and quantitative analysis,
was independently performed on the data extracted from the primary studies. In addition,
we discussed and selected suitable visual representations to support the synthesis process.

4. Overview of Selected Studies
The list of primary studies identified by this SLR is given in Appendix A. In Figure

2, we present the distribution of the primary studies by year. From the figure, we can
observe a growing interest in the studies since 2015, following the year that MSA was
proposed.

Figure 2. Year-wise distribution of the number of primary studies.

We have also analyzed the research methods employed in the primary studies to in-
vestigate the strength of evidence in these. Table 3 presents the adopted research methods
in 85 primary studies. Table 4 presents the publication venues with the occurrence of pri-
mary studies. The research methods have been selected based on the SLR guidelines. As
shown in the table, six different types of research methods were searched in the review.
From the table, we can observe that most of the primary studies are based on a single case

0

5

10

15

20

25

2015 2016 2017 2018 2019 2020 2021 2022

Figure 2. Year-wise distribution of the number of primary studies.

We have also analyzed the research methods employed in the primary studies to
investigate the strength of evidence in these. Table 3 presents the adopted research methods
in 85 primary studies. Table 4 presents the publication venues with the occurrence of
primary studies. The research methods have been selected based on the SLR guidelines.
As shown in the table, six different types of research methods were searched in the review.
From the table, we can observe that most of the primary studies are based on a single case
study. A summary of the venues where the primary studies were published is shown in
Table 3.

Appl. Sci. 2022, 12, 5507 6 of 40

Table 3. Studies by research methods.

Adopted Research Method Study Labels # Studies Percentage

Descriptive or Not described A, B, I, J, P, S, Y, AG, AH, AJ, AL, AQ, BE, BL 14 16.48%

Single-case

D, F, G, K, L, M, N, O, T, U, V, X, Z, AA, AB, AC,
AD, AE, AF, AI, AM, AN, AP, AR, AT, AW, AX,
AY, BF, BG, BH, BI, BJ, BK, BM, BN, BO, BQ, BR,

BS, BT, BV, BW, BX, CA, CB, CC, CE, CG

49 57.64%

Multiple-case C, E, H, Q, R, W, AK, AO, AS, AU, AV, AZ, BA,
BB, BC, BD, BP, BU, BY, BZ, CD, CF 22 25.88%

Experiment - 0 0%

Benchmarking - 0 0%

Survey - 0 0%

Table 4. Publication venues with the occurrence of primary studies.

No. Publication Channel Type No. of Studies

1 ACM Symposium on Cloud Computing Symposium 1

2 Annual International Conference on Computer Science and Software Engineering Conference 1

3 Asian Simulation Conference Conference 1

4 Conference on Innovations in Clouds, Internet and Networks (ICIN) Conference 1

5 European Conference on Software Architecture Conference 1

6 European Conference on Computer Systems Conference 1

7 European Conference on the Engineering of Computer-Based Systems Conference 1

8 Future Generation Software Systems Journal 1

9 IEEE Annual Computer Software and Applications Conference (COMPSAC) Conference 1

10 IEEE Cloud Computing Journal 1

11 IEEE Transactions on Parallel and Distributed Systems Journal 3

12 IEEE Conference on Energy Internet and Energy System Integration (EI2) Conference 1

13 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom) Conference 2

14 IEEE International Conference on Collaboration and Internet Computing (CIC) Conference 1

15 IEEE International Conference on Communications (ICC) Conference 1

16 IEEE International Conference on Distributed Computing Systems (ICDCS) Conference 1

17 World Conference on Computing and Communication Technologies Conference 1

18 IEEE International Conference on Software Architecture (ICSA) Conference 1

19 IEEE Symposium on Service-Oriented System Engineering Symposium 3

20 IEEE Conference on Computer Communications Conference 1

21 IEEE Transactions on Services Computing Journal 2

22 IEEE/ACM Symposium on Software Engineering in Africa (SeiA) Symposium 1

23 International Conference in Software Engineering Research and
Innovation (CONISOFT) Conference 1

24 International Conference on Ambient Systems, Networks and Technologies Conference 1

25 International Conference on Availability, Reliability and Security Conference 1

Appl. Sci. 2022, 12, 5507 7 of 40

Table 4. Cont.

No. Publication Channel Type No. of Studies

26 International Conference on Information Integration and Web-based Applications
and Services Conference 1

27 International Conference on Information Technology in Bio- and Medical Informatics Conference 1

28 International Conference on Performance Engineering Conference 3

29 International Conference on Service-Oriented Computing Conference 2

30 International Conference on Systems Science Conference 1

31 International Conference on Ubiquitous and Future Networks (ICUFN) Conference 1

32 International Conference on Web Research (ICWR) Conference 1

33 International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO) Conference 1

34 International Symposium on Dependable Software Engineering: Theories, Tools,
and Applications Symposium 1

35 International Conference on Information Technology and Computer
Application (ITCA) Conference 1

36 International Symposium on Intelligent and Distributed Computing Symposium 1

37 IEEE Internet of Things Journal Journal 4

38 IEEE Cloud Summit Conference 1

39 IEEE Access Journal 4

40 IEEE Transactions on Cloud Computing Journal 1

41 IEEE International Conference on Software Architecture Workshops Conference 1

42 IEEE Transactions on Services Computing Journal 1

43 Journal of Network and Computer Applications Journal 2

44 Journal of Systems and Software Journal 5

45 International Conference on Future Networks and Distributed Systems Conference 1

46 Software: Practice and Experience Journal 2

47 Microservices: Science and Engineering Book 1

48 European Software Engineering Conference and Symposium on the Foundations of
Software Engineering Conference 1

49 Service Oriented Computing and Applications Journal 1

50 IEEE International Enterprise Distributed Object Computing Workshop Workshop 1

51 IEEE International Symposium on Network Computing and Applications Conference 1

52 IEEE International Conference on Enterprise Distributed Object Computing (EDOC) Conference 1

53 IEEE International Conference on Dependable Systems and Their Applications Conference 1

54 IEEE/ACM International Symposium on Quality of Service Conference 1

55 International Conference on Artificial Intelligence and Big Data Conference 1

56 International Conference on Big Data Engineering and Education Conference 1

57 International Conference on Software Engineering Conference 1

58 IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing Conference 1

59 Asia-Pacific Workshop on Networking Workshop 1

60 Cognitive Computation and Systems Journal 1

61 Concurrency and Computation: Practice and Experience Journal 1

62 Journal of Systems Architecture Journal 1

63 Future Generation Computer Systems Journal 1

64 IEEE/ACM International Workshop on Cloud Intelligence (CloudIntelligence) Workshop 1

Appl. Sci. 2022, 12, 5507 8 of 40

The result of the quality assessment using the quality checklist in Table 2 is shown in
Figure 3. We aimed to address methodological quality in terms of rigor, credibility and
relevance, and reporting quality.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 41

• Reference reporting quality • Relevance quality

• Rigor quality • Credibility of evidence in the primary
studies

• Overall quality of the primary studies

Figure 3. Quality metric results for the primary studies.

From this quality assessment, it was concluded that the majority of the primary stud-
ies (82.3%) are good with respect to reporting quality, and 63.5% of the studies (54 studies)
were directly relevant to the field. Considering the rigor of the research methods, we can
observe that 58 of the primary studies (68.2%) properly present the validity of their find-
ings. In terms of rigor, forty-six studies demonstrate top quality. For the credibility of ev-
idence, nineteen studies got the highest score with reasonably valid and meaningful find-
ings and corresponding conclusions. As a result of the quality scores for reporting, rele-
vance, rigor, and credibility of evidence, we can state that fifty-nine studies (69.4%) with
scores equal to or greater than six are relatively good, eleven studies being high quality.
On the other hand, twenty-six studies with scores less than six are identified as being of
poor quality. As a result, most of the reviewed studies are assessed to be good.

5. Identified Challenges and Solution Directions
The results obtained in relation to the research questions are outlined in this section.

The data extracted from the primary studies are summarized with findings separately for
each question. The citations to the primary studies from which we have derived the find-
ings are provided in Figure 4.

0 0 3 12

70

0

50

100

0 0.5 1 1.5 2

0 1 13 17
54

0

50

100

0 0.5 1 1.5 2

16
1

10 12

46

0
20
40
60

0 0.5 1 1.5 2

1
15

32
18 19

0

20

40

0 0.5 1 1.5 2

0

7 6 5 3 5 7
11

14 16
11

0

10

20

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Figure 3. Quality metric results for the primary studies.

From this quality assessment, it was concluded that the majority of the primary studies
(82.3%) are good with respect to reporting quality, and 63.5% of the studies (54 studies)
were directly relevant to the field. Considering the rigor of the research methods, we can
observe that 58 of the primary studies (68.2%) properly present the validity of their findings.
In terms of rigor, forty-six studies demonstrate top quality. For the credibility of evidence,
nineteen studies got the highest score with reasonably valid and meaningful findings and
corresponding conclusions. As a result of the quality scores for reporting, relevance, rigor,
and credibility of evidence, we can state that fifty-nine studies (69.4%) with scores equal
to or greater than six are relatively good, eleven studies being high quality. On the other
hand, twenty-six studies with scores less than six are identified as being of poor quality. As
a result, most of the reviewed studies are assessed to be good.

5. Identified Challenges and Solution Directions

The results obtained in relation to the research questions are outlined in this section.
The data extracted from the primary studies are summarized with findings separately
for each question. The citations to the primary studies from which we have derived the
findings are provided in Figure 4.

Appl. Sci. 2022, 12, 5507 9 of 40

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 41

• Reference reporting quality • Relevance quality

• Rigor quality • Credibility of evidence in the primary
studies

• Overall quality of the primary studies

Figure 3. Quality metric results for the primary studies.

From this quality assessment, it was concluded that the majority of the primary stud-
ies (82.3%) are good with respect to reporting quality, and 63.5% of the studies (54 studies)
were directly relevant to the field. Considering the rigor of the research methods, we can
observe that 58 of the primary studies (68.2%) properly present the validity of their find-
ings. In terms of rigor, forty-six studies demonstrate top quality. For the credibility of ev-
idence, nineteen studies got the highest score with reasonably valid and meaningful find-
ings and corresponding conclusions. As a result of the quality scores for reporting, rele-
vance, rigor, and credibility of evidence, we can state that fifty-nine studies (69.4%) with
scores equal to or greater than six are relatively good, eleven studies being high quality.
On the other hand, twenty-six studies with scores less than six are identified as being of
poor quality. As a result, most of the reviewed studies are assessed to be good.

5. Identified Challenges and Solution Directions
The results obtained in relation to the research questions are outlined in this section.

The data extracted from the primary studies are summarized with findings separately for
each question. The citations to the primary studies from which we have derived the find-
ings are provided in Figure 4.

0 0 3 12

70

0

50

100

0 0.5 1 1.5 2

0 1 13 17
54

0

50

100

0 0.5 1 1.5 2

16
1

10 12

46

0
20
40
60

0 0.5 1 1.5 2

1
15

32
18 19

0

20

40

0 0.5 1 1.5 2

0

7 6 5 3 5 7
11

14 16
11

0

10

20

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 41

Figure 4. Visual summary of identified problems of MSA.

5.1. RQ1. What Are the Identified Challenges in the MSA Domain?
Table 5 shows an overview of the nine identified problems. The first column in the

table presents the labels of the primary studies, the second column the publication date of
the studies, and the remaining columns the identified problems (P1 to P9) in the studies.

Figure 4. Visual summary of identified problems of MSA.

Appl. Sci. 2022, 12, 5507 10 of 40

5.1. RQ1. What Are the Identified Challenges in the MSA Domain?

Table 5 shows an overview of the nine identified problems. The first column in the
table presents the labels of the primary studies, the second column the publication date of
the studies, and the remaining columns the identified problems (P1 to P9) in the studies.
The description of the problems is shown at the right of the table. Figure 4 provides a visual
summary of the identified challenges. Next, we discuss the challenges derived from the
primary studies in the following subsections.

Table 5. Primary studies with identified problems of MSA.

P1 Service Discovery

P2 Data Management and Consistency

P3 Testing

P4 Performance Prediction, Measurement and Optimization

P5 Communication and Integration

P6 Service Orchestration

P7 Security

P8 Monitoring, Tracing and Logging

P9 Decomposition

Identified Challenges

Study Year P1 P2 P3 P4 P5 P6 P7 P8 P9

A 2015 X

B 2015 X

C 2015 X

D 2015 X

E 2016 X

F 2016 X

G 2016 X

H 2016 X

I 2017 X

J 2017 X

K 2017 X

L 2017 X

M 2017 X

N 2017 X

O 2017 X

P 2017 X

Q 2018 X

R 2018 X

S 2018 X

T 2018 X

U 2018 X

V 2018 X

W 2018 X

Appl. Sci. 2022, 12, 5507 11 of 40

Table 5. Cont.

Identified Challenges

Study Year P1 P2 P3 P4 P5 P6 P7 P8 P9

X 2018 X

Y 2018 X

Z 2018 X

AA 2018 X

AB 2018 X

AC 2018 X

AD 2018 X

AE 2018 X

AF 2018 X

AG 2018 X

AH 2018 X

AI 2018 X

AJ 2018 X

AK 2019 X

AL 2019 X

AM 2019 X

AN 2019 X

AO 2019 X

AP 2019 X

AQ 2019 X

AR 2019 X

AS 2019 X

AT 2019 X

AU 2019 X

AV 2020 X

AW 2020 X

AX 2020 X

AY 2020 X

AZ 2020 X

BA 2020 X

BB 2020 X

BC 2020 X

BD 2020 X

BE 2020 X

BF 2020 X

BG 2020 X

BH 2020 X

BI 2020 X

BJ 2020 X

Appl. Sci. 2022, 12, 5507 12 of 40

Table 5. Cont.

Identified Challenges

Study Year P1 P2 P3 P4 P5 P6 P7 P8 P9

BK 2020 X

BL 2021 X

BM 2021 X

BN 2021 X

BO 2021 X

BP 2021 X

BQ 2021 X

BR 2021 X

BS 2021 X

BT 2021 X

BU 2021 X

BV 2021 X

BW 2021 X

BX 2021 X

BY 2021 X

BZ 2021 X

CA 2021 X

CB 2021 X

CC 2021 X

CD 2021 X

CE 2021 X

CF 2022 X

CG 2022 X

TOTAL: 85 5 3 6 8 2 33 6 18 4

5.1.1. Service Discovery

In a distributed architecture such as microservice architectures, the discovery of
microservices is one of the primary challenges. The challenges for service discovery relate to
the design, implementation, and quality concerns. At the design level, designing the service
discovery is considered to be a challenge due to the multiple various service discovery
mechanisms such as client-side, server-side, and hybrid service discovery. The proper
decision needs to be made based on the various different requirements and quality concerns.
Often multiple different design alternatives can be identified, and it is not easy to derive
a feasible alternative. Implementing service discovery is directly dependent on system
size and selected design so the most important criteria for the implementation are high
availability and scalability. A misguided design selection and subsequent development
will affect the system’s availability and scalability. During the operation time or run-time,
discovering the proper services requires the corresponding orchestration which needs to be
aligned with the required quality of service parameters. One important quality factor is the
latency of the discovered and triggered service.

5.1.2. Data Management and Consistency

Data management and consistency are challenges of MSA because of their distributed
nature. The challenges related to data management and consistency are more about dis-

Appl. Sci. 2022, 12, 5507 13 of 40

tributed transaction management, but it is also about backing up the system and data
integration. Architects and developers often choose a database per service pattern to
achieve distributed transaction management, and MSA also favors decentralized data
management. Although this pattern comes with a lot of advantages such as loosely coupled
services, and independently deployable and scalable services, the management of dis-
tributed transactions is really tough work. Backing up the entire application decomposed
into microservices consists of some trade-offs, so it is not possible to handle backing up
the entire system in addition to providing availability and consistency at the same time.
Therefore, it is another challenging point for practitioners to decide which ones are more im-
portant according to the system design. In some MSAs, there is not a mature mechanism for
data sharing and synchronization. Microservices can operate on each other’s data without
a coherent architecture, but then it makes the system more complex. It should be handled
so that sharing and synchronization operations do not operate on each other’s data.

5.1.3. Testing

Testing plays a critical role in a system being ready before going live, and for devel-
opers moving forward confidently. However, for MSA, it is a challenging task to satisfy
testing activities due to the distributed nature of MSA. Each microservice lives in a dis-
tributed environment and can be developed using different technologies, languages, and
infrastructures, which as such provides additional complexity for the testing process.

Testing the resilience capabilities of MSA is identified as an important challenge.
Resilience enables systems to handle failure cases properly, but in a distributed architecture
it is not easy to achieve this because microservices architecture is composed of a set of
services that operate together and thus are prone to frequent changes. They should be
loosely coupled and autonomous for being resilient as well.

Another challenging issue is performance tests. Non-functional requirements such as
throughput and response time are important performance parameters for software systems.
It is necessary to have performance tests to measure these kinds of performance parameters
to trace the system properly and prevent any failure. In distributed environments, however,
measuring these quality parameters is not as easy as in a monolithic architecture because
of the diversity and number of microservices.

Regression testing is needed to ensure that the system is still running after a newly
added feature or after a bug that has been resolved. Regression testing for MSA is not trivial,
since all the test activities need to be handled in an agile way, they must be automated and
included in the continuous delivery process.

Another issue is related to acceptance tests. They are a set of test activities that must
be run to ensure customer satisfaction and create robust systems, but this requires high
maintenance costs to be handled in the microservice world because of the agility of MSA.

In addition, defining a comprehensive testing framework has emerged as a tough work
in recent years because it consists of many sub-challenging points such as self-validation
of interfaces, unit validation, and integration validation of services. Additionally, each
validation should be automated to provide continuous and agile deployments.

The last issue is automating tests. It is directly related to defining or reusing a frame-
work to run tests automatically. The proper testing flow needs to be prepared and run from
time to time depending on decisions on the test plan and at each testing cycle, it needs to
ensure that it is not affecting the system’s reliability, and it is not an easy work.

5.1.4. Performance Prediction, Measurement, and Optimization

Performance is a key quality factor for the systems employing MSA because it is
addressed at different levels for the stages of system design, implementation and operation.
Usually, it is beneficial to estimate the performance of a software system before it is
implemented because it may be very difficult or costly to change the system afterward.
After the implementation, performance measurement and optimization become important
in order to satisfy the quality of MSA-based system requirements.

Appl. Sci. 2022, 12, 5507 14 of 40

5.1.5. Communication and Integration

Communication and integration are other challenging points that have emerged
as a result of distributed architecture. Even if microservices communicate with a more
lightweight protocol, it is still difficult to ensure that the communication infrastructure is
reliable and the protocol to be used for communication and integration can handle complex
workflows. The most important criteria for both challenges are reliability and durability; if
these criteria are not met, the proper operation and reliability of the system will be affected,
and will possibly cause cascading failures in the system.

5.1.6. Service Orchestration

Service orchestration is a concept that contains deployment, scalability, scheduling,
management, and networking of microservices. Although container orchestration tools that
address many of these concepts have also been developed in industry, some studies suggest
solutions for challenging points in each area. The challenges for service orchestration
relate to scalability, dynamic and automated orchestration, storage service orchestration,
deployment, load balancing, and scheduling. There are thus several sub-concerns re-
lated to this concern. The following concerns need to be considered from the context of
service orchestration.

Adapting containers’ resources dynamically according to the changing requirements
makes MSA-based systems highly available. However, it is a challenging issue to trace the
changing requirements of containers and make the necessary adjustments according to the
usage of resources over time.

Providing persistent storage among different containers is another challenging point.
With the increasing usage of deployment for stateful applications in the cloud, the need
to address issues and challenges with persistent storage for containers has emerged. This
problem includes many sub-challenging points such multi-protocol support and storage
service orchestration for volume management. They need to be handled by designing a
comprehensive solution to overcome workloads and resource problems.

Deployment is also a big challenge for practitioners. Although deployment processes
gain a big momentum with containers, it still has some challenges. These challenges
are mostly related to planning and configuring deployment. Additionally, decentralized
deployments are newly emerged challenges due to the necessity of deploying across
data centers. Finally, the heterogeneity of functional and non-functional requirements of
microservices pushes practitioners to find an optimal deployment model to satisfy all these
requirements for each service.

Load balancing plays a critical role in effectively distributing incoming requests to the
backend servers. The most important criteria for load balancing are availability because
requests that are not effectively distributed will cause the system to stop responding, which
will affect system availability.

Auto-scalability is another challenging point for container orchestration because in dis-
tributed environments, services need to be monitored and automatically adjusted resources
according to changing loads to keep applications predictable, resilient, and available. These
requirements bring a lot of challenges for scalability.

Another challenging point is resource allocation and scheduling. It is an important
activity to organize and manage the chain of services and schedule the available resources
to effectively use. In addition, reducing total traffic cost and delay are important criteria
for scheduling. Misguided scheduling directly affects the availability and reliability of
the system.

Understanding failure–recovery behavior of containers is the last challenge of orches-
tration. It needs a comprehensive analysis of how the containers run from an availability
and reliability point of view. Moreover, deployment configurations often need to be re-
viewed for effective analysis and if needed, should be improved.

Appl. Sci. 2022, 12, 5507 15 of 40

5.1.7. Security

With the development of MSA and distributed architecture, security has started to be
a more important topic because each microservice exposes a new entry point to both the
internal and external sides. This situation brings with it a lot of security problems as long
as it is not addressed.

The first problem is the access control mechanism in MSA. With the access control,
the resource that is intended to be accessed is either restricted or not allowed. However,
applying access control in the MSA is difficult to apply in a monolithic architecture because
of its distributed nature.

Furthermore, building a comprehensive framework to establish security between
microservice is tough work to achieve because it is very difficult to integrate and use
unusable and non-lightweight frameworks comfortably.

Another important issue is the monitoring of the network traffic and running some
security rules defined according to requirements.

5.1.8. Monitoring, Tracing, and Logging (MTL)

Monitoring, tracing, and logging are important activities to ensure that systems are
able to satisfy availability, performance, and reliability concerns. However, these important
activities consist of several challenging points related to identifying strong coupled services,
the root cause of anomalies and performance problems, and the heterogeneity of logs.

The logs from different microservices might be heterogeneous so understanding and
traversing the logs emerges as a challenging point. If the trace cannot be established among
the logs, the ability to monitor the system is directly affected. Thus, practitioners will not
make proper decisions for troubleshooting.

It is critical to identify these problems and take quick action as soon as possible.
Otherwise, the system’s availability, reliability, and fault tolerance will be directly affected.

Expected behavior for the MTL process is that trouble spots are detected, and the
system is made more available, scalable, reliable, and fault-tolerant by taking quick actions
or making changes in the design if necessary.

5.1.9. Decomposition

Decomposition allows us to have autonomous services organized around business
capability services. it is necessary to separate the system into suitable pieces functionally
and obtaining high cohesive and loosely coupled services are expected as a result of
decomposition. The challenging point encountered first after deciding to go with MSA is
to determine the right size of business capability and if it cannot succeed properly, MSA
will not be an advantage and it might cause many problems in terms of mainly scalability,
performance, availability and reliability.

5.2. RQ2. What Are the Identified Solution Directions?

When addressing the challenges of MSA, many studies provide the related solution
directions together with the challenges. Table 6 summarizes the solution directions for
the identified problems in Table 5. We observe in Table 5 that the solution directions are
inherently varied based on the identified challenges. Solution directions include design
heuristics and design abstractions, adoption of different paradigms, novel introduction and
implementation of algorithms, integration with other paradigms, and solutions to realize
system-wide quality management. Below, we will discuss the solution directions of each
challenge separately.

Appl. Sci. 2022, 12, 5507 16 of 40

Table 6. Solution directions for the identified challenges in MSA.

Primary Challenge Solution Direction

P1. Service Discovery

- Client-Side Service Discovery. Study J
- Server-Side Service Discovery. Study J
- Service Registry. Study J
- ICN-Based Service Discovery. Study I
- Static–Dynamic Service Description. Study AF
- Stateful Routing Mechanism. Study M

P2. Data Management
and Consistency

- Multi Agent-Based Framework. Study S
- BAC Theorem for Backing up Data. Study AH
- Solution Framework. Study C

P3. Testing

- Reusable BDD-Based Acceptance Test Architecture. Study B
- A Flow for Regression Test. Study AG
- An Architecture and Framework to Automate Performance Test. Study G
- A Framework for Testing the Failure-Handling Capabilities. Study H
- Validation Framework. Study A
- Automation Testing Framework. Study AL

P4. Performance Prediction,
Measurement and
Optimization

- Simulation Model. Study AA
- Performance Model and Prediction Method. Study AK
- Performance Prediction Model. Study AR
- Performance Analytical Model. Study E
- An approach for the Quantitative Assessment of Microservice Architecture Deployment

Configuration Alternatives. Study BB
- Performance Degradation Prediction Framework. Study BY
- A Model-Driven Approach for Continuous Performance Improvement. Study CF

P5. Communication
and Integration

- Reference Architecture and Orchestrator Language. Study AI
- High-performance Userspace Networking Solution. Study R

P6. Service Orchestration

- An Extendable Solution for Autoscaling. Study L
- Database-is-the-Service Pattern. Study F
- Workflow Scheduling Algorithm. Study AV
- Autoscaling Research Pipeline. Study BF
- Ant Colony Algorithm for Microservice Scheduling Optimization. Study AN
- A Novel Scheduling Strategy. Study BA
- A Lightweight and Flexible System for Autoscaling. Study AX
- A Generic Architecture and Implementation for Automated Orchestration. Study AU
- Configuration Models and Tool for Analyzing the Availability. Study W
- Storage Service Orchestrator Framework. Study Y
- A Monitoring-Based Architecture for Managing Deployment. Study AM
- Decentralized Orchestrator. Study AT
- Process Definition for An Elasticity Controller. Study AE
- Decentralized Load Balancing Algorithm. Study N
- Overload Control Method. Study Q
- A Hybrid Approach Combining Client-side and Server-side Load Balancing. Study BE
- Queue-Based Chain-Oriented Load Balancing Method. Study AW
- A Novel Fair Weighted Affinity-based Scheduling Approach. Study O
- A Novel Scheduling Framework for Kubernetes. Study AQ
- Dynamic Microservice Scheduling Algorithm for Mobile Edge Computing. Study AY
- Resource Allocation Optimization Approach. Study AO
- Many-Objective Genetic Algorithm Scheduler. Study BD
- A Novel Formula and Model for Determining the Thresholds of Total Resource Consumption.

Study BH
- Autoscaling Research Pipeline. Study BI
- Using Declarative Business Processes for Service Orchestration. Study BK
- RL agent based intelligent autoscaling model. Study BM
- A Decision Framework to Select Right Microservice Collaboration Pattern—Study BP
- Elastic Scheduling Algorithm—Study BW
- Layered Container Structure for Microservice Deployment—Study BX
- Autoscaling Framework for Microservice chain—Study BZ
- Dynamic Flow Control Algorithm—Study CA
- Microservice Rescheduling Framework—Study CB
- A Kubernetes Controller for Managing Availability—Study CD

Appl. Sci. 2022, 12, 5507 17 of 40

Table 6. Cont.

Primary Challenge Solution Direction

P7. Security

- An Approach That Provides Authentication and Decentralized Role-Based Authorization.
Study T

- A Platform for Identity and Access Control of Microservices. Study AC
- Access Control Optimization Model. Study AJ
- Prototype Layered Security Framework (Hardware, Virtualization, Cloud, Communication,

Application, and Orchestration). Study V
- An Approach for Handling Security as Security-as-a-Service. Study D
- Extended Role-Based Access Control Model. Study BT

P8. Monitoring, Tracing
and Logging

- An Approach and Tool for Generating Service Dependency Graph. Study X
- A Tool for Generating Service Causal Graph. Study Z
- An Approach For Analyzing Architecture. Study AD
- A Tool For Handling Traversing Distinct Type of Logs. Study AS
- A Tool For Architecture Recovery. Study P
- A Root Cause Analysis Framework for Detecting Anomalies. Study AZ
- An Execution Trace-Based Root Cause Location Method. Study BG
- A Graph-based Trace Analysis Approach—Study BJ
- An Offline Approach to Distributed Tracing—Study BL
- A Four Layered Framework for Detection and Diagnosis of Faulty Microservices—Study BN
- In-Kernel Transparent Monitoring Service—Study BO
- Microservice Fault Detection Method Based on Correlation Analysis—Study BQ
- A Fault Model-Based Root Cause Localization Framework—Study BR
- An Anomaly Detection Method based on Semi-Supervised Learning—Study BS
- A Root Cause Localization Approach—Study BU
- Lightweight Spectrum-Based Performance Diagnosis Tool—Study BV
- An Anomaly Detection Approach with Execution Trace Comparison—Study CE
- An Agent-Based Monitoring Platform to Detect Anomalies and Unexpected System

Dependencies—Study CG

P9. Decomposition

- A Conceptual Methodology for Deciding Right Size of Microservices. Study AB
- A Functional Decomposition Approach. Study U
- A Dataflow-Driven Decomposition. Study AP
- A Dependency Capturing and Clustering-Based Microservice Identification Approach.

Study CC

5.2.1. Service Discovery

The authors [I] propose a new approach that uses information-centric networking
(ICN) to find a solution to latency and overhead problems of the service discovery mecha-
nism. They make the service discovery process in MSA easier by using information-centric
network concepts. Since it is possible to offer a simple discovery process that decreases the
number of service name records, name-based routing, and hierarchical naming are used.

Study [J] presents multiple decision guidance models that can be used when deciding
on an eligible microservice infrastructure. In this paper, there are multiple decision guidance
models with their own design options addressing the fault tolerance and service discovery
area. For each of the models, they provide specific infrastructure technologies to implement
design options.

Study [AF] provides a novel solution architecture to solve scalability and workload
problems of service discovery in mega-scale systems. The authors focus on the idea that
service description data can be broken into dynamic and static properties. They propose an
architecture subdivided into two independent, interconnected processing levels for static
and dynamic query parts. Both processing levels consist of interconnected peers which
allow scaling of the registry dynamically.

Study [M] proposes a mechanism to optimize service discovery operation in stateful
microservices. Scalability and efficient usage of infrastructure resources are the main
aspects of this study. The authors claim that an efficient and scalable routing mechanism
is needed to figure these problems out. The proposed model has been validated with
two experiments and it has been observed that there was an increase in scalability and a
decrease in the usage of infrastructure resources.

Appl. Sci. 2022, 12, 5507 18 of 40

Study [BC] argues that the unavailable states of services are useless and faulty inter-
action topics. The authors indicate that there should be a synchronization mechanism to
support microservice communications. Hence, they offer a framework called Synchronizer.
This framework achieves collecting health/state information of microservices by using
distributed registries. This framework has been validated with multiple use cases and
according to the result, it brings effectiveness to synchronization among microservices.

To sum up, the corresponding solutions to the service discovery are based mainly on
scalability and workload problems. To cope with these problems, the identified primary
studies propose either a decision model helping to choose the best option within the existing
solutions or a novel model for handling service discovery problems.

5.2.2. Data Management and Consistency

Study [S] focuses on the management of distributed transactions. In this study, a
multi-agent-based framework is proposed to coordinate distributed transactions of the
system. This solution is based on agents associated with a particular microservice, eventual
consistency, saga patterns [16], and a semi-orchestrated asynchronous model, and provides
a decoupled autonomous layer to the application to simplify the microservice interactions.

Study [AH] introduces the backup, availability, and/or consistency (BAC) theorem
to be used in backing up microservice. This theorem indicates that practitioners have to
pick up two out of three items which are backup, availability, or consistency. This theorem,
inspired by the CAP theorem [17], claims that it is not possible to satisfy both availability
and consistency at the same time in backing up microservices.

Study [C] provides a Synapse framework supporting independent services to share
data with each other through clean APIs. This study addresses the problem of complex
service groups that do not have a consistent, manageable structure and operate on each
other’s data. Synapse provides a transparent data propagation layer by using the model–
view–controller (MVC) framework and object/relational mappings (ORMs). Synapse has
been implemented for Ruby on Rails and has shown that it provides good performance
and scalability.

In sum, the identified primary studies indicate that it is difficult to manage data consis-
tency, backup data, and data synchronization. For distributed transaction management, the
identified solution proposes a multi-agent-based framework. For backing up, the identified
solution proposes a novel BAC theorem. Finally, a solution comprehensive framework is
proposed to be used in data synchronization.

5.2.3. Testing

In study [AG], the authors propose an automated method of running regression tests.
They focus on the software reliability challenge. They claim that the regression test is
an essential step in the continuous delivery process and in order to ensure reliability, the
automated method of regression test plays a critical role. Authors define the process of
how to run regression test automatically and place it in continuous delivery.

Study [B] presents reusable automated acceptance testing architecture to handle the
maintainability and reusability of the application. This study encourages developers to use
behavior-driven development (BDD) acceptance tests more frequently. The authors claim
that this architecture will minimize issues with integration maintenance costs.

Study [A] presents an analysis of existing cloud application test methods and defines
the characteristics of MSA. Based on this analysis, they propose a validation methodology
for microservice systems. This methodology consists of microservice unit validation and
integration validations of microservice systems.

Study [H] focuses on the problem of testing the resilience of MSA-based applications.
They present Gremlin, which is a framework for assessing the failure-handling capabilities
of microservices. This framework is based on the idea that is about manipulating interser-
vice messages at the network layer while designing and executing tests. This framework

Appl. Sci. 2022, 12, 5507 19 of 40

has been validated by multiple case studies and their results show that this framework
helps uncover bugs in failure recovery code and is suitable for MSA-based systems.

Study [G] addresses the problem of performance tests by checking the needs of non-
functional requirements such as response time and throughput. In this paper, the authors
propose a new framework that makes performance tests run automatically. This solution
is hooked on the HyperText Transfer Protocol (HTTP) and can be built comfortably. It
consists of two main aspects, which are a methodology allowing external applications
to access the test parameters and a mechanism for using the methodology. The main
feature of this proposal is to place the test methodology on each service. According to test
results, the mean of the average response time is decreasing compared to the one without
the framework.

Study [AL] argues the capabilities of testing frameworks to ensure reliability and
quality of applications. In order to overcome the lack of capabilities of the testing frame-
work, the authors decided to provide the automation testing of the microservice with
the help of an integrated structure that includes the adaptation layer, data layer, test case
layer, execution layer, analysis layer, and management layer. As a result of this study, an
automation testing framework is proposed to ensure reliability and quality, and ease of test
data generation.

To sum up, testing MSA is an essential step to deliver an application because there
are a lot of points that need to be tested. Due to having a distributed nature, it can be
complex and difficult to manage. In order to overcome these challenges, an automation
testing solution and comprehensive testing framework are proposed. Furthermore, testing
failure handling capabilities and microservice unit validation, and functional integration
validation approaches are proposed to develop a resilient and reliable application.

5.2.4. Performance Prediction, Measurement, and Optimization

Study [AA] focuses on the dynamic workloads problem and addresses it, and the
authors propose an adaptive performance simulation approach. They measure the perfor-
mance of applications with a queue-based model and then estimate the response time by
modifying the parameters of the performance model of the application. To validate this
approach, microservice-based applications and simulated workloads are set up. It has been
observed according to the experimental results that this approach to performance simula-
tion gives better results in terms of response time compared to other existing methods.

Study [AK] investigates the factors to decrease performance overhead for microser-
vices. Therefore, the authors suggest a three-layer performance model and prediction
method and it is built upon performance optimization and modeling. They carried out both
experimental and simulation tests to validate the performance model. It is evaluated that
this method provides significant advantages to enhance the performance of microservices.

Study [AR] points out the challenge of predicting the workload capacity of microser-
vices. The authors suggest a performance prediction model to address this challenge, and
a tool called Terminus was prepared to estimate the capacity of each microservice with
respect to different deployments. To evaluate this model, an experiment environment is
set up, which consists of four microservices. Experiment results show that it gives good
results to predict capacity with a mean absolute percentage error (MAPE) of less than 10%.

Study [K] indicates that the size of a microservice directly impacts its performance
and availability. This paper proposes an approach providing workload-based feature
clustering for deployment to improve the performance of an MSA. This approach uses a
genetic algorithm for clustering. To leverage this approach, they have created microservice
architecture deployment optimizer (MicADO), an open-source tool, and this approach
has been applied in a case study on an enterprise resource planning (ERP) system. The
case study results show that there is a meaningful improvement in the performance of
the system.

Study [E] focuses on scalability, manageability, and performance issues. This paper
points out that these issues have become more remarkable with the MSA getting popular.

Appl. Sci. 2022, 12, 5507 20 of 40

This paper proposes a performance analytical model for a what-if analysis and capacity
planning. Finally, two experiments have been conducted to validate this approach by using
performance metrics such as response time and probability of request rejection. It has been
seen that a what-if analysis and capacity planning for MSA could be applied for minimum
cost and time.

Study [BB] offers an approach for assessing scalability and performance on different
microservice deployment configurations quantitatively. Additionally, a domain-based
metric for each alternative is defined and can be used for making a decision on which one
is well-suited. This approach has been evaluated by extensive experiments. The authors
note that the domain-based metric for one of the environments is a function that does not
increase the number of CPU resources. In addition, they strongly recommend that it is
necessary to have and execute performance engineering activities to modify by adding
resources to deployment configuration in auto-scaling cloud environments.

Study [BY] points out that there is a lack of predicting performance degradation and its
root cause. Although some approaches aim to predict performance degradation, they do not
address its root cause. This paper proposes a framework to detect its root cause as well. This
framework called SuanMing can predict root causes for potential performance degradation.
Further, its aim is to prevent performance degradation before it occurs. To validate this
approach, the authors evaluated their framework in two MSA-based systems. Evaluation
results confirmed its accuracy of over 90% in predicting performance degradation.

Study [CF] indicated that the number of studies addressing performance problems of
MSA-based systems is limited. In this study, the authors propose a model-driven approach
for continuous performance enhancements by defining some dedicated metamodels. This
study provides refactoring actions that enable performance improvements by taking ad-
vantage of the relationship between the monitored data and the architectural model. This
approach has been used on two MSA-based systems to validate its feasibility.

In summary, the challenges of this topic are related to performance prediction, mea-
surement, and optimization. With the wide use of microservice applications, it has become
possible to create a wider solution set for performance problems. There are studies that
address performance issues directly, as well as studies that address other problems such
as scalability and load balancing and provide benefits at the point of performance. These
studies have been evaluated in their own categories.

5.2.5. Communication and Integration

Study [AI] focuses on complex microservice data flows and communication. To
contribute to the solution of this problem, an event-driven lightweight platform called
Beethoven for microservice orchestration is proposed. The platform is formed of reference
architecture and an orchestration language. To prove its practicality, an example application
has been implemented.

Study [R] focuses on the network pressure increase because of inter-microservice
communication. The networking of containerized microservice is inefficient. This paper
proposes a high-performance user–space networking solution for containerized microser-
vices called DockNet and provides a master–slave threading model to decouple execution
and management. This model uses Data Plane Development Kit (DPDK) and customized
lightweight IP (LwIP) as the high-performance data plane and TCP/IP stack. Thus, in
order to improve network performance, a robust and fast channel between microservices
is built. Various experiments are conducted to validate it and as a result of these experi-
ments, DockNet delivers over 4.2×, 4.3×, 5.5× higher performance compared to existing
networking solutions.

To sum up, with the widespread use of MSA, the need for communication and integra-
tion between microservices has become a challenging point. However, there are not enough
studies proposing solutions. We identified only two studies figuring out some solutions to
the challenging part of communication. These studies come up with solutions to complex
microservice data flows and network performance.

Appl. Sci. 2022, 12, 5507 21 of 40

5.2.6. Service Orchestration

Study [L] focuses on the auto-scalability issue and provides a solution called Elascale
for managing resources according to workload and application states. However, there
is a need for collecting and analyzing performance metrics to manage the scalability
of the system. For this purpose, Elasticsearch is used. In this paper, the authors offer
architecture and the initial implementation of Elascale. Elascale consists of auto-scalability
and monitoring-as-a-service components. Thanks to the monitoring-as-a-service feature,
the application stack is monitored and if necessary, the scale in or out process is applied.
Additionally, Elascale is an extendable solution so if desired, a new scaling algorithm can
be added.

Study [F] addresses the complexity problem of microservices communication and
scalability issues. This study proposes to place the business logic in the database to reduce
complexity and obtain more scalable services. Its goal is to combine services with data.
The proposed model has been validated by conducting a proof of concept study and
experimental results show that there is an increase in terms of performance.

Study [AV] investigates the task scheduling and auto-scaling challenges in clouds.
The authors noted that existing algorithms are not compatible with a two-layer structure
consisting of virtual machines and containers. Therefore, the authors recommend an Elastic
Scheduling for Microservices (ESMS) approach with a workflow scheduling algorithm
and a statistics-based strategy to find out the best-suited configuration under a continu-
ous workload. To validate this approach, many simulation base experiments have been
conducted. Experiment results show that ESMS reduces the cost.

The study [BF] argues how to provide auto-scalability efficiently to reduce costs
and energy usage and the authors stated that a good solution will bring a significant
increase in performance. Hence, they aim to build an autoscaling system using past
service experiences. To this end, they focus on which microservice needs to be scaled for
performance improvements. Finally, they propose a pipeline for auto-scaling and also
an evaluation of a hybrid sequence and a supervised learning model. According to the
experimental result, using a supervised model is so useful for microservices should be
scaled up more.

Study [AN] addresses the container resource scheduling challenge. The authors
indicated that handling the container resource scheduling problem effectively will decrease
the cost and increase the cluster performance. Hence, a multi-objective optimization
model with a novel ant colony algorithm for the container-based microservice scheduling
is proposed. They aim to improve the metrics related to computing and storage by the
proposed ant colony algorithm. To validate this approach, an experiment was conducted
and its result shows that the proposed ant colony algorithm for optimization gives good
results in terms of load balancing and cluster service reliability.

Study [BA] focuses on utilizing the computing resources challenge. To address this
challenge, a container-aware application scheduling strategy is proposed in this paper. The
proposed strategy has multiple capabilities composed of using appropriate lightweight
containers with minimum deployment cost and a heuristic-based auto-scaling policy for
optimizing computing resources. According to evaluation results, the proposed method
shows significant improvement compared to existing studies in terms of processing cost,
processing time, and resource utilization.

Study [AX] indicates that autoscaling is an important mechanism to manage workload.
Computing resource is a key concept for autoscaling because when the workload increases
in the system, it should be used in an effective way not to decrease performance. To this
end, in this paper, a novel system named Microscaler is proposed to automatically identify
the services that need scaling by collecting and analyzing metrics in the application stack
and scaling them to manage workload properly. The experimental results in a microservice
benchmark show that Microscaler obtains a better result than state-of-the-art methods in
terms of optimum service scale and achieves an average of 93% accuracy in determining
the service needed in scaling.

Appl. Sci. 2022, 12, 5507 22 of 40

Study [AU] analyzes how an orchestration mechanism is integrated into microservice-
based cloud applications without making much reengineering. This paper suggests a
generic architecture and initial implementation called MICADO to support service or-
chestration. Additionally, an implementation of this architecture is provided to show
its usage and how the scalability of the data avenue file transfer application can be im-
proved. The authors claim that scaling up and down application clusters is made with
MICADO effectively.

Study [W] addresses the issues of failure–repair behavior of the containers. In this
study, the authors propose different configuration models inspired by Google Kubernetes
to deploy software as a container. To make container availability analysis, non-state-space
and state-space analytic models are developed. These configuration models are defined by
a fail-response and migration service. Additionally, in this paper, an open-source tool is
developed by using these models. It helps system administrators to monitor and evaluate
containerized system availability.

Study [Y] focuses on the need for supporting the stateful application workloads
by providing persistence storage. The authors propose the cloud native storage service
orchestration platform based on the IBM ubiquity framework. This platform provides
solutions for persistent storage among different container orchestrators and supports multi-
protocol access for volume management within the storage systems The authors give the
results of the effectiveness of the cloud native storage service orchestration platform by
preparing a prototype implementation. They estimate that the proposed framework will be
useful for MSA-based systems.

Study [AM] addresses the challenge of heterogeneity of functional and non-functional
requirements of microservices. It is important to satisfy all these requirements to overcome
these challenges. The authors aim to support the deployment of microservices based on the
monitoring. To this end, an architecture is proposed to manage the deployment involving
several cloud providers and to find the best deployment plan. Evaluation results show that
this approach provides a solution within the expected time interval.

Study [AT] identifies that there is a lack of deployment across data centers because
most of the study has worked on the deployment to clusters in data centers. Therefore,
a more dynamic approach is necessary to handle the deployment of applications in the
edge computing paradigm. To this end, the authors recommend a fully distributed and
decentralized orchestrator for containerized microservices, which is called DOCMA. To
validate this approach, an experiment was conducted and its result shows that DOCMA
has the required ability for the orchestration of microservices.

Study [AE] focuses on the problem of facing unpredictable workloads. The microservice-
based application must match as closely as possible to the request to respond quickly and
keep costs to a minimum. This paper proposes a novel heuristic adaptation process includ-
ing two mechanisms that complement each other. While the first mechanism balances the
load intensity by scaling containers according to the capability of the process, the latter
manages additional containers to handle unpredictable workload changes. The experiment
results show that this method manages unpredictable workloads successfully.

Study [N] addresses the load balancing issues and proposes a simple algorithm for a
decentralized load balancing system for microservices inside a container used to implement
a task executing in a cloud. It can provide better performance compared to the existing
centralized container orchestration systems.

Study [Q] addresses the problem of overload control for large-scale microservice-based
applications. The authors propose an overload control scheme designed for MSA, called
DAGOR. It monitors the load status of each microservice in real-time and distributes the
load between the related services when overload is detected. DAGOR has been used in
the messaging application for five years. According to experience and experiment results,
DAGOR achieved high success.

Study [AW] focuses on the latency because of long-chain microservices. Generally, a
request is processed by many microservices called chains, and these microservice chains

Appl. Sci. 2022, 12, 5507 23 of 40

are in a competition to use resources. The authors noticed that there is not enough study to
handle the competition between microservices chains. In this study, a queue-based and
chain-oriented load balancing method is proposed. With this method, it is claimed that this
method decreases the latency of the long chain. Their evaluations also show that it could
decrease the latency of long chains.

Study [BE] addresses the load balancing issue. The authors stated that load balancing is
the most important mechanism for availability and scalability and there are some techniques
such as client-side and server-side to implement load balancing in a system. However, in
order to benefit from each method’s advantages, they consider combining them. To this
end, they propose a hybrid model to leverage the advantages of both sides.

Study [O] points out the scheduling problem of microservices, especially in multiple
clouds. The authors believe that there is an alternative way showing decreased overall
turnaround time in contrast to the standard biased greedy scheduling algorithm. For this
purpose, they propose an affinity-based scheduling approach and compare it with the
standard biased greedy algorithm. The proposed approach achieves a big improvement.

Study [AY] addresses total network delay and network price issues. In addition, the
authors noted that increasing energy efficiency is an important task in an edge platform.
They aim to minimize network delay and price and improve energy efficiency by designing
a novel approach. To this end, they propose a dynamic microservice scheduling algo-
rithm for mobile edge computing (MEC) and evaluate the computational complexity of the
scheduling algorithm. According to simulation results, it has been observed that the mi-
croservice scheduling framework improves the performance metrics based on total network
delay, energy consumption rate (ECR), failure rate, average price, and satisfaction level.

Study [AO] points to increase energy consumption and low service performance with
MSA. The authors stated that since resource allocation should be handled efficiently, unlike
the current studies not focusing on optimization issues for such chain-oriented service
provisioning, they focus on the resource allocation optimization problem. They aim to
optimize end-to-end response time and resource usage. To this end, the three-stage scheme
is proposed to improve the metrics mentioned above. According to the evaluation, their
approach provides a better result than benchmarking algorithms on load balancing and
energy consumption.

Study [AQ] works on a novel scheduling framework for Kubernetes. The authors aim
to introduce a solution providing improvement for locally main tasks. For this purpose,
they propose a hybrid-state scheduler for unscheduled jobs. To validate this approach, they
carried out an analysis of their approach’s capabilities and evaluation results show that
it will overcome problems of their existing solution in their clusters such as collocation
interference, priority preemption, high-availability, and baseline scheduling problems.

Study [BD] handles scheduling issues in terms of some concerns such as availability,
reliability, resource utilization, scalability, and power consumption. It is noted that current
scheduler solutions do not cover all of these concerns. However, the authors claimed
that these concerns should be handled together in a scheduling approach to take better
results. To this end, they propose a many-objective genetic algorithm scheduler (MOGAS)
to handle all these concerns. According to comparison results with ant colony optimization
(ACO)-based scheduler, it gives better results in distributing tasks equally and reducing
power consumption.

Study [BH] focuses on the problem of determining the accurate resource consumption
thresholds to scale applications properly and to ensure high availability. It is also stated
that lower thresholds could cause many problems where the services become unavailable
against the load. For this purpose, the authors propose a model for calculating the total
resource consumption of containers by using mathematical formulas based on Gaussian
functions and they managed to calculate the upper threshold values. They use a research
project to validate the calculated value being the minimum number of containers to deal
with the load.

Appl. Sci. 2022, 12, 5507 24 of 40

Study [BI] addresses a challenge of auto-scaling MSA or IoT-based systems. It is also
stated that in order to enhance our system availability and reduce cost and energy usage,
auto-scaling should be handled in an effective and efficient way. Hence, the authors aim
to design a prototype auto-scaling system for MSA-based web applications. As a part
of their study, they have developed a pipeline to be used to auto-scale microservices by
experimenting with a hybrid sequence and supervised learning model to validate and
endorse scaling solutions.

Study [BK] focuses on the difficulty of orchestrating microservices when business
processes expand across multiple microservices. Therefore, this study proposes using
declarative business processes to coordinate and orchestrate microservices from a data flow
perspective. To validate their recommendations, they used the Beethoven platform intro-
duced in study [AI] and demonstrated the usability of this environment for microservice
orchestration along with their proposed method.

Study [BM] provides an approach for container-level scalability. Since most cloud
applications tend to be containerized every day and are expected to provide near real-time
responses, especially in real-time applications, scalability is becoming a real challenge for
this kind of application. The threshold values for autoscaling are getting important to
ensure scalability efficiently. Kubernetes suggests some techniques for setting thresholds
but setting the right values is still a big challenge. To this end, the authors introduce an
intelligent autoscaling system including two modules. The first is in charge of identifying
resource demands through a generic autoscaling algorithm and the second one is responsi-
ble for identifying the autoscaling threshold values by using reinforcement learning agents.
To validate their results, they conducted an experiment, and the experiment results show
its efficiency compared to the default autoscaling paradigm. Up to 20% enhancements in
response time have been measured.

Study [BP] addresses the challenge of selecting the right communication and collabo-
ration pattern for microservices. There are two well-known patterns in the literature right
now which are choreography and orchestration. To address this challenge, the authors
propose a decision framework to help solution architects to consider key factors and goals.
Further, they provide a weighted scoring method to select the most convenient pattern. The
requirements of three case studies (Danske Bank, LGB Bank, and Netflix) were reviewed
and evaluated to demonstrate this framework’s usability. According to the results of their
evaluation, a hybrid approach using both patterns has been suggested.

Study [BW] focuses on the challenges of scheduling and autoscaling. The authors
claimed existing algorithms had some trouble with streaming workloads and the two-layer
structures consisting of virtual machines and containers. Therefore, they propose an elastic
scheduling algorithm to overcome these challenges. This algorithm handles task scheduling
and auto-scaling, which is based on a variable-sized bin packing problem (VSBPP). With
the conducted experiments, the proposed algorithm has been validated that proposed
algorithm improves the success ratio and cost.

Study [BX] points out that remote registry-based images could cause increased pulling
traffics and startup time latency. To solve these issues, the authors come up with an idea of
layer sharing deployment for microservices. Since containers are generally implemented as
multi-layered structures, they claim that common layers can be shared between microser-
vices. For this purpose, they propose an accelerated distributed augmented lagrangian
(ADAL) based algorithm to be used by servers and registries. Experiment results show that
it reduces the microservice startup time by 2.20 times on average.

Study [BZ] addresses the issue of performance degradation when traffic increases.
The authors claim that existing approaches of autoscaling do not pay enough attention
to the microservice chain and performance degradation issues. This study proposes an
autoscaling framework for microservice chains. It includes two modules. The first is
responsible for collecting samples from microservices and training a latency model using
the GNN. The second is responsible for identifying the number of microservice instances

Appl. Sci. 2022, 12, 5507 25 of 40

through the GNN model. Their evaluation results demonstrate pHPA effectiveness with
reduced latency and improved resource usage.

Study [CA] notes that the flow control rules are generally adjusted and applied
manually. In addition, it is also noted that availability is really critical for MSA-based
systems and it should be handled with some concepts such as fault tolerance and flow
limiting. To improve the availability of a system, the authors claim that flow control rules
should be handled dynamically. To this end, they propose a dynamic flow control algorithm.
The algorithm works on monitoring data and current flow and determines the flow-limiting
thresholds. Evaluation results show that automatic flow control mechanisms obtain better
results in terms of performance compared to traditional static methods.

Study [CB] proposes a microservice rescheduling framework to address performance
degradation and response time challenges. The authors point out that response time
is one of the most important keys to quality of service. Hence, runtime adaptations and
rescheduling should be handled carefully. They stated that existing works lack handling the
effect of configuration parameters of container-based microservices. The proposed solution
makes some periodic monitoring and then rescheduling activities are triggered based on
threshold-based rules. Experiment results demonstrate that with the proposed framework,
a significant reduction of up to 13.97% in the average response rate was achieved.

Study [CD] focuses on the availability issues of MSA-based systems. It points out
that availability is still a problem while migrating a legacy application to MSA even if
microservices will be running on Kubernetes, which is a popular service orchestration
platform. The authors stated that repair actions of Kubernetes cannot satisfy the high
availability (HA) requirements. Hence, they propose an approach in which automatic
service redirection to healthy microservices and application state replication can be achieved
by adding service recovery to the repair actions of Kubernetes. Their experimental results
show that their solution brings an improvement in terms of response time.

To sum up, there are many kinds of studies addressing almost all the concerns about
deployment, scheduling, auto-scalability, load-balancing, and orchestration. These are the
most important areas in service orchestration. Additionally, these studies use some best
practices and technologies implemented by some big vendors. Thus, it allows these studies
to be used in a wide application area.

5.2.7. Security

Study [AJ] focuses on the limitations of access control technologies in the microservice
environment. This paper suggests an access control optimization model based on role-
based access control (RBAC). This model enhances the attribute-based encryption (ABE)
model being one of the most common cryptographic mechanisms, in which existing RBAC
users can directly access the ABE encrypted data in microservices. It has several advantages
compared to ABE, which includes improving the expression ability of access policies, the
security and operational efficiency of microservices, and reducing the computational cost.

Study [V] investigates the microservices security topic and tries to identify the taxon-
omy of security issues. While making this research, Docker Swarm and Netflix security
decisions are also investigated. This paper claims that microservice security requires a
layered security solution consisting of hardware, virtualization, cloud, communication, ap-
plication, and orchestration. In this paper, a prototype framework for microservice security
is described and a case study is conducted. The case study result shows the performance
overhead of the security is around 11%.

Study [D] focuses on two problems of microservice security. First, network complexity
complicates monitoring the security. Second, due to the trust among microservices, if
any microservice fails, it may affect the entire application. In this paper, the authors
propose a design for security-as-a-service for microservices-based cloud applications and
they implement a flexible monitoring and policy enforcement infrastructure for network
traffic by adding a new application programming interface (API) primitive FlowTap for the

Appl. Sci. 2022, 12, 5507 26 of 40

network hypervisor. Effectiveness analysis results show that the proposed solution is able
to tackle various monitoring scenarios.

Study [AC] addresses the problems of authentication and authorization in the 5G
platform. The authors come up with a solution based on specifically identity and access
control of microservices. The proposed solution has been implemented in the network
function virtualization (NFV) based platform called SONATA. It encourages using well-
known techniques and simple designs for identity and access control and favors role-based
access control.

Study [T] focuses on the problems of the authenticity and confidentiality of microser-
vice calls. This paper criticizes the HTTP-based approach used for microservice and API
calls and transport layer security (TLS), providing only link-level channel security. In
order to prevent these security problems, this paper comes up with a solution consisting of
authentication with password and key pair and decentralized role-based authorization.

Study [BT] points out that the security of access control becomes challenging as the
system grows because it causes more access points to be handled for security. The authors
propose an extended version of role-based access control (RBAC) called hierarchical trust
RBAC. This model enables security managers to detect unauthorized access to sensitive
information and identify verification. They also conducted a case study to show the
feasibility of their model. Case study results showed that it provides faster and more
flexible access to sensitive information.

In summary, secure microservices are tightly dependent on our MSA design. Soft-
ware architects should design MSA by taking into account the security concern since it
might be tough work to provide a secure system later. These studies propose solutions to
identified problems, but there is no study proposing a model about how to design MSA to
ensure security.

5.2.8. Monitoring, Tracing, and Logging

Study [X] focuses on managing complex dependency relationships between microser-
vices. This paper proposes an approach called graph-based microservice analysis and
testing (GMAT) that automatically prepares a service dependency graph (SDG). It allows
us to analyze, visualize and trace the dependency relationships between microservices. Ad-
ditionally, it allows detecting anomalies by watching service invocation chains. Experiment
results show that GMAT is capable of managing complex dependency relationships for
MSA-based systems.

Study [Z] addresses the problem of complex interactions, identifying abnormal ser-
vices. Hence, the authors present a novel system called Microscope to efficiently generate
a service causal graph and extract the causes of performance problems. Experimental
evaluations show that Microscope has a good result and it is also claimed that it is better
than most recent technology solutions.

Study [AD] addresses that extracting component relations from just static sources
is not enough for the accurate result because component relationships might arise at
runtime. Extracting component relations is important to detect design drawbacks or
potential architectural improvements. In order to overcome these issues, the authors offer
an approach to extract and analyze the architecture of an MSA-based software system
according to not only static service information but also aggregated runtime information.
They have conducted an experiment to evaluate the approach. The results show that this
approach is useful for detecting design drawbacks and improving the design.

Study [AS] focuses on the problem of heterogeneity of logs. In other words, each
microservice can create logs in a different format and it causes heterogeneity for logs. It is
tough work to understand and interpret these logs to make the right decision for the system.
Therefore, this paper suggests a novel approach based on representational state transfer
(REST) architecture style. Two case studies have been made to validate an approach and
evaluate an implementation of this approach called MetroFunnel. The assessment results
indicated that it is successful in traversing logs and reducing the size of collected data.

Appl. Sci. 2022, 12, 5507 27 of 40

Study [P] addresses the importance of high decoupling among microservices because
the authors realized that there is a lack of highlighting microservice communications.
Hence, an architecture recovery tool called MicroART is presented in this study to show
communications among microservices. This tool consists of four main components which
are Docker Analyzer, GitHub Analyzer, Log Analyzer, and Model Log Analyzer to be able
to generate the models. The authors indicated that it can be used by software architects for
analysis, documentation, and architectural reasoning.

Study [AZ] investigates the root cause of anomalies in the application and it is stated
that it can be a complicated and time-consuming job because a lot of communications need
to be investigated. In this work, the root cause analysis framework is recommended which
is graph-based. In order to show the effectiveness of this framework Grid’5000 testbed has
been used to deploy three different architectures and then some anomalies were injected
into these architectures. The evaluation result shows that this approach is more effective
than a machine learning method ignoring the relationship between elements.

Study [BG] also focuses on anomaly detection and its root cause in MSA. Authors claim
that most studies regarding root cause analysis (RCS) mainly address data monitoring,
data dependency among services, and invocation data. However, in this study, they use
invocation chain anomaly analysis to address the RCA problem. They have implemented
an algorithm based on robust principal component analysis and a single indicator anomaly
detection algorithm. They run their algorithm on a batch of sample data and three batches
of test data of the 2020 International AIOps Challenge. They got a good score according to
the scoring criteria of organizers and their algorithm put in a good performance with higher
accuracy than some other traditional algorithms used in this area for anomaly detection.

Study [BJ] points out the challenges experienced in traceability analysis in MSA base
systems. Since it is a complex and dynamic environment, analyzing to investigate any
problem can be challenging. This is mostly due to the fact that there is too much trace data
and it is difficult to obtain the necessary information to detect the real problem. Therefore,
the authors recommend a graph-based approach for trace analysis. The strength of their
proposed method is that it provides efficient processing and storage, as well as a powerful
access mechanism by combining graph database and real-time analytics database. They
have conducted an experiment to validate their approach and the results of the experiment
have confirmed its efficiency and effectiveness in diagnosing the problem.

Study [BL] focuses on the system-wide challenges of observability. The distributed
and heterogeneous nature and tendency to decentralize responsibility are the factors
that complicate the observability of MSA-based systems. In this study, the challenges of
providing observability in MSA-based systems are emphasized and an offline approach
that performs distributed tracing is proposed. With this method, it is recommended to
model microservices as observable execution paths, so abstraction is provided to generate
realistic trace data again.

Study [BN] proposes a novel layered diagnosis framework including a service re-
sponse layer, timing constraints, causality analysis, and a ranking algorithm for detecting
faulty microservices. The authors indicated that as system size grows, detecting faulty
microservices in a complex environment would get challenging. Thus, they claim that
their framework could be a solution to this problem. They also carried out a case study
to validate their approach. Experimental results show that it managed to achieve 89%
specificity and 77% recall.

Study [BO] provides a monitoring solution called Kmon for MSA-based systems.
The authors aim to monitor the complex microservice environment and internal states
of microservices in an effective way with their proposed solution. This solution collects
indicators by breaking them into three categories: TCP request data, topology level, and the
other indicators related to CPU, memory, block I/O, etc. To validate the proposed solution,
the authors conducted an experiment. Experiment results show that it has little effect on
response time and low CPU usage.

Appl. Sci. 2022, 12, 5507 28 of 40

Study [BQ] points out the challenge of detecting faulty microservices and root cause
localization. For this purpose, the authors propose a method called Microservice Fault
Root Cause Location Method Based on Correlation Analysis (MFRL-CA). In this method, a
microservice fault propagation graph is built by collecting the correlation between historical
fault data and dependent call data to reduce the time consumption of detecting faulty
services. They carried out an experiment to show their approach’s effectiveness and the
results show that this method effectively managed to detect faulty services and their
root cause.

Study [BR] proposes a root cause localization framework called ModelCoder. In this
study, the authors have introduced some concepts to figure out the root cause of localization
problems and developed the framework for these concepts. The first one is a concept for
building dependency graphs between microservices. The second one is a formulization for
root cause localization problems based on the graph built in the first step. Finally, a fault
model called ModelCoder is built on these two concepts. They evaluated ModelCoder on a
real-world system and the results show that ModelCoder is able to detect faulty root nodes
within 80 s on average.

Study [BS] also points out the root cause of localization problems and aims to detect
microservice failures in an effective way. For this purpose, the authors come up with a
method for detecting microservice failures by using a semi-supervised learning model and
dynamic sliding window methods. To evaluate their model, they used public data and
the results showed that the model had a good performance and the accuracy of anomaly
detection and root cause location was close to 100%.

Study [BU] addresses availability issues caused by service anomalies. The authors
stated that existing approaches were limited in terms of inefficient traversing mechanism
of service dependency graph and detecting anomalies process also could result in failure.
To this end, they propose a highly efficient root cause localization approach based on
dynamically constructed service call graphs. Experimental results and the result of being
used in Alibaba showed it obtained good results in terms of accuracy and efficiency.

Study [BV] aims to address the root cause of performance issues. The authors claim
that complex communication among services makes the system performance unpredictable
and hard to trace and detect the root cause of performance issues. Therefore, they propose
a tool called T-Rank. It uses tracking data and combines them with a tracing chain. Further,
it provides a ranked suspicious list of the containers based on the spectrum algorithm. As
a result of their experiment with the data collected from a real-world MSA-based system,
T-Rank is feasible to be used in MSA base system thanks to its high accuracy and low
resource cost.

The authors [CE] propose an anomaly detection approach for MSA-based systems.
They stated that existing approaches do not have the required skills to detect faulty services
accurately. Therefore, they propose an anomaly detection approach. In this approach,
first, execution traces are collected across microservices, then the anomaly degree of traces
is calculated and then differences between traces are analyzed to locate the components
causing anomalies. According to their evaluation results, this approach achieves high
precision and recall in detecting anomalies.

Study [CG] provides an agent-based monitoring platform by monitoring not only
internally developed services but also externally developed services with the help of sidecar
containers. Agents are responsible for monitoring incoming and outgoing network traffic
and also system state by reading kernel data. Prototype evaluation results show that their
solution has a similar performance as Prometheus, but also, they offer some functionalities
focused on multi-vendor service integration.

In summary, it is important to monitor the environment after developing microservices,
so these studies in this part generally focus on the monitoring architecture model, extract
dependencies, and anomaly detection. There is a lack of a powerful tool with integration
API with other third-party software among these studies.

Appl. Sci. 2022, 12, 5507 29 of 40

5.2.9. Decomposition

Study [AB] focuses on deciding the right size of microservices and provides a con-
ceptual methodology to decompose business capability based on domain-driven design
principles. To evaluate the usage of this methodology, a case study is conducted on the
weather information dissemination domain. Evaluation results show that the weather
information dissemination system is partitioned into different microservices successfully.

Study [U] proposes a systematic approach using functional decomposition and based
on functional requirements. This approach aims to build high cohesive and low coupled
decomposition. To evaluate this approach, they have compared microservices implementa-
tions by three independent teams. The evaluation results show that it achieves identifying
microservices much faster.

The authors [AP] stated that the decomposition process is so challenging task and it
should be supported with an approach, so they suggest a data flow-driven decomposition
approach to handle the decomposition problem of MSA. They aim to obtain indepen-
dently deployable and scalable microservices, so they defined a four-step decomposition
procedure consisting of business requirement analysis, building fine-grained data flow
diagrams, extracting dependencies between processes and finally identifying microservices
by clustering processes. They conducted a case study to validate this approach and it
has been observed that microservice candidates are determined by taking coupling and
cohesive constraints into consideration.

Study [CC] proposes an approach for identifying microservices by analyzing depen-
dencies between business processes thanks to control, data, and semantic models. Further,
it also provides a clustering method to identify potential microservices. To validate this
approach, the authors carried out a case study. The results of the case study demonstrate
its doability. Additionally, it also achieves better results than existing approaches in terms
of microservice identification.

In summary, the better we decompose the business capability into microservices, the
more powerful microservices we have so we can say that this challenge is the primary
among other challenges. Despite this fact, we could not find enough studies to work on
this topic deeply.

6. Discussion

We conducted a systematic literature review following the guidelines of Kitchenham
et al. [15]. The main purpose of the SLR was to identify relevant challenges and solution
directions. For this purpose, we conducted a comprehensive study and selected 85 primary
studies from 3842 papers. We have carefully applied selection and elimination criteria in
order to catch the most relevant studies for our SLR study. As a result of our study, we could
explore nine problem categories. We have observed that each study has addressed one or
more problems and explained the solution to problems in their study. An important number
of these problems are related to quality attributes such as reliability, availability, scalability,
and performance. We have reported quality concerns related to identified challenges. This
SLR could be input to further studies that highlight the relevance of the quality concerns in
MSA. It could also show direction to identify which quality concerns have not yet been
explicitly addressed. Nevertheless, the fact that no in-depth research has been carried out
on these quality concerns does not necessarily imply that they are not relevant for MSA.
Therefore, this observation could typically initiate further research on the quality concerns
in MSA.

We have observed that with the usage of cloud computing, the cost of resources
has emerged as an important topic, so optimization of resource usage and performance
and scheduling problems have become crucial. In addition, it has been observed that
the challenges of service orchestration and monitoring have been covered in many more
studies in recent years and detailed and comprehensive solutions have been presented in
those areas. We see this as an expected consequence of any system development process.
Since as the systems get bigger and more complex and the need for scalability increases,

Appl. Sci. 2022, 12, 5507 30 of 40

the need for monitoring starts to occur in those systems, and in parallel, the orchestration
needs to increase. This is also the case in the development process of MSA-based systems.
We consider these challenges as newly recognized challenges as a result of the growth and
complexity of MSA-based systems.

The main threats to the validity [18] of this SLR are related to publication and selection
bias, and also to data extraction and synthesis. The publication bias is about the likelihood
of the researchers to publish positive results rather than negative ones, which is beyond
our control and remains an open issue for future work. We carefully identified and applied
the inclusion/exclusion criteria during the screening and review of the primary studies.
However, the subjectivity in defining the criteria and selecting the primary studies could
have introduced a threat to the validity of this study. To reduce the bias regarding the
inclusion/exclusion criteria, we first picked a random set of 10 studies as suggested
by [19] and defined the selection criteria. The evaluation and the selection of the primary
studies were performed by the first author and selectively reviewed by the co-authors in a
randomized manner. Any difference in the selection of the primary studies was discussed in
detail and a final decision was reached per study. After the primary studies were evaluated
and selected, the relevant data for a pilot set of primary studies were extracted by the
first author using a data extraction sheet and taking informative notes on it. The pilot
data extraction was then reviewed by the co-authors and conflicts were resolved again by
discussions among the authors until a common understanding was reached. Regarding
the data synthesis, we applied a systematic grouping of the extracted data on the sheet.
The problem categories and their rationale were reviewed and discussed by the authors
in meetings, therefore the categories that we identified can be considered to cover the
main problems. However, some problems could be considered sub-categories of the basic
categories. To highlight these, we have adopted the feature models.

Our goal with this study was the synthesis of the results from the primary studies
selected in the SLR. Hence, an in-depth comparison of approaches for each area has been
omitted. The findings as such are thus the reported results from the primary studies. A
further study and synthesis of these results would be interesting and lead to new primary
studies. We consider this as part of our future work.

In this study, we did not elaborate in detail on the implementation platforms for
microservices. In our earlier study [20], we have provided an approach for developing
platform selection rules for model-driven architecture. The same approach could be applied
to microservice platforms. We consider this as part of our future work. Related to MDA,
in our recent work [21] we have proposed a model-driven architecture approach for the
automated deployment of microservices. The automation approach could be considered
a solution for several of the identified challenges. In [22] we have provided a feature-
driven characterization of microservice architectures and used this framework to provide
an overview of the state of the practice.

7. Related Work

Pahl and Jamshidi [23] aimed to identify, taxonomically classify and compare the
existing research and application of microservices. For this purpose, they conducted a
systematic mapping study of 21 primary studies. They used a classification framework to
sort out the research and extract the keywords according to specified groups.

Soldani et al. [24] presented systematic grey literature on the pains and gains of a
microservices topic. They realized that academic work on his topic was at an early stage.
They reviewed 51 sources of grey literature from three different perspectives based on three
research questions. Next, the authors presented two taxonomy plans for pains and gains
of microservices to classify the studies. Finally, they presented the coverage of pains and
gains in previous surveys on microservices.

Alshuqayran et al. [25] presented a systematic mapping study of microservice archi-
tectures and their implementation. Overall, 33 primary studies were collected for detailed
review. Two qualitative and quantitative synthesis methods were used and three research

Appl. Sci. 2022, 12, 5507 31 of 40

questions were defined to explore the challenges of MSA, which are used to model MSA
and its possible quality attributes.

Di Francesco et al. [6] aimed to provide a survey investigating relationships among
research contributions on microservices. They performed a systematic mapping of 103
primary studies and produced a clear overview of the state of the art in architecting with
microservices. They used three main perspectives to investigate the research on MSA. These
were publication trends, the focus of research, and the potential for industrial adoption.
Additionally, the authors performed a detailed trend analysis of the data to understand
how architecting with microservices has been evolving over time.

Vural et al. [26] performed a systematic literature review to determine the main practi-
cal motivations and emerging standards behind the MSA. They performed a systematic
literature review of 37 primary studies. As a result of their study, they proposed that there
would be an increasing trend soon and there were not enough empirical studies to clarify
some challenging topics. In addition, they reported that there was no study targeting the
weak points of MSA in particular.

Bushong et al. [27] conducted a systematic mapping study to observe the architecture
evolution of microservices and methods of microservice analysis. They selected 55 articles
published from 2018 to 2021. In their study, they provide a categorization of papers by five
analytical approaches and seven categories for microservice analysis. Another mapping
study was carried out with a focus on MSA in DevOps [28].

In this SLR study, unlike other studies, the challenging points in the microservice
architecture are deeply examined by adopted feature models and the solution directions to
these challenges are explained. In this regard, it is intended as a valuable guide for both
academics and practitioners. Table 7 highlights the addressed research questions of the
related secondary studies.

Table 7. Comparison of related works with this SLR study.

Study Name # Primary
Studies Research Questions

Microservices: A Systematic
Mapping Study [20] 21

What are the main practical motivations behind using microservices?
What are the different types of microservice architectures?
What are the existing methods, techniques, and tool support to enable microservice
architecture development and operation?
What are the existing research issues and what should be the future research agenda?

The pains and gains of
microservices: A systematic grey
literature review [21]

51
How much evidence of microservices experimentation from the industry is available online?
What are the technical and operational “pains” of microservices?
What are the technical and operational “gains” of microservices?

A Systematic Mapping Study in
Microservice Architecture [22] 33

What are the architectural challenges that microservices systems face?
What architectural diagrams/views are used to represent microservices architectures?
What quality attributes related to microservices are presented in the literature?

Architecting with microservices: A
systematic mapping study [6] 103

What are the publication trends of research studies about architecting with microservices?
What is the focus of research on architecting with microservices?
What is the potential for industrial adoption of existing research on architecting
with microservices?

A Systematic Literature Review on
Microservices [23] 37

What type of research is conducted on microservices?
What are the main practical motivations behind microservices-related research?
What are the emerging standards and de facto tools for microservices solutions?

On Microservice Analysis and
Architecture Evolution: A
Systematic Mapping Study [24]

55

What methods and techniques are used in microservice analysis?
What are the problems or opportunities that are addressed using microservice
analysis techniques?
Does microservice analysis overlap with other areas of software analysis, or are new
methods or paradigms needed?
What potential future research directions are open in the area of microservice analysis?

Challenges and Solution Directions
of Microservice Architectures: A
Systematic Literature Review

85
(This study)

What are the identified challenges of microservice architectures?
What are the proposed solution directions?

Appl. Sci. 2022, 12, 5507 32 of 40

Complementary to this study, various other secondary studies have been published
on the key elements of microservice architectures [29,30].

8. Conclusions

In this article, the results from a systematic literature review are provided in order to
deeply explain the state of the art of MSA and identify the challenges faced in applying
it. We have taken into account the studies published since the introduction of MSA in
2014, identified 85 of the 3842 papers discovered as primary studies, and reviewed them in
relation to the research questions.

We can say that the application of MSA is becoming more and more popular and
brings many solutions and provides important benefits for service-oriented and cloud
applications. The focus of this SLR was mainly on the challenges that are encountered
when applying MSA. Accordingly, we have identified nine basic categories of problems
that were discussed in the selected primary studies. We have synthesized and explained
each problem and related solution directions comprehensively and also adopted diagrams
to provide an overview of the identified problems and the suggested solutions.

We believe that the findings and results of this SLR will lead to opportunities for further
research in MSA. For example, the challenges can be considered to identify new research
questions, and the outputs of the study can be used to improve MSA specifications or
support practitioners in their decisions in applying MSA. In addition, identified challenges
and solution directions provide an overview of the overall picture that could help to analyze
different alternative solutions. Accordingly, in our upcoming work, we plan to synthesize
a reference model for MSA by considering the problem and solution categories that we
have explained in this review. In addition, similarities and differences among the solutions
available for the same challenge are helpful information to pick one solution instead of
another solution. Therefore, we also plan to analyze both academic and grey literature
solutions to give comparative research from this point of view.

Author Contributions: Conceptualization, M.S., B.T. and A.K.T.; methodology, M.S., B.T. and
A.K.T.; software, M.S.; validation, M.S., B.T. and A.K.T.; writing-review and editing, M.S., B.T.
and A.K.T.; supervision, B.T. and A.K.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. List of Primary Studies

A. D. I. Savchenko, G. I. Radchenko, and O. Taipale, “Micro-services validation: Mjolnirr
platform case study,” in 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), May 2015,
pp. 235–240, doi:10.1109/MIPRO.2015.7160271.

B. M. Rahman and J. Gao, “A Reusable Automated Acceptance Testing Architecture for
Micro-services in Behavior-Driven Development,” in 2015 IEEE Symposium on Service-
Oriented System Engineering, Mar. 2015, pp. 321–325, doi:10.1109/SOSE.2015.55.

C. N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and J. Nieh, “Synapse,” in Proceedings
of the Tenth European Conference on Computer Systems—EuroSys ’15, 2015, pp. 1–16,
doi:10.1145/2741948.2741975.

D. Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-Service for Micro-services-Based Cloud
Applications,” in 2015 IEEE 7th International Conference on Cloud Computing Tech-
nology and Science (CloudCom), Nov. 2015, pp. 50–57, doi:10.1109/CloudCom.2015.93.

Appl. Sci. 2022, 12, 5507 33 of 40

E. H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Efficiency Analysis of Provision-
ing Micro-services,” in 2016 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), Dec. 2016, pp. 261–268, doi:10.1109/CloudCom.2016.0051.

F. A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano, and A. Urso, “The Database-is-the-
Service Pattern for Micro-service Architectures,” Springer, Cham, 2016, pp. 223–233.

G. A. de Camargo, I. Salvadori, R. dos S. Mello, and F. Siqueira, “An architecture to
automate performance tests on micro-services,” in Proceedings of the 18th Inter-
national Conference on Information Integration and Web-based Applications and
Services—iiWAS ’16, 2016, pp. 422–429, doi:10.1145/3011141.3011179.

H. V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar, “Gremlin:
Systematic Resilience Testing of Micro-services,” in 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), Jun. 2016, pp. 57–66,
doi:10.1109/ICDCS.2016.11.

I. K. B. Long, H. Yang, and Y. Kim, “ICN-based service discovery mechanism for micro-
service architecture,” in 2017 Ninth International Conference on Ubiquitous and
Future Networks (ICUFN), Jul. 2017, pp. 773–775, doi:10.1109/ICUFN.2017.7993899.

J. S. Haselböck, R. Weinreich, and G. Buchgeher, “Decision guidance models for micro-
services,” in Proceedings of the Fifth European Conference on the Engineering of
Computer-Based Systems—ECBS ’17, 2017, pp. 1–10, doi:10.1145/3123779.3123804.

K. S. Klock, J. M. E. M. Van Der Werf, J. P. Guelen, and S. Jansen, “Workload-Based
Clustering of Coherent Feature Sets in Micro-service Architectures,” in 2017 IEEE
International Conference on Software Architecture (ICSA), Apr. 2017, pp. 11–20,
doi:10.1109/ICSA.2017.38.

L. H. Khazaei, R. Ravichandiran, B. Park, H. Bannazadeh, A. Tizghadam, and A. Leon-
Garcia, “Elascale: autoscaling and monitoring as a service,” Proceedings of the 27th
Annual International Conference on Computer Science and Software Engineering.
IBM Corp., pp. 234–240, 2017, Accessed: Jun. 11, 2019. [Online]. Available: https:
//dl.acm.org/citation.cfm?id=3172823.

M. N. H. Do, T. Van Do, X. Thi Tran, L. Farkas, and C. Rotter, “A scalable routing mecha-
nism for stateful micro-services,” in 2017 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN), Mar. 2017, pp. 72–78, doi:10.1109/ICIN.2017.7899252.

N. M. Rusek, G. Dwornicki, and A. Orłowski, “A Decentralized System for Load Balanc-
ing of Containerized Micro-services in the Cloud,” Springer, Cham, 2017, pp. 142–152.

O. D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan, “Multi-objective
scheduling of micro-services for optimal service function chains,” in 2017 IEEE International
Conference on Communications (ICC), May 2017, pp. 1–6, doi:10.1109/ICC.2017.7996729.

P. G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di Salle,
“MicroART: A software architecture recovery tool for maintaining micro-service-
based systems,” in Proceedings—2017 IEEE International Conference on Software
Architecture Workshops, ICSAW 2017: Side Track Proceedings, Jun. 2017, pp. 298–302,
doi:10.1109/ICSAW.2017.9.

Q. H. Zhou et al., “Overload Control for Scaling WeChat Micro-services,” in Proceed-
ings of the ACM Symposium on Cloud Computing—SoCC ’18, 2018, pp. 149–161,
doi:10.1145/3267809.3267823.

R. X. Luo, F. Ren, and T. Zhang, “High Performance Userspace Networking for Con-
tainerized Micro-services,” Springer, Cham, 2018, pp. 57–72.

S. X. Limon, A. Guerra-Hernandez, A. J. Sanchez-Garcia, and J. C. Perez Arriaga, “Saga-
MAS: A Software Framework for Distributed Transactions in the Micro-service Archi-
tecture,” in 2018 6th International Conference in Software Engineering Research and
Innovation (CONISOFT), Oct. 2018, pp. 50–58, doi:10.1109/CONISOFT.2018.8645853.

T. K. Jander, L. Braubach, and A. Pokahr, “Defense-in-depth and Role Authentication
for Micro-service Systems,” Procedia Comput. Sci., vol. 130, pp. 456–463, Jan. 2018,
doi:10.1016/J.PROCS.2018.04.047.

https://dl.acm.org/citation.cfm?id=3172823
https://dl.acm.org/citation.cfm?id=3172823

Appl. Sci. 2022, 12, 5507 34 of 40

U. S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying Micro-services Using
Functional Decomposition,” Springer, Cham, 2018, pp. 50–65.

V. T. Yarygina and A. H. Bagge, “Overcoming Security Challenges in Micro-service
Architectures,” in 2018 IEEE Symposium on Service-Oriented System Engineering
(SOSE), Mar. 2018, pp. 11–20, doi:10.1109/SOSE.2018.00011.

W. S. Sebastio, R. Ghosh, and T. Mukherjee, “An Availability Analysis Approach for
Deployment Configurations of Containers,” IEEE Trans. Serv. Comput., pp. 1–1, 2018,
doi:10.1109/TSC.2017.2788442.

X. S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh, “Using Service
Dependency Graph to Analyze and Test Micro-services,” in 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), Jul. 2018, pp. 81–86,
doi:10.1109/COMPSAC.2018.10207.

Y. A. Warke, M. Mohamed, R. Engel, H. Ludwig, W. Sawdon, and L. Liu, “Storage
Service Orchestration with Container Elasticity,” in 2018 IEEE 4th International Con-
ference on Collaboration and Internet Computing (CIC), Oct. 2018, pp. 283–292,
doi:10.1109/CIC.2018.00046.

Z. J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint Performance Issues with Causal
Graphs in Micro-service Environments,” Springer, Cham, 2018, pp. 3–20.

AA. Y. Sun, L. Meng, P. Liu, Y. Zhang, and H. Chan, “Automatic Performance Simulation
for Micro-service Based Applications,” Springer, Singapore, 2018, pp. 85–95.

AB. E. Bainomugisha, A. S. I. G. on S. Engineering, and ACM Digital Library., Partitioning
Micro-services: A Domain Engineering Approach. ACM, 2018.

AC. D. Guija and M. S. Siddiqui, “Identity and Access Control for micro-services based 5G
NFV platforms,” in Proceedings of the 13th International Conference on Availability,
Reliability and Security—ARES 2018, 2018, pp. 1–10, doi:10.1145/3230833.3233255.

AD. B. Mayer and R. Weinreich, “An Approach to Extract the Architecture of Micro-service-
Based Software Systems,” in 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE), Mar. 2018, pp. 21–30, doi:10.1109/SOSE.2018.00012.

AE. F. Klinaku, M. Frank, and S. Becker, “CAUS: An Elasticity Controller for a Container-
ized Micro-service” in Companion of the 2018 ACM/SPEC International Conference
on Performance Engineering—ICPE ’18, 2018, pp. 93–98, doi:10.1145/3185768.3186296.

AF. K. Jander, A. Pokahr, L. Braubach, and J. Kalinowski, “Service Discovery in Megascale
Distributed Systems,” Springer, Cham, 2018, pp. 273–284.

AG. M. J. Kargar and A. Hanifizade, “Automation of regression test in micro-service archi-
tecture,” in 2018 4th International Conference on Web Research (ICWR), Apr. 2018,
pp. 133–137, doi:10.1109/ICWR.2018.8387249.

AH. G. Pardon, C. Pautasso, and O. Zimmermann, “Consistent Disaster Recovery for
Micro-services: the BAC Theorem,” IEEE Cloud Comput., vol. 5, no. 1, pp. 49–59, Jan.
2018, doi:10.1109/MCC.2018.011791714.

AI. D. Monteiro, R. Gadelha, P. H. M. Maia, L. S. Rocha, and N. C. Mendonça, “Beethoven:
An Event-Driven Lightweight Platform for Micro-service Orchestration,” Springer,
Cham, 2018, pp. 191–199.

AJ. G. Fu, J. Sun, and J. Zhao, “An optimized control access mechanism based on micro-
service architecture,” in 2018 2nd IEEE Conference on Energy Internet and Energy
System Integration (EI2), Oct. 2018, pp. 1–5, doi:10.1109/EI2.2018.8582628.

AK. L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance Modeling and Workflow
Scheduling of Micro-service-based Applications in Clouds,” IEEE Trans. Parallel
Distrib. Syst., pp. 1–1, 2019, doi:10.1109/TPDS.2019.2901467.

AL. Y. Wang, L. Cheng, and X. Sun, “Design and Research of Micro-service Application Au-
tomation Testing Framework,” in Proceedings—2019 International Conference on In-
formation Technology and Computer Application, ITCA 2019, Dec. 2019, pp. 257–260,
doi:10.1109/ITCA49981.2019.00063.

Appl. Sci. 2022, 12, 5507 35 of 40

AM. E. Fadda, P. Plebani, and M. Vitali, “Monitoring-aware Optimal Deployment for
Applications based on Micro-services,” IEEE Trans. Serv. Comput., pp. 1–1, Jul. 2019,
doi:10.1109/tsc.2019.2910069.

AN. M. Lin, J. Xi, W. Bai, and J. Wu, “Ant Colony Algorithm for Multi-Objective Opti-
mization of Container-Based Micro-service Scheduling in Cloud,” IEEE Access, vol. 7,
pp. 83088–83100, 2019, doi:10.1109/ACCESS.2019.2924414.

AO. Y. Yu, J. Yang, C. Guo, H. Zheng, and J. He, “Joint optimization of service request
routing and instance placement in the micro-service system,” J. Netw. Comput. Appl.,
vol. 147, p. 102441, Dec. 2019, doi:10.1016/j.jnca.2019.102441.

AP. S. Li et al., “A dataflow-driven approach to identifying micro-services from monolithic
applications,” J. Syst. Softw., vol. 157, p. 110380, Nov. 2019, doi:10.1016/j.jss.2019.07.008.

AQ. O.-M. Ungureanu, C. Vlădeanu, and R. Kooij, “Kubernetes cluster optimization using
hybrid shared-state scheduling framework,” in Proceedings of the 3rd International
Conference on Future Networks and Distributed Systems—ICFNDS ’19, 2019, Ac-
cessed: Aug. 27, 2020. [Online]. Available: https://doi.org/10.1145/3341325.3341992.

AR. A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for cloud micro-service
applications,” in ICPE 2019—Proceedings of the 2019 ACM/SPEC International Confer-
ence on Performance Engineering, Apr. 2019, pp. 25–32, doi:10.1145/3297663.3310309.

AS. M. Cinque, R. Della Corte, and A. Pecchia, “Micro-services Monitoring with Event
Logs and Black Box Execution Tracing,” IEEE Trans. Serv. Comput., 2019,
doi:10.1109/TSC.2019.2940009.

AT. L. L. Jimenez and O. Schelen, “DOCMA: A decentralized orchestrator for container-
ized micro-service applications,” in Proceedings—2019 3rd IEEE International Confer-
ence on Cloud and Fog Computing Technologies and Applications, Cloud Summit
2019, Aug. 2019, pp. 45–51, doi:10.1109/CloudSummit47114.2019.00014.

AU. T. Kiss et al., “MiCADO—Micro-service-based Cloud Application-level Dynamic
Orchestrator,” Futur. Gener. Comput. Syst., vol. 94, pp. 937–946, May 2019,
doi:10.1016/J.FUTURE.2017.09.050.

AV. S. Wang, Z. Ding, and C. Jiang, “Elastic Scheduling for Micro-service Applications
in Clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 98–115, Jul. 2020,
doi:10.1109/tpds.2020.3011979.

AW. F. Wan, X. Wu, and Q. Zhang, “Chain-Oriented Load Balancing in Micro-service
System,” in 2020 World Conference on Computing and Communication Technologies
(WCCCT), May 2020, pp. 10–14, doi:10.1109/WCCCT49810.2020.9169996.

AX. G. Yu, P. Chen, and Z. Zheng, “Microscaler: Cost-effective Scaling for Micro-service
Applications in the Cloud with an Online Learning Approach,” IEEE Trans. Cloud
Comput., pp. 1–1, Apr. 2020, doi:10.1109/tcc.2020.2985352.

AY. A. Samanta and J. Tang, “Dyme: Dynamic Micro-service Scheduling in Edge Computing
Enabled IoT,” IEEE Internet Things J., pp. 1–1, Mar. 2020, doi:10.1109/jiot.2020.2981958.

AZ. Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and V. Muntés-Mulero,
“Graph-based root cause analysis for service-oriented and micro-service architectures,”
J. Syst. Softw., vol. 159, p. 110432, Jan. 2020, doi:10.1016/j.jss.2019.110432.

BA. S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment using containers
with auto-scaling for micro-services in cloud environment,” J. Netw. Comput. Appl.,
vol. 160, p. 102629, Jun. 2020, doi:10.1016/j.jnca.2020.102629.

BB. A. Avritzer et al., “Scalability Assessment of Micro-service Architecture Deployment
Configurations: A Domain-based Approach Leveraging Operational Profiles and
Load Tests,” J. Syst. Softw., vol. 165, p. 110564, Jul. 2020, doi:10.1016/j.jss.2020.110564.

BC. A. De Iasio and E. Zimeo, “A framework for micro-services synchronization,” Softw.
Pract. Exp., p. spe.2877, Aug. 2020, doi:10.1002/spe.2877.

BD. M. Imdoukh, I. Ahmad, and M. Alfailakawi, “Optimizing scheduling decisions of con-
tainer management tool using many-objective genetic algorithm,” Concurr. Comput.
Pract. Exp., vol. 32, no. 5, Mar. 2020, doi:10.1002/cpe.5536.

https://doi.org/10.1145/3341325.3341992

Appl. Sci. 2022, 12, 5507 36 of 40

BE. M. Autili, A. Perucci, and L. De Lauretis, “A Hybrid Approach to Micro-services Load
Balancing,” in Micro-services, Springer International Publishing, 2020, pp. 249–269.

BF. N. C. Coulson, S. Sotiriadis, and N. Bessis, “Adaptive Micro-service Scaling for Elastic
Applications,” IEEE Internet Things J., vol. 7, no. 5, pp. 4195–4202, May 2020,
doi:10.1109/JIOT.2020.2964405.

BG. M. Jin et al., “An Anomaly Detection Algorithm for Microservice Architecture Based on Ro-
bust Principal Component Analysis,” IEEE Access, 2020, doi:10.1109/ACCESS.2020.3044610.

BH. C. K. Rudrabhatla, “A Quantitative Approach for Estimating the Scaling Thresholds
and Step Policies in a Distributed Microservice Architecture,” IEEE Access, vol. 8,
pp. 180246–180254, 2020, doi:10.1109/ACCESS.2020.3028310.

BI. N. C. Coulson, S. Sotiriadis, and N. Bessis, “Adaptive Microservice Scaling for Elastic
Applications,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4195–4202, May 2020,
doi:10.1109/JIOT.2020.2964405.

BJ. X. Guo et al., “Graph-Based Trace Analysis for Microservice Architecture Understand-
ing and Problem Diagnosis,” Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, vol. 20, 2020, doi:10.1145/3368089.

BK. D. Monteiro, P. H. M. Maia, L. S. Rocha, and N. C. Mendonça, “Building orchestrated
microservice systems using declarative business processes,” Service Oriented Com-
puting and Applications, vol. 14, no. 4, pp. 243–268, Dec. 2020, doi:10.1007/S11761-
020-00300-2/FIGURES/12.

BL. D. Ernst and S. Tai, “Offline Trace Generation for Microservice Observability,”
Proceedings—IEEE International Enterprise Distributed Object Computing Work-
shop, EDOCW, pp. 308–317, 2021, doi:10.1109/EDOCW52865.2021.00062.

BM. A. A. Khaleq and I. Ra, “Intelligent Autoscaling of Microservices in the Cloud for Real-Time
Applications,” IEEE Access, vol. 9, pp. 35464–35476, 2021, doi:10.1109/ACCESS.2021.3061890.

BN. A. Bento et al., “A layered framework for root cause diagnosis of microservices,” 2021
IEEE 20th International Symposium on Network Computing and Applications (NCA),
pp. 1–8, Nov. 2021, doi:10.1109/NCA53618.2021.9685494.

BO. T. Weng, W. Yang, G. Yu, P. Chen, J. Cui, and C. Zhang, “Kmon: An In-kernel Trans-
parent Monitoring System for Microservice Systems with eBPF,” Proceedings—2021
IEEE/ACM International Workshop on Cloud Intelligence, CloudIntelligence 2021,
pp. 25–30, May 2021, doi:10.1109/CLOUDINTELLIGENCE52565.2021.00014.

BP. A. Megargel, C. M. Poskitt, and V. Shankararaman, “Microservices Orchestration vs. Choreog-
raphy: A Decision Framework,” pp. 134–141, Dec. 2021, doi:10.1109/EDOC52215.2021.00024.

BQ. Y. Chen, N. Chen, W. Xu, L. Lian, and H. Tu, “MFRL-CA: Microservice Fault Root
Cause Location based on Correlation Analysis,” pp. 90–101, Dec. 2021,
doi:10.1109/DSA52907.2021.00018.

BR. Y. Cai, B. Han, J. Li, N. Zhao, and J. Su, “ModelCoder: A Fault Model based Automatic
Root Cause Localization Framework for Microservice Systems,” 2021 IEEE/ACM 29th
International Symposium on Quality of Service, IWQOS 2021, Jun. 2021,
doi:10.1109/IWQOS52092.2021.9521318.

BS. M. Li, D. Tang, Z. Wen, and Y. Cheng, “Microservice Anomaly Detection Based
on Tracing Data Using Semi-supervised Learning,” 2021 4th International Confer-
ence on Artificial Intelligence and Big Data, ICAIBD 2021, pp. 38–44, May 2021,
doi:10.1109/ICAIBD51990.2021.9459100.

BT. C. Pasomsup and Y. Limpiyakorn, “HT-RBAC: A Design of Role-based Access Control
Model for Microservice Security Manager,” pp. 177–181, Dec. 2021,
doi:10.1109/BDEE52938.2021.00038.

BU. D. Liu et al., “MicroHECL: High-efficient root cause localization in large-scale mi-
croservice systems,” Proceedings—International Conference on Software Engineering,
pp. 338–347, May 2021, doi:10.1109/ICSE-SEIP52600.2021.00043.

Appl. Sci. 2022, 12, 5507 37 of 40

BV. Z. Ye, P. Chen, and G. Yu, “T-Rank: A lightweight spectrum based fault localization
approach for microservice systems,” Proceedings—21st IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing, CCGrid 2021, pp. 416–425,
May 2021, doi:10.1109/CCGRID51090.2021.00051.

BW. S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microservice applications
in clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1,
pp. 98–115, Jan. 2021, doi:10.1109/TPDS.2020.3011979.

BX. L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Exploring layered container
structure for cost efficient microservice deployment,” Proceedings—IEEE INFOCOM,
vol. 2021-May, May 2021, doi:10.1109/INFOCOM42981.2021.9488918.

BY. J. Grohmann et al., “SuanMing: Explainable Prediction of Performance Degrada-
tions in Microservice Applications,” ICPE 2021—Proceedings of the ACM/SPEC
International Conference on Performance Engineering, pp. 165–176, Apr. 2021,
doi:10.1145/3427921.3450248.

BZ. B. Choi, J. Park, C. Lee, and D. Han, “pHPA: A Proactive Autoscaling Framework for
Microservice Chain,” 5th Asia-Pacific Workshop on Networking (APNet 2021), vol. 7,
pp. 65–71, Jun. 2021, doi:10.1145/3469393.3469401.

CA. Y. Li, Y. Zhang, Z. Zhou, and L. Shen, “Intelligent flow control algorithm for microser-
vice system,” Cognitive Computation and Systems, vol. 3, no. 3, pp. 276–285, Sep.
2021, doi:10.1049/CCS2.12013.

CB. C. T. Joseph and K. Chandrasekaran, “Nature-inspired resource management and
dynamic rescheduling of microservices in Cloud datacenters,” Concurrency and
Computation: Practice and Experience, vol. 33, no. 17, p. e6290, Sep. 2021,
doi:10.1002/CPE.6290.

CC. M. Daoud, A. el Mezouari, N. Faci, D. Benslimane, Z. Maamar, and A. el Fazziki,
“A multi-model based microservices identification approach,” Journal of Systems
Architecture, vol. 118, p. 102200, Sep. 2021, doi:10.1016/J.SYSARC.2021.102200.

CD. L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A Kubernetes controller for
managing the availability of elastic microservice based stateful applications,” Journal
of Systems and Software, vol. 175, p. 110924, May 2021, doi:10.1016/J.JSS.2021.110924.

CE. L. Meng, F. Ji, Y. Sun, and T. Wang, “Detecting anomalies in microservices with execu-
tion trace comparison,” Future Generation Computer Systems, vol. 116, pp. 291–301,
Mar. 2021, doi:10.1016/J.FUTURE.2020.10.040.

CF. V. Cortellessa, D. di Pompeo, R. Eramo, and M. Tucci, “A model-driven approach
for continuous performance engineering in microservice-based systems,” Journal of
Systems and Software, vol. 183, p. 111084, Jan. 2022, doi:10.1016/J.JSS.2021.111084.

CG. J. Moeyersons, S. Kerkhove, T. Wauters, F. de Turck, and B. Volckaert, “Towards cloud-
based unobtrusive monitoring in remote multi-vendor environments,” Software:
Practice and Experience, vol. 52, no. 2, pp. 427–442, Feb. 2022, doi:10.1002/SPE.3029.

Appl. Sci. 2022, 12, 5507 38 of 40

Appendix B. Study Quality

Reporting Relevance Rigor Credibility

Aim

Scope,
Context

and
Design

Implications
in Practice and

Research

Validity
and

Reliability
of

Variables

Explicitness of
Measures

Adequacy
of

Reporting

Creditability,
Validity and
Reliability

Limitations

Primary
Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

A 1.0 1.0 0.5 0.5 0.0 0.0 0.5 0.0 3.5

B 1.0 1.0 0.5 0.5 0.0 0.0 0.5 0.0 3.5

C 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

D 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

E 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.0 6.5

F 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 3.5

G 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.0 6.5

H 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

I 1.0 1.0 0.5 0.5 0.0 0.0 0.5 0.0 3.5

J 1.0 1.0 1.0 0.5 0.0 0.0 1.0 1.0 5.5

K 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

L 0.5 1.0 1.0 1.0 0.5 1.0 1.0 0.0 6.0

M 0.5 0.5 1.0 1.0 1.0 1.0 1.0 0.0 6.0

N 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.0 6.5

O 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

P 1.0 1.0 0.5 0.0 0.0 0.0 0.5 0.5 3.5

Q 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

R 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.0 6.5

S 0.5 1.0 1.0 0.5 0.0 0.0 1.0 0.0 4.0

T 0.5 0.5 1.0 0.5 0.5 1.0 0.5 0.0 4.5

U 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 5.0

V 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 7.5

W 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

X 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

Y 1.0 1.0 1.0 0.5 0.0 0.0 1.0 1.0 5.5

Z 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

AA 0.5 1.0 1.0 1.0 0.5 1.0 1.0 0.0 6.0

AB 0.5 1.0 1.0 0.5 0.0 0.0 1.0 0.0 4.0

AC 1.0 1.0 1.0 0.5 0.0 0.0 0.5 0.0 4.0

AD 1.0 0.5 1.0 0.5 0.5 1.0 1.0 1.0 6.5

AE 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.0 6.5

AF 1.0 0.5 1.0 0.5 0.5 1.0 1.0 0.0 5.5

AG 1.0 1.0 0.5 0.5 0.0 0.0 0.5 0.0 3.5

AH 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 5.0

AI 1.0 1.0 1.0 0.5 0.0 1.0 0.5 1.0 6.0

AJ 1.0 0.5 0.5 0.5 0.0 0.0 1.0 1.0 4.5

AK 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

AL 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 4.0

AM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

AN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

AO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

AP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

AQ 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.5 5.5

AR 1.0 1.0 1.0 1.0 0.5 0.5 1.0 0.0 6.0

Appl. Sci. 2022, 12, 5507 39 of 40

Reporting Relevance Rigor Credibility

Aim

Scope,
Context

and
Design

Implications
in Practice and

Research

Validity
and

Reliability
of

Variables

Explicitness of
Measures

Adequacy
of

Reporting

Creditability,
Validity and
Reliability

Limitations

Primary
Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

AS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

AT 1.0 1.0 1.0 1.0 0.5 0.5 1.0 1.0 7.0

AU 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

AV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

AW 1.0 0.5 1.0 1.0 1.0 1.0 0.5 0.0 6.0

AX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

AY 1.0 1.0 1.0 0.5 1.0 0.5 1.0 0.0 6.0

AZ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

BA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

BB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

BC 1.0 1.0 1.0 0.5 1.0 1.0 1.0 0.5 7.0

BD 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.0 6.5

BE 1.0 1.0 1.0 1.0 0.0 0.0 0.5 0.0 4.5

BF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

BG 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

BH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

BI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

BJ 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.0 4.5

BK 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

BL 1.0 1.0 0.5 0.5 0.5 0.5 0.5 1.0 5.5

BM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

BN 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.0 4.0

BO 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.0 4.5

BP 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.0 5.0

BQ 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.0 6.5

BR 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.0 6.5

BS 1.0 1.0 0.5 0.5 1.0 1.0 1.0 0.5 6.5

BT 1.0 0.5 0.5 0.5 0.0 0.5 0.5 0.0 3.5

BU 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 7.5

BV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

BW 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

BX 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.0 6.5

BY 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 7.5

BZ 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.0 4.0

CA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

CB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 7.0

CD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

CE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

CF 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 8.0

CG 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 7.5

Appl. Sci. 2022, 12, 5507 40 of 40

References
1. Josuttis, N. Soa in Practice: The Art of Distributed System Design; O’Reilly Media, Inc.: Boston, MA, USA, 2007; ISBN 0596529554.
2. Fowler, M.; Lewis, J. Microservices. Available online: https://martinfowler.com/articles/microservices.html (accessed on 17

March 2022).
3. Newman, S. Building Microservices, 1st ed.; O’Reilly Media, Inc.: Boston, MA, USA, 2015; ISBN 1491950358, 9781491950357.
4. Evans, E. Domain-Driven Design: Tackling Complexity in the Heart of Software; Addison-Wesley: Reading, MA, USA, 2004.
5. Tekinerdogan, B.; Aksit, M. Classifying and evaluating architecture design methods. In Software Architectures and Component

Technology; Springer: Boston, MA, USA, 2002; pp. 3–27.
6. Di Francesco, P.; Lago, P.; Malavolta, I. Architecting with Microservices: A Systematic Mapping Study. J. Syst. Softw. 2019, 150,

77–97. [CrossRef]
7. Villamizar, M.; Garcés, O.; Castro, H.; Verano, M.; Salamanca, L.; Casallas, R.; Gil, S. Evaluating the Monolithic and the

Microservice Architecture Pattern to Deploy Web Applications in the Cloud. In Proceedings of the 2015 10th Computing
Colombian Conference (10CCC), Bogota, Colombia, 21–25 September 2015; pp. 583–590.

8. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Engineering 2007,
2, 1051–1052. [CrossRef]

9. O’Connor, R.V.; Elger, P.; Clarke, P.M. Continuous Software Engineering—A Microservices Architecture Perspective. J. Softw. Evol.
Process 2017, 29, e1866. [CrossRef]

10. Zimmermann, O. Microservices Tenets. Comput. Sci. 2017, 32, 301–310. [CrossRef]
11. Shadija, D.; Rezai, M.; Hill, R. Towards an Understanding of Microservices. In Proceedings of the ICAC 2017—2017 23rd IEEE

International Conference on Automation and Computing: Addressing Global Challenges through Automation and Computing,
Huddersfield, UK, 7–8 September 2017. [CrossRef]

12. Benevides, R. Istio on Kubernetes. Available online: http://bit.ly/istio-kubernetes%0A (accessed on 17 March 2022).
13. Jamshidi, P.; Pahl, C.; Mendonca, N.C.; Lewis, J.; Tilkov, S. Microservices: The Journey so Far and Challenges Ahead. IEEE Softw.

2018, 35, 24–35. [CrossRef]
14. Pahl, C.; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud Container Technologies: A State-of-the-Art Review. IEEE Trans. Cloud Comput.

2017, 7, 677–692. [CrossRef]
15. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic Literature Reviews in Software

Engineering—A Systematic Literature Review. Inf. Softw. Technol. 2009, 51, 7–15. [CrossRef]
16. Pattern: Saga. Available online: https://microservices.io/patterns/data/saga.html (accessed on 17 March 2022).
17. Brewer, E. CAP Twelve Years Later: How the “Rules” Have Changed. Computer 2012, 45, 23–29. [CrossRef]
18. Dybå, T.; Dingsøyr, T. Strength of Evidence in Systematic Reviews in Software Engineering. In Proceedings of the 2008 ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement, Kaiserslautern, Germany, 9–10 October 2008;
ACM Press: New York, NY, USA, 2008; pp. 178–187.

19. Tyszberowicz, S.; Heinrich, R.; Liu, B.; Liu, Z. Identifying Microservices Using Functional Decomposition; Springer: Cham, Switzerland,
2018; pp. 50–65.

20. Tekinerdogan, B.; Bilir, S.; Abatlevi, C. Integrating Platform Selection Rules in the Model Driven Architecture Approach. In Model
Driven Architecture. Lecture Notes in Computer Science; Aßmann, U., Aksit, M., Rensink, A., Eds.; Springer: Berlin/Heidelberg,
Germany, 2005; Volume 3599.

21. Aksakalli, I.K.; Celik, T.; Can, A.B.; Tekinerdogan, B. A Model-Driven Architecture for Automated Deployment of Microservices.
Appl. Sci. 2021, 11, 9617. [CrossRef]

22. Söylemez, M.; Tekinerdogan, B.; Kolukısa Tarhan, A. Feature-Driven Characterization of Microservice Architectures: A Survey of
the State of the Practice. Appl. Sci. 2022, 12, 4424. [CrossRef]

23. Pahl, C.; Jamshidi, P. Microservices: A Systematic Mapping Study. In Proceedings of the 6th International Conference on Cloud
Computing and Services Science, Rome, Italy, 23–25 April 2016; pp. 137–146. [CrossRef]

24. Soldani, J.; Andrew, D.; Van Den Heuvel, W.-J. The Journal of Systems and Software The Pains and Gains of Microservices: A
Systematic Grey Literature Review. J. Syst. Softw. 2018, 146, 215–232. [CrossRef]

25. Alshuqayran, N.; Ali, N.; Evans, R. A Systematic Mapping Study in Microservice Architecture. In Proceedings of the 2016 IEEE
9th International Conference on Service-Oriented Computing and Applications (SOCA), Macau, China, 4–6 November 2016;
pp. 44–51.

26. Vural, H.; Koyuncu, M.; Guney, S. A Systematic Literature Review on Microservices; Springer: Cham, Switzerland, 2017; pp. 203–217.
27. Bushong, V.; Abdelfattah, A.S.; Maruf, A.A.; Das, D.; Lehman, A.; Jaroszewski, E.; Coffey, M.; Cerny, T.; Frajtak, K.; Tisnovsky, P.;

et al. On Microservice Analysis and Architecture Evolution: A Systematic Mapping Study. Appl. Sci. 2021, 11, 7856. [CrossRef]
28. Muhammad, W.; Liang, P.; Shahin, M. A systematic mapping study on microservices architecture in devops. J. Syst. Softw. 2020,

170, 110798.
29. Cerny, T.; Donahoo, M.J.; Trnka, M. Contextual understanding of microservice architecture: Current and future directions. ACM

SIGAPP Appl. Comput. Rev. 2018, 17, 29–45. [CrossRef]
30. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, Today,

and Tomorrow. In Present and Ulterior Software Engineering; Mazzara, M., Meyer, B., Eds.; Springer: Cham, Switzerland, 2017.

https://martinfowler.com/articles/microservices.html
http://doi.org/10.1016/j.jss.2019.01.001
http://doi.org/10.1145/1134285.1134500
http://doi.org/10.1002/smr.1866
http://doi.org/10.1007/s00450-016-0337-0
http://doi.org/10.23919/IConAC.2017.8082018
http://bit.ly/istio-kubernetes%0A
http://doi.org/10.1109/MS.2018.2141039
http://doi.org/10.1109/TCC.2017.2702586
http://doi.org/10.1016/j.infsof.2008.09.009
https://microservices.io/patterns/data/saga.html
http://doi.org/10.1109/MC.2012.37
http://doi.org/10.3390/app11209617
http://doi.org/10.3390/app12094424
http://doi.org/10.5220/0005785501370146
http://doi.org/10.1016/j.jss.2018.09.082
http://doi.org/10.3390/app11177856
http://doi.org/10.1145/3183628.3183631

	Introduction
	Microservice Architecture
	Research Methodology
	Overview of Selected Studies
	Identified Challenges and Solution Directions
	RQ1. What Are the Identified Challenges in the MSA Domain?
	Service Discovery
	Data Management and Consistency
	Testing
	Performance Prediction, Measurement, and Optimization
	Communication and Integration
	Service Orchestration
	Security
	Monitoring, Tracing, and Logging (MTL)
	Decomposition

	RQ2. What Are the Identified Solution Directions?
	Service Discovery
	Data Management and Consistency
	Testing
	Performance Prediction, Measurement, and Optimization
	Communication and Integration
	Service Orchestration
	Security
	Monitoring, Tracing, and Logging
	Decomposition

	Discussion
	Related Work
	Conclusions
	Appendix A
	Appendix B
	References

