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Abstract: Automated detection of the content of images remains a challenging problem in artificial
intelligence. Hence, continuous manual monitoring of restricted development zones is critical to
maintaining territorial integrity and national security. In this regard, local governments of the Repub-
lic of Korea conduct four periodic inspections per year to preserve national territories from illegal
encroachments and unauthorized developments in restricted zones. The considerable expense makes
responding to illegal developments difficult for local governments. To address this challenge, we pro-
pose a deep-learning-based Cascade Mask region-based convolutional neural network (R-CNN)
algorithm designed to perform automated detection of greenhouses in aerial photographs for efficient
and continuous monitoring of restricted development zones in the Republic of Korea. Our proposed
model is regional-based because it was optimized for the Republic of Korea via transfer learning and
hyperparameter tuning, which improved the efficiency of the automated detection of greenhouse
facilities. The experimental results demonstrated that the mAP value of the proposed Cascade Mask
R-CNN model was 83.6, which was 12.83 higher than baseline mask R-CNN, and 0.9 higher than
Mask R-CNN with hyperparameter tuning and transfer learning considered. Similarly, the F1-score
of the proposed Cascade Mask R-CNN model was 62.07, which outperformed those of the baseline
mask R-CNN and the Mask R-CNN with hyperparameter tuning and transfer learning considered
(i.e., the F1-score 52.33 and 59.13, respectively). The proposed improved Cascade Mask R-CNN
model is expected to facilitate efficient and continuous monitoring of restricted development zones
through routine screening procedures. Moreover, this work provides a baseline for developing an
integrated management system for national-scale land-use planning and development infrastructure
by synergizing geographical information systems, remote sensing, and deep learning models.

Keywords: deep learning; computer vision; object detection; instance segmentation; aerial photograph

1. Introduction

Continuous monitoring of restricted development zones is essential for managing and
preserving the environment and the sustainability of the national heritage and territories
of states. Accordingly, the Republic of Korea’s regulations on the “prevention and control
of illegal activities in restricted development zones” state that local governments should
conduct special inspections at least four times each year. However, the authorities have
encountered difficulties in handling complaints regarding illegal greenhouse facilities and
encroachments in designated restricted development zones. Moreover, it is impractical to
periodically monitor the entire 3800 km2 nationwide expanses of the restricted development
areas, owing to limitations in human resources and budget constraints [1]. Although
greenhouses have positive agricultural importance, illegal encroachments dedicated to
such facilities in restricted development zones damage building infrastructure and forests.
Hence, continuous monitoring of greenhouse structures is critical.
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Alongside recent advancements in computing technology, cutting-edge research on
machine learning has been actively conducted in various fields, such as computer vision
and natural language processing. In the case of computer vision, object extraction method-
ologies such as You Only Look Once (YOLO)-based models [2–5], and deep learning-based
convolutional neural networks are rapidly being developed. These methodologies have
been applied to datasets of images collected from satellite, aerial, and drone-based plat-
forms to detect objects and record their information in a geospatial database for real-time
object detection and monitoring. In the case of object detection, these methodologies have
been extended to restricted development zones to perform automatic detection and moni-
toring. They can facilitate the continuous monitoring of restricted zones and enforcement
actions against illegal developments and land encroachments.

Therefore, the primary purpose of this study is to improve the initial sensing stage
of object detection methods through object recognition, and to ascertain the status of the
artificial building and greenhouse structures in restricted development zones. To achieve
this goal, we integrated a deep learning-based Cascade Mask region-based convolutional
neural network (Cascade Mask R-CNN) model [6]. This study used a total of 2054 selected
aerial images obtained from three cities (Hanam, Hwaseong, and Gunpo) in the Republic
of Korea. Here, the data used in this study consist primarily of information obtained from
the RGB bands. Previous literature studies reveal that, in order to detect objects from
images accurately, YOLO is applied to thermal images [7]. In contrast, other studies have
integrated both RGB and thermal images to detect objects [8].

However, due to the prevailing agro-meteorological conditions of the Republic of
Korea, the greenhouse’s temperature is similar to the outdoor environment, thereby making
it challenging to use thermal bands in our study area. In particular, greenhouses installed
in restricted development zones are in the form of unauthorized temporary buildings.
These greenhouses do not heat up in the summer season, which means that the thermal
bands will not add a big difference, and will only make our methodology more complex
and data-intensive. It is not consistent with the purpose of this study to use the thermal
band in the summer season. In addition, some greenhouses only have frames without
coating, and it is not easy to detect these objects with thermal bands. Therefore, aerial
images consisting of only RGB bands were used in this study.

The experiment results in the current manuscript demonstrated that our optimized
model yields better prediction accuracy compared with existing models. We further in-
vestigated which model and parameter combination can yield a better prediction of the
greenhouse by exploiting transfer learning and hyperparameter tuning, which were under-
taken to build an optimized model for greenhouse detection in the restricted development
zone of the Republic of Korea. We have experimentally investigated the potential perfor-
mance of our optimized model in the automated detection of greenhouse structures.

The remainder of this study is organized as follows. Section 2 provides a review
of the relevant literature. The experimental design, datasets, and research methodolo-
gies are presented in Section 3, followed by the results in Section 4, along with some
additional discussion. Finally, Section 5 concludes the work and suggests possible future
research avenues.

2. Background

In computer vision, image recognition using machine learning and deep learning
algorithms is generally performed to identify the key objects present in images for ac-
tive surveillance and monitoring purposes. A CNN algorithm was first introduced to
perform this function in 1998 as a step towards the effective recognition and processing
of images [9]. Recently, a modified and optimized CNN model was published in the
literature; Khan et al. [10] conducted a study on gap-filling in flux tower observations by
transforming the data into time-dependent images while training a two-dimensional CNN
algorithm to predict missing values more effectively. The inception of CNN models led to
subsequent progress in deep learning algorithms, and to the development of extended one-
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and two-stage object detection models. Single-stage models are mathematical structures in
which region proposal and classification are performed simultaneously; the two functions
are performed separately in two-stage models. Owing to the simultaneous calculation,
single-stage structures exhibit a faster calculation speed compared to two-stage models.

Based on the faster calculation speed of one-stage object detection models, they have
been widely used in various applications that require real-time detection at a relatively
faster speed. For example, YOLO [2], a one-stage object detection model, enables real-time
object detection by delivering input images simultaneously to an efficient backbone net-
work. YOLO has since developed into a more efficient and accurate model, YOLOv4 [5],
and is being used in various fields such as guest recognition [11]. Despite its faster com-
putation speed, YOLO has a significant drawback: its input object size must be smaller
than a 7 × 7 grid. This limitation was subsequently addressed by the Single Shot MultiBox
Detector (SSD) algorithm [12], which can handle objects of more diverse sizes by integrat-
ing feature maps of various sizes. Despite their greater computational efficiency, these
one-stage models are limited in that they cannot provide higher accuracy than two-stage
models. For example, Lin et al. [13] developed the RetinaNet model as an optimized
single-stage model. It introduced a focal loss function to maintain good accuracy and better
computational efficiency, solving the severe class imbalance problem between foreground
and background classes, and eventually obtaining accuracy similar to that of two-stage
models. This means that the RetinaNet model provided a better trade-off between accuracy
and computational efficiency, which enabled these one-stage models to be applied in a
relatively wide range of application areas.

Similarly, the single-stage CornerNet model [14] also demonstrated good performance
compared with the existing two-stage models by detecting a bounding box of objects
with a pair of key points without utilizing the anchor-box concept introduced in the Fast
R-CNN [15] model. Moreover, the single-stage RefineDet model [16] improved class imbal-
ance by filtering negative anchors with an Anchor Refinement Module (ARM), enabling
an Object Detection Module (ODM) to generate more accurate predictions. It is notewor-
thy that all these single-stage methodologies are actively used in fields where real-time
detection is essential, such as autonomous driving [2,17–19]. However, when static objects,
such as buildings and greenhouses, need to be detected, applying single-stage models is
inappropriate because such applications require higher accuracy than computational speed.

Of note, two-stage object detection models have the disadvantage of a slower com-
putational speed; however, they have the advantage of providing a relatively higher
computational accuracy than single-stage models. For example, the two-stage model
R-CNN [20] demonstrated higher computational accuracy than conventional single-stage
models by combining a Region Proposal Network (RPN) and a CNN. Similarly, the two-
stage SPP-Net model solved the problem of distortion and slower computational speed by
adding a spatial pyramid pooling layer to solve the image information loss caused by crop
and warp operations in R-CNN. Moreover, the two-stage Fast R-CNN model [15] intro-
duced regional feature extraction ideas to solve the problem of multi-stage pipelines, which
was a bottleneck of existing R-CNN and CNN methods. The Faster R-CNN model [21]
showed an unprecedented speed improvement by introducing RPN to the Fast R-CNN
model. Since then, numerous studies based on faster R-CNN have been conducted to
solve various problems in the models to address the current limitations in their compu-
tational speed. The R-FCN model [22] was proposed along these lines, which effectively
solved the translation invariance dilemma through a position-sensitivity score and pooling
by encoding the location information of objects by class. In contrast, recently, the Mask
R-CNN model [23] replaced Region of Interest pooling (RoI pooling) with Region of Interest
Alignment (RoI-Align) to estimate the exact location of the object on the Faster R-CNN for
instance segmentation, and maintained a better trade-off between computational speed
and accuracy.

To simultaneously improve computational speed and accuracy, researchers have
recently proposed multi-stage algorithms, such as Cascade object detection methods,
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in which the algorithms mentioned above are modeled in multi-stage settings. For example,
the MR-CNN model [24] was proposed as an iterative region adaptation module to create
a more accurate bounding box in a multi-stage structure. Similarly, the Attention-net
model [25] was proposed as an alternative to sequential localization of bounding boxes
of detected objects, which repeatedly used the same regression to locate them accurately.
Moreover, Li et al. [26] proposed moving the face area of the ground truth to the closest
location by adjusting the face candidate area through a CNN of the Cascade structure for
accurate face detection.

However, in the case of existing object detection methods, useful information in the
bounding box with an Intersections over Union (IoU) value of less than 0.5 was not utilized
because the IoU was generally set to a value of 0.5 or higher than 0.5. The Cascade R-CNN
identified this problem. Object detection models with different IoU criteria were merged
into Cascade structures to utilize the information from the low IoU bounding box, which
verified performance improvements for Cascade structures with different IoU criteria [27].
In contrast, the HTC model [28] modified the object detection and object segmentation
layers connected in parallel to the Cascade R-CNN into a cross-array structure. This
approach improved the information flow connecting the mask features extracted during
each stage. Similarly, ref. [29] demonstrated the high performance of their proposed multi-
stage models by combining bi-directional pyramid networks (BPN) and three IoU learning
steps with the SSD structure.

Notably, all of these studies used the Cascade structure to achieve high-quality de-
tection. Therefore, considering the potential of the Cascade-based structure, in this study,
we aimed to detect houses and greenhouses in various environmental settings prevalent
in aerial images by investigating the proposed optimized Cascade Mask R-CNN model.
In this study, hyperparameter tuning and transfer learning were performed to optimize
the Cascade Mask R-CNN model to detect and optimize greenhouses using 2054 aerial
images. The results obtained from the Cascade Mask R-CNN were further compared with
the baseline Mask R-CNN and Mask R-CNN to scrutinize the accuracy of our optimized
Cascade Mask R-CNN model.

In addition, the recent advancements in sensor and data processing technologies result
in better depth maps in conjunction with RGB information to facilitate improved object
detection [30–32]. However, object detection using RGB bands and depth information may
not be appropriate under all environmental conditions, specifically for images taken at
a time or place with little or no light at all. On the other hand, thermal images are less
sensitive to light, which means they can be contaminated with haze and cloudy atmo-
spheric conditions. Therefore, few researchers have reported that the thermal images may
complement the RGB images for higher-accuracy object detection, which needs to be further
investigated [33,34]. However, considering the prevailing environmental conditions of our
study area, this study utilizes RGB images from aerial photographs to detect greenhouses
accurately. Thus, this study focuses on deep learning approaches such as the Cascade Mask
R-CNN and the Mask R-CNN.

3. Materials and Methods
3.1. Area of Study and Data

This study utilized 2054 aerial images of restricted development zones in the Repub-
lic of Korea. The Ministry of Land, Infrastructure, and Transport (MOLIT), which is a
government agency of the Republic of Korea, provides data on restricted development
zones designated throughout the country in Shapefile (.SHP) format [35]. We can construct
2054 aerial images based on the retrieved dataset, including restricted development zones.

The dataset comprised a set of aerial photographs obtained from three big cities (e.g.,
Hanam, Hwaseong, and Gunpo) of the Republic of Korea, including two types of object
information, such as greenhouse facilities and residences. The cameras for capturing all
three cities have the same resolution of 25 cm. All aerial images are 410 × 410 pixels in
size, including various environments, such as forests, urban areas, roads, and agricultural
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landscapes. In the Republic of Korea, restricted development zones are designated to
preserve the green environment necessary for the health of citizens, so the environment
is not very different in different cities. Therefore, there was no significant difference
between the three cities. Accordingly, out of 2054 images containing data from three cities,
1643 randomly selected aerial images (80%) were used to train and validate the proposed
model, and 411 images were used for model evaluation. The ground-truth values required
for model training and evaluation were created using the VGG Image Annotator (VIA)
tool [36] to create a mask of houses and greenhouses appearing in aerial images (Figure 1).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 13 
 

designated throughout the country in Shapefile (.SHP) format [35]. We can construct 2054 
aerial images based on the retrieved dataset, including restricted development zones. 

The dataset comprised a set of aerial photographs obtained from three big cities (e.g., 
Hanam, Hwaseong, and Gunpo) of the Republic of Korea, including two types of object 
information, such as greenhouse facilities and residences. The cameras for capturing all 
three cities have the same resolution of 25 cm. All aerial images are 410 × 410 pixels in size, 
including various environments, such as forests, urban areas, roads, and agricultural land-
scapes. In the Republic of Korea, restricted development zones are designated to preserve 
the green environment necessary for the health of citizens, so the environment is not very 
different in different cities. Therefore, there was no significant difference between the 
three cities. Accordingly, out of 2054 images containing data from three cities, 1643 ran-
domly selected aerial images (80%) were used to train and validate the proposed model, 
and 411 images were used for model evaluation. The ground-truth values required for 
model training and evaluation were created using the VGG Image Annotator (VIA) tool 
[36] to create a mask of houses and greenhouses appearing in aerial images (Figure 1). 

 
Figure 1. Object information extracted from an aerial photograph, including greenhouse structure 
and residence annotations. 

This study used Amazon Web Service (AWS) to implement our proposed model, 
which provided high-performance computations. The overall system architecture of our 
study is presented in Figure 2. First, aerial image data were uploaded to an AWS S3 
bucket, and then the data were preprocessed using the Python programming language. 
The Cascade Mask R-CNN used in this study was implemented using TensorFlow and 
the Keras framework. Model learning and performance evaluation were conducted in en-
vironments of p2.xlarge (61 GB memory and a graphics processing unit (GPU) with 11,441 
MB) and CUDA version 10.0. 

 
Figure 2. The system architecture implemented in the current study. 

Figure 1. Object information extracted from an aerial photograph, including greenhouse structure
and residence annotations.

This study used Amazon Web Service (AWS) to implement our proposed model,
which provided high-performance computations. The overall system architecture of our
study is presented in Figure 2. First, aerial image data were uploaded to an AWS S3 bucket,
and then the data were preprocessed using the Python programming language. The Cas-
cade Mask R-CNN used in this study was implemented using TensorFlow and the Keras
framework. Model learning and performance evaluation were conducted in environments
of p2.xlarge (61 GB memory and a graphics processing unit (GPU) with 11,441 MB) and
CUDA version 10.0.
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3.2. Mask R-CNN

The structure of Mask R-CNN models includes mask branches and RoI-Align for “in-
stance segmentation”, and a Feature Pyramid Network (FPN) is added to reduce operations
in Faster R-CNN. A mask branch is a form in which a small Full Convolutional Network
(FCN) is added to each RoI. To perform segmentation tasks more effectively, an RoI-Align
layer that preserves spatial information of objects was added to the Mask R-CNN.
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The process of the Mask R-CNN is as follows. First, the Mask R-CNN adjusts the
image through bilinear interpolation, and then adjusts the image size to 1024 × 1024 with
zero padding to fit the input size of the convolutional backbone. Next, feature maps (C1, C2,
C3, C4, C5) are created at each layer through ResNet-50 or ResNet-101, and feature maps
P2, P3, P4, P5, and P6 are created at the FPN. Each of the final generated feature maps are
classified by applying an RPN, and the bounding box regression output value is derived.
The bounding box regression value obtained through this method is projected onto the
original image to generate an anchor box. Then, all the anchor boxes, except those with the
highest score, are removed through Non-Maximum Suppression (NMS) anchor boxes of
different sizes, and are aligned with RoI-Align. Finally, the anchor box is passed through
the head of the Mask R-CNN structure. Of note, the Mask R-CNN performs localization
and instance segmentation of objects through this process.

3.3. Cascade Mask R-CNN

Single-classifiers involve two main problems in general object detection methods.
First, if IoU is too high, the number of positive samples decreases, resulting in overfitting.
Second, the IoU differs between “training” and “inference” procedures. To address this
limitation, Cai and Vasconcelos [6] proposed a Mask R-CNN-based Cascade structure.
The model comprises 4-stage structures. First, based on the bounding box generated
through the RPN, the region proposal is generated using the lowest detector with an IoU
threshold of 0.5. The generated region proposal is used to train a detector with an IoU of
0.6. A detector with a value of 0.7 IoU is trained from the corresponding detector to derive
a final output value. Here, the cascade structure is not only applied to the training stage,
but also used for inference. Therefore, the Cascade Mask R-CNN model implemented in the
current study used the Cascade structure proposed by Cai and Vasconcelos [6]. We apply
transfer learning and hyperparameter tuning to the aforementioned Mask R-CNN and
Cascade Mask R-CNN to verify which model and parameter combinations can find the
greenhouse correctly.

4. Results and Discussion

This section is divided into the following three sub-sections to investigate the perfor-
mance of our proposed model.

1. We explain the results obtained from our experimental design, in which the trans-
fer learning, hyperparameter tuning, and the values of the final hyperparameters
are explained.

2. We scrutinize the performance of our proposed model, and compare it with two
existing models (baseline Mask R-CNN and Mask R-CNN).

3. We visualize the object-detection results obtained from the Cascade Mask R-CNN.

To optimally detect objects in aerial images, model optimization and tuning are
paramount, specifically the estimation of hyperparameters that are useful for obtaining
the most out of our datasets. Various combinations of hyperparameters are possible in
the proposed model. However, to achieve the best accuracy, it is crucial to search for the
optimal parameters for the input datasets.

Their performance was then investigated for each combination of hyperparameters
against each experiment based on a statistical indicator value, such as Average Precision
(AP) and mean Average Precision (mAP) [19]. AP is an indicator of precision and recall,
which is derived by calculating the area below the precision–recall curve. After calculating
the AP for each image, the value obtained by averaging all values corresponds to the mAP.

Table 1 shows the experimental values for each of the four parameters that significantly
affect the model performance among the parameters of the Cascade Mask R-CNN and
Mask R-CNN. In the case of transfer learning, the layer to be learned is determined
according to the ResNet backbone stage based on a model pre-trained with the Microsoft
Common Object in the Context (MSCO) dataset. Notably, based on our results, transfer
learning in the Cascade Mask R-CNN showed high performance when set to 3+, whereas
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all other parameters, such as learning rate, were set to 0.0003, the backbone to ResNet-101,
and image sizes to 768 × 768 and 1,024 × 1,024, respectively. The Mask R-CNN showed
high performance when transfer learning was set to 3+, learning rate to 0.001, the backbone
to ResNet-101, and image size to 768 × 768 and 1,024 × 1,024, respectively. These results
are presented in Table 1.

Table 1. Results of the experiment by major hyperparameters.

Hyperparameter Input Cascade
Mask R-CNNmAP

Mask R-CNN
mAP

Transfer
Learning

Heads 49.29 48.28
5+ 77.11 55.08
4+ 78.95 74.24
3+ 79.79 74.52
all 79.96 72.64

Learning Rate

0.005 67.00 59.63
0.001 75.47 66.72
0.0001 76.23 63.18
0.0003 78.86 61.13

Backbone
Resnet-50 77.32 67.94
Resnet-101 78.95 70.57

Image Size

256 × 256 60.62 48.68
512 × 512 65.63 67.59
768 × 768 76.38 70.45

1024 × 1024 76.85 70.56

Tables 2 and 3 show the hyperparameter values finally determined for the Cascade
Mask R-CNN and Mask R-CNN. Here, 3+ was set as the layer to perform transfer learning,
and the image size was set to 768 × 768. It was determined that there was no significant
difference in performance compared to all sizes and 1024 × 1024, which showed the
highest performance, as shown in Table 1. For example, the learning Cascade Mask
R-CNN at 768 × 768 took 585 min, whereas learning models at 1024 × 1024 took 773 min,
an increase of about 32.1% in training time. The Mask R-CNN model also took 553 min
when learning at 768 × 768, but learning at 1024 × 1024 took 716 min, an increase of about
29.5%. Therefore, we decided to slightly lower the training time by selecting a one-step
lower value. In addition, to prevent too many objects from being detected with lower
accuracy, the minimum detection confidence was set to 0.9.

Table 2. Values of Cascade Mask R-CNN hyperparameters.

Hyperparameters Input

NUM classes 1 + 2
Step per epoch 200

Detection min confidence 0.9
Backbone Resnet-101

Image resize mode square
Image max dim 768

Image channel count 3(RGB)
Max GT instances 70

Train ROIS per image 256
RP anchor scales (12, 32, 64, 128, 256)

Detection max instances 50
Learning rate 0.0003
Weight decay 0.00003

RPN train anchors per image 320
Layers 3+
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Table 3. Values of Mask R-CNN hyperparameters.

Hyperparameters Input

NUM classes 1 + 2
Step per epoch 200

Detection min confidence 0.9
Backbone Resnet-101

Image resize mode square
Image max dim 768

Image channel count 3(RGB)
Max GT instances 70

Train ROIS per image 256
RP anchor scales (12, 32, 64, 128, 256)

Detection max instances 50
Learning rate 0.001
Weight decay 0.00003

RPN train anchors per image 320
Layers 3+

Based on the hyperparameter values, the performances of the three selected models in
the current study were evaluated using all available input datasets. The results presented
in Table 4 demonstrate that the proposed Cascade Mask R-CNN model performed better
than the baseline Mask R-CNN and the Mask R-CNN models. The performance evaluation
results show that our proposed Cascade Mask R-CNN model exhibited better performance
compared with the two selected models, with an mAP value of 83.60, compared with
70.77 for the baseline Mask R-CNN, and 81.70 for the Mask R-CNN models. These results
show that the proposed Cascade Mask R-CNN model demonstrated superior performance,
with an mAP value of 1.9, larger than that of the Mask R-CNN, when we considered
hyperparameter tuning and transfer learning, and an mAP value of 12.83, larger than that
of the baseline Mask R-CNN model.

Table 4. Performance of proposed model compared with two other models (baseline Mask R-CNN,
and Mask R-CNN).

Model mAP F1-Score

baseline Mask R-CNN 70.77 52.33

Mask R-CNN
(hyperparameter tuning and transfer learning) 81.70 59.13

Cascade Mask R-CNN
(hyperparameter tuning and transfer learning) 83.60 62.07

In addition, this study utilized an alternative metric (i.e., the F1-score) to prove the
superiority of the proposed model. The F1-score summarizes both the precision and
recall values as the harmonic mean [37]. The proposed Cascade Mask R-CNN model
outperformed (i.e., achieved higher F1-scores, by 2.94) the Mask R-CNN with hyperparam-
eter tuning and transfer learning. In comparison with the baseline Mask R-CNN model,
the proposed Cascade Mask R-CNN model also outperformed (i.e., a 9.74 higher value).

Although the calculation time of the Mask R-CNN is better than the Cascade Mask
R-CNN, the Cascade Mask R-CNN for greenhouse detection performed better than the
Mask R-CNN in terms of the accuracy.

In this subsection, we demonstrate the prediction accuracies of the proposed Cascade
Mask R-CNN model in predicting objects using two experiments, and present the results in
Figure 3. For the first experiment using the input dataset (Figure 3a), the results presented
in Figure 3b demonstrate that two small greenhouses located inside the forests were
accurately predicted, which shows that the model exhibited good performance. To assess
the performance of our proposed model in a complex landscape, we conducted the second
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experiment in a more complex environmental setting in which a large number of mixed
objects were present in the input imagery (Figure 3c). Figure 3c shows a total of 35 objects,
including a house and a greenhouse house, in a single image. It is noteworthy that the
proposed Cascade Mask R-CNN model accurately detected ~94% of the ground-truth
objects, as presented in Figure 3d, in which 33 out of 35 objects were successfully detected;
two objects could not be detected. The better performance of our proposed Cascade Mask
R-CNN model is attributed to the adopted localization scheme, instrument segmentation,
and the optimization of the model for the selected study area.
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Figure 3. The model results before and after the experiment. (a) Annotations in original image
before experiment 1. (b) Mask and bounding box of detected objects after applying the Cascade
Mask R-CNN model for Experiment 1. (c) Annotations in the original image before experiment 2.
(d) Mask and bounding box of detected objects after applying the Cascade Mask R-CNN model
for Experiment 2.

The visual comparison of the object detection for the proposed Cascade Mask R-CNN
and Mask R-CNN is shown in Figure 4. Figure 4a presents the input dataset with annota-
tions. In Figure 4b, the Mask R-CNN with hyperparameter tuning and transfer learning
shows that it could not detect one small greenhouse in the center of the forest. However,
the proposed cascade Mask R-CNN accurately detected the greenhouses, and it is presented
in Figure 4c.

In this subsection, we detail the limitations of the proposed model. Our results revealed
that the proposed Cascade Mask R-CNN model optimized in the current study detected
objects of the same class poorly when they were placed at some inclined angle. This implies
that the performance of the optimized Cascade Mask R-CNN model deteriorated slightly
based on the complex angle information of the objects. For example, the results presented
in Figure 5 demonstrate that when greenhouses were closely located in a complex setting
with inclined objects, all objects were successfully detected, except for four greenhouses
placed at an angle. Hence, if the angle is inclined in the case of objects with a large aspect



Appl. Sci. 2022, 12, 5553 10 of 13

ratio, the overlapping area with the bounding box of the surrounding objects is relatively
increased. This results in a foreground instance class ambiguity problem [38,39], which
was responsible for the deterioration of the performance of our proposed model. Therefore,
in future studies, a robust experimental design should be developed by incorporating a
rotated bounding box during the training and model optimization process, which might
increase the prediction accuracies of the models under complex environmental settings.
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5. Conclusions and Future Prospects

For the protection, restoration, and advancement of the sustainable use of land and
ecosystems, the efficient management of restricted development zones is essential, and is
among the Sustainable Development Goals established by the United Nations. This study
has provided an optimized and improved deep-learning-based Cascade Mask R-CNN
model designed to detect greenhouse facilities automatically. For this purpose, the present
work has investigated 2054 aerial images of three large cities (Hanam, Hwaseong, and Gunpo)
in the Republic of Korea. Our Cascade Mask R-CNN model was optimized by integrating
transfer learning and hyperparameter tuning based on a set of randomly selected aerial
images comprising 80% of the original dataset.
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The results obtained from our proposed model have been evaluated compared with
those of two existing models (baseline Mask R-CNN and Mask R-CNN) using statistical
indicators such as mean Average Precision (mAP). The results show that our proposed
model obtained an mAP value of 83.60, thus outperforming the baseline Mask R-CNN
model, which had a lower mAP value of 70.77, and the Mask R-CNN, with an mAP value of
81.70. In terms of F1-score, our proposed model obtains a value of 62.07, outperforming the
baseline Mask R-CNN model, with a lower F1-score value of 52.33, and the Mask R-CNN
model, with an F1-score value of 59.13.

Although the operation time of the Mask R-CNN is slightly better than the Cascade
Mask R-CNN, the accuracy of the Cascade Mask R-CNN is better than the Mask R-CNN,
which we have reported in the current study. This study aims to detect illegal encroach-
ments, such as greenhouses, in the restricted development zones. Therefore, it is crucial to
detect greenhouses with better prediction accuracy through routine screening procedures
regardless of the increased operation time.

The superior performance of our proposed Cascade Mask R-CNN model is attributed
to the localization scheme adopted, as well as to instrument segmentation and the opti-
mization of the model for the selected study area. We noticed a slight deterioration in the
performance of our proposed model, which is attributed to the instance class ambiguity
problem, which is related to the horizontally-oriented bounding box structure used during
the training stage. Future works should focus on incorporating rotated bounding boxes
into the structure of the object detection pipeline to address this limitation and further
improve the performance of the proposed Cascade Mask R-CNN model.

Further, recently, new approaches for object detection have been proposed. For ex-
ample, training a model by separating a training sample by considering the different
sensitivities of classification and regression [40] or segmenting instances and inferring
relative importance rankings [41] have been proposed. Further investigation should focus
on the design of a robust algorithm for detecting greenhouses accurately.

The optimized Cascade Mask R-CNN model proposed in this study is expected
to facilitate the automatic and accurate detection of greenhouses and similar structures,
as well as the development of plans to control illegal encroachments, which will provide
policymakers with a baseline for the sustainable development of restricted zones in the
Republic of Korea, as well as similar regions across the globe.

Author Contributions: Conceptualization, H.Y.O.; methodology, H.Y.O., M.S.K., S.B.J. and M.-H.J.;
software, H.Y.O., M.S.K., S.B.J. and M.-H.J.; validation, H.Y.O., M.S.K., S.B.J. and M.-H.J.; formal
analysis, H.Y.O., M.S.K., S.B.J. and M.-H.J.; investigation, H.Y.O., M.S.K., S.B.J. and M.-H.J.; resources,
H.Y.O., M.S.K., S.B.J. and M.-H.J.; data curation, H.Y.O., M.S.K., S.B.J. and M.-H.J.; writing—original
draft preparation, H.Y.O.; writing—review and editing, H.Y.O., M.S.K., S.B.J. and M.-H.J.; visualiza-
tion, H.Y.O. and M.S.K.; supervision, M.-H.J.; project administration, M.-H.J.; funding acquisition,
M.-H.J. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was supported by “Ministry of the Interior and Safety” R&D program (20017423).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy and copyright.

Conflicts of Interest: The authors declare no conflict of interest regarding the publication of this manuscript.

References
1. Park, J.H. A Study on Policy Changes the Green Belt by Analyzing of Official Gazette. Geogr. J. Korea 2021, 55, 57–72.
2. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
3. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.



Appl. Sci. 2022, 12, 5553 12 of 13

4. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
5. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
6. Cai, Z.; Vasconcelos, N. Cascade r-cnn: High quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 2019, 43, 1483–1498. [CrossRef] [PubMed]
7. Krišto, M.; Ivasic-Kos, M.; Pobar, M. Thermal object detection in difficult weather conditions using YOLO. IEEE Access 2020, 8,

125459–125476. [CrossRef]
8. Devaguptapu, C.; Akolekar, N.; Sharma, M.M.; Balasubramanian, V.N. Borrow from anywhere: Pseudo multi-modal object

detection in thermal imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 1029–1038.

9. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

10. Khan, M.S.; Jeon, S.B.; Jeong, M.-H. Gap-Filling Eddy Covariance Latent Heat Flux: Inter-Comparison of Four Machine Learning
Model Predictions and Uncertainties in Forest Ecosystem. Remote Sens. 2021, 13, 4976. [CrossRef]

11. Shang-Liang, C.; Li-Wu, H. Using Deep Learning Technology to Realize the Automatic Control Program of Robot Arm Based on
Hand Gesture Recognition. Int. J. Eng. Technol. Innov. 2021, 11, 241.

12. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

13. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

14. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

15. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

16. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4203–4212.

17. Wu, B.; Iandola, F.; Jin, P.H.; Keutzer, K. Squeezedet: Unified, small, low power fully convolutional neural networks for real-time
object detection for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 129–137.

18. Tao, A.; Barker, J.; Sarathy, S. Detectnet: Deep Neural Network for Object Detection in Digits. Parallel Forall 2016. Available online:
https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits (accessed on 22 December 2021).

19. Lee, T.-Y.; Jeong, M.-H.; Peter, A. Object Detection of Road Facilities Using YOLOv3 for High-definition Map Updates. Sens. Mater.
2022, 34, 251–260. [CrossRef]

20. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

21. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

22. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst.
2016, 29, 379–387.

23. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

24. Gidaris, S.; Komodakis, N. Object detection via a multi-region and semantic segmentation-aware cnn model. In Proceedings of
the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1134–1142.

25. Yoo, D.; Park, S.; Lee, J.-Y.; Paek, A.S.; So Kweon, I. Attentionnet: Aggregating weak directions for accurate object detection.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2659–2667.

26. Li, H.; Lin, Z.; Shen, X.; Brandt, J.; Hua, G. A convolutional neural network cascade for face detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5325–5334.

27. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.

28. Chen, K.; Pang, J.; Wang, J.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Shi, J.; Ouyang, W. Hybrid task cascade for instance
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 4974–4983.

29. Wu, X.; Sahoo, D.; Zhang, D.; Zhu, J.; Hoi, S.C. Single-shot bidirectional pyramid networks for high-quality object detection.
Neurocomputing 2020, 401, 1–9. [CrossRef]

30. Zhu, C.; Cai, X.; Huang, K.; Li, T.H.; Li, G. PDNet: Prior-model guided depth-enhanced network for salient object detection.
In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019;
pp. 199–204.

31. Chen, Z.; Cong, R.; Xu, Q.; Huang, Q. DPANet: Depth potentiality-aware gated attention network for RGB-D salient object
detection. IEEE Trans. Image Process. 2020, 30, 7012–7024. [CrossRef] [PubMed]

http://doi.org/10.1109/TPAMI.2019.2956516
http://www.ncbi.nlm.nih.gov/pubmed/31794388
http://doi.org/10.1109/ACCESS.2020.3007481
http://doi.org/10.1109/5.726791
http://doi.org/10.3390/rs13244976
https://devblogs.nvidia.com/detectnet-deep-neural-network-object-detection-digits
http://doi.org/10.18494/SAM3732
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1016/j.neucom.2020.02.116
http://doi.org/10.1109/TIP.2020.3028289
http://www.ncbi.nlm.nih.gov/pubmed/33141667


Appl. Sci. 2022, 12, 5553 13 of 13

32. Chen, L.; Sun, J.; Xie, Y.; Zhang, S.; Shuai, Q.; Jiang, Q.; Zhang, G.; Bao, H.; Zhou, X. Shape Prior Guided Instance Disparity
Estimation for 3D Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [CrossRef] [PubMed]

33. Ma, Y.; Sun, D.; Meng, Q.; Ding, Z.; Li, C. Learning multiscale deep features and SVM regressors for adaptive RGB-T saliency
detection. In Proceedings of the 2017 10th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou,
China, 9–10 December 2017; pp. 389–392.

34. Ha, Q.; Watanabe, K.; Karasawa, T.; Ushiku, Y.; Harada, T. MFNet: Towards real-time semantic segmentation for autonomous
vehicles with multi-spectral scenes. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 5108–5115.

35. MOLIT. Restricted Development Zone Data in Republic of Korea. 2022. Available online: http://data.nsdi.go.kr/dataset/15147
(accessed on 22 December 2021).

36. Dutta, A.; Gupta, A.; Zissermann, A. VGG Image Annotator (VIA). 2016. Available online: http://www.robots.ox.ac.uk/~{}vgg/
software/via (accessed on 22 December 2021).

37. Jeong, M.H.; Sullivan, C.J.; Gao, Y.; Wang, S. Robust abnormality detection methods for spatial search of radioactive materials.
Trans. GIS 2019, 23, 860–877. [CrossRef]

38. Jiang, Y.; Zhu, X.; Wang, X.; Yang, S.; Li, W.; Wang, H.; Fu, P.; Luo, Z. R2cnn: Rotational region cnn for orientation robust scene
text detection. arXiv 2017, arXiv:1706.09579.

39. Yang, X.; Sun, H.; Fu, K.; Yang, J.; Sun, X.; Yan, M.; Guo, Z. Automatic ship detection in remote sensing images from google earth
of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sens. 2018, 10, 132. [CrossRef]

40. Wang, D.; Shang, K.; Wu, H.; Wang, C. Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization. IEEE
Trans. Circuits Syst. Video Technol. 2022. [CrossRef]

41. Liu, N.; Li, L.; Zhao, W.; Han, J.; Shao, L. Instance-Level Relative Saliency Ranking with Graph Reasoning. IEEE Trans. Pattern
Anal. Mach. Intell. 2021. [CrossRef] [PubMed]

http://doi.org/10.1109/TPAMI.2021.3076678
http://www.ncbi.nlm.nih.gov/pubmed/33914683
http://data.nsdi.go.kr/dataset/15147
http://www.robots.ox.ac.uk/~{}vgg/software/via
http://www.robots.ox.ac.uk/~{}vgg/software/via
http://doi.org/10.1111/tgis.12533
http://doi.org/10.3390/rs10010132
http://doi.org/10.1109/TCSVT.2022.3167114
http://doi.org/10.1109/TPAMI.2021.3107872
http://www.ncbi.nlm.nih.gov/pubmed/34437057

	Introduction 
	Background 
	Materials and Methods 
	Area of Study and Data 
	Mask R-CNN 
	Cascade Mask R-CNN 

	Results and Discussion 
	Conclusions and Future Prospects 
	References

